HVOF Coatings at Hill AFB

AGENDA

- Design Allowables From A-10 Piston Testing
- On-Going Investigations for landing gear applications
 - Duplex Coatings
 - Coating Adherence After Repair Processes
 - Liquid Nitrogen Exposure (Shrink Fits)
 - 375F Bake (Hydrogen Release)
 - Diamond Grinding of 300M Substrate
- Implementation at Hill AFB
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOV 2003</td>
<td></td>
<td>00-00-2003 to 00-00-2003</td>
</tr>
</tbody>
</table>

4. TITLE AND SUBTITLE
HVOF Coatings at Hill AFB

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Ogden Air Logistics Center, Hill AFB, UT, 84056

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
23rd Replacement of Hard Chrome Plating Program Review Meeting, November 18-19, 2003, Cape Canaveral, FL. Sponsored by SERDP/ESTCP.

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
14

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Appearance of Cracks in Coating and Spalled Zone
Coating Integrity Testing Summary

- Piston test program (coated with WC-17%Co)
 - Thick coatings (.010 and .015 inches)
 - Simulated high bending stress conditions
 - Typically 200 cycles above 180 ksi outer fiber bending stress
 - Testing conducted until spallation of coating
 - Spallation occurs near 240 ksi for 0.010 inch thick coating (R= -.33)

- Air Force landing gear fatigue spectrums have been reviewed (in progress)
 - Cycles to 180-200 ksi only 30-40 out of 8000 cycles (1 lifetime)

- Conclusion: HVOF coatings will not spall
 - Based on bend test results
 - Based on fatigue spectrums reviewed to date
WC-17%Co Coating Design Allowables

<table>
<thead>
<tr>
<th>R ratio: [Stress Min./Stress Max.]</th>
<th>Coating Thickness (as-ground)</th>
<th>Allowable Bending Stress: (Mc/I)</th>
<th>Allowable Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.33</td>
<td>0.010 inches</td>
<td>240 ksi</td>
<td>0.8%</td>
</tr>
<tr>
<td>-0.33</td>
<td>0.015 inches</td>
<td>190 ksi</td>
<td>0.67%</td>
</tr>
<tr>
<td>-0.41</td>
<td>0.010 inches</td>
<td>240 ksi</td>
<td>0.8%</td>
</tr>
<tr>
<td>-0.47</td>
<td>0.010 inches</td>
<td>240 ksi</td>
<td>0.8%</td>
</tr>
<tr>
<td>-1.0</td>
<td>0.010 inches</td>
<td>200 ksi</td>
<td>0.7%</td>
</tr>
</tbody>
</table>
Monotonic Testing of Duplex coatings

- Working with Praxair Surface Technologies (Dr. Daming Wang) to investigate duplex coatings for thick build-up repair of landing gear components
- Using 4-pt bend beams(300M) to study strain to fracture and spallation

4-Point Bend Test Schematic
HVOF Duplex Coatings

- Coatings applied via HVOF process on 300M bar
 - Replacement for sulfamate nickel build-up and cap with chrome plating
 - Bond coat (WC-17%Co)
 - Build-up coat (Ni-5%Al and T-400 investigated)
 - Topcoat (WC-17%Co)

- Benefits
 - No surface prep required after each coating application
 - One booth, Two powder feeders
 - Investigating local (patch) repair
HVOF Duplex Coating Microstructure

- WCCo+NiAl(7 mils) +WCCo (5086-126-1)
- WCCo+T400(7 mils) +WCCo (5086-126-3)
- WCCo+NiAl(17 mils) +WCCo (5086-126-2)
- WCCo+T400(17 mils) +WCCo (5086-126-4)
HVOF Duplex Coating Bend Test Results

<table>
<thead>
<tr>
<th>4 pt Bar Material</th>
<th>Bond Coat</th>
<th>Build-up Coat Sprayed via HVOF process</th>
<th>Topcoat</th>
<th>Spalling near Yield Strength of 300M (230 ksi)??</th>
</tr>
</thead>
<tbody>
<tr>
<td>300M (280-300 ksi)</td>
<td>None</td>
<td>None</td>
<td>WC-17%Co thickness .010</td>
<td>Yes</td>
</tr>
<tr>
<td>300M</td>
<td>WC-17%Co thickness .0005-.001</td>
<td>Ni-5%Al thickness .006-.008</td>
<td>WC-17%Co thickness .003-.004 Duplex thickness .010</td>
<td>No</td>
</tr>
<tr>
<td>300M</td>
<td>WC-17%Co thickness .0005-.001</td>
<td>Ni-5%Al thickness .016-018</td>
<td>WC-17%Co thickness .003-.004 Duplex thickness .020</td>
<td>No</td>
</tr>
<tr>
<td>300M</td>
<td>WC-17%Co thickness .0005-.001</td>
<td>T-400 thickness .006-.008</td>
<td>WC-17%Co thickness .003-.004 Duplex thickness .010</td>
<td>No</td>
</tr>
<tr>
<td>300M</td>
<td>WC-17%Co thickness .0005-.001</td>
<td>T-400 thickness .016-.018</td>
<td>WC-17%Co thickness .003-.004 Duplex thickness .020</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: 300M is a yield strength of 300 ksi.

Spalling near Yield Strength of 300M (230 ksi)??

- **Yes**
- **No**
Spalling of Thick Duplex Coating

Detection of Spallation Initiation During Loading

Spallation When Load is Removed

WC17Co+T400+WC17Co (0.020”)
(1343VM+CO109-7+1343VM)
4-Point Bend Test Specimens with Duplex Coating Systems

Total Coating Thickness: 0.010”

WC17Co+Ni5Al+WC17Co
(1343VM+NI-356-7+1343VM)

Total Coating Thickness: 0.020”

WC17Co+T400+WC17Co
(1343VM+CO109-7+1343VM)
Test Findings for Duplex Coatings

- Significant improvement using duplex coating system
 - Spalling resistance increase
 - Applied bending stress above Yield Strength
 - Substantial permanent deformation observed in bars after test
 - Crack indications observed in top coat
 - Investigation on-going
- Ni-5%Al appears to be the winner for build-up coat
 - Deposition efficiency higher than WC-17%Co
 - Lower powder cost
 - Weighs less than WC-17%Co
 - Can be sprayed via HVOF process (1 booth set-up)
 - No surface prep required between coating processes
- Further investigation being conducted on duplex coatings
 - Local (patch) repair
 - Fatigue testing
Recent Findings and On-Going Work

- Coating adherence following standard thermal processes
 - Liquid nitrogen testing
 - Fatigue bar placed in liquid nitrogen
 - Bar tested at 190 ksi, R= -.33
 - No detrimental effects
 - Hydrogen bake out cycle (375F)
 - Fatigue bar exposed to two 24 hr bake cycles at 375F
 - Bar tested at 190 ksi, R= -.33
 - No detrimental effects

- Diamond grinding of 300M steel
 - Study conducted with Heroux Devtek
 - After 0.005 inches of material removal
 - Barkhausen inspection; no defects
 - Diamond wheel dressing with Alumina sticks
 - Total material removed 0.030 inches
 - Nital etch; no defects
 - Investigating diamond grinding of chrome plating
Implementation at Hill AFB

- Masking/fixturing challenge
 - Hard masking, only option???

- Grinding concerns
 - Changing wheels from Al-Oxide to Diamond
 - Downtime to swap out wheels

- No specs for spraying and grinding(AMS)
 - Hill has developed in-house specifications
 - Allow tech order changes immediately
Landing gear components approved for HVOF coating at Hill AFB
- A-10 MLG Piston Barrel
- A-10 NLG Piston Barrel
- B-1 MLG Axle Journals
- C-130 MLG Piston Barrel
- KC-135 NLG Piston Barrel
- KC-135 MLG Piston Barrel
- C-5 MLG Roll Pin Journals
- C-5 MLG Ball Screw Journal
- C-5 MLG Outer Pitch Cylinder
- F-15 Drive Keys
- KC-135 MLG Axle Journals