Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 JUN 2010</td>
<td></td>
<td>00-00-2010 to 00-00-2010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electroplate Alternatives to Hard Chrome: Nanocrystalline Metals and Alloys</td>
</tr>
</tbody>
</table>

| 5a. CONTRACT NUMBER |
| 5b. GRANT NUMBER |
| 5c. PROGRAM ELEMENT NUMBER |
| 5d. PROJECT NUMBER |
| 5e. TASK NUMBER |
| 5f. WORK UNIT NUMBER |

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integran Technologies Inc., 1725 Washington Road, Suite 305, Pittsburgh, PA, 15241-1209</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOD Vehicle Workshop, 15-16 June 2010, Grand Rapids, MI. Sponsored by SERDP/ESTCP.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same as Report (SAR)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
About Integran

- **Background**
 - Over 100 patents dealing with the production of metallurgical nanostructures, including one of the first nanotechnology patents ever issued.
 - Facilities and partnerships in Toronto, Canada, Pittsburgh, PA USA, and Carlsbad, CA and Tijuana, Mexico.

- **Intellectual Property**
 - Over 100 patents on production of metallurgical nanostructures.
 - First nanomaterial technology patent ever issued.

- **Facilities**
 - Pioneer in microstructurally engineered metals.
 - Nanostructure alloys - Enhanced durability, strength, wear resistant.
 - Coatings, CFRP/composite tools/parts, and functional hybrid polymer-nanometal parts for aerospace and automotive applications.
 - Applications company - Facilities and partnerships in Toronto, Canada, Pittsburgh, PA USA, and Carlsbad, CA and Tijuana, Mexico.
Nanovate™
Production Process

Patented pulsed current electrodeposition process provides a cost-effective, versatile synthesis method to produce high quality nanocrystalline metals and alloys.

Integran’s Electrodeposition Method

- Fully dense coatings
- Ultra-fine grain structure throughout entire coating
- Cost-effective, versatile, scalable
- Does not use or produce potentially harmful nanoparticles

Thin Coatings
Thick Plates
Foil
Structural Shells
Metal Foams
Free Standing Parts
Tubes
Nanovate™ CR nanocrystalline cobalt alloy

- Developed and demonstrated at the lab scale
- Scaled up to industrial production & moved to DoD depot

SERDP PP-1152

ESTCP WP-0411

Dem/Val installation at ITI

CTC (USAF) NLOS Phase I

Dem/Val installation at FRC-SE

CTC (USAF) NLOS Phase 2

ESTCP Supplement

ESTCP WP-0936

2000

TRL 1-4

TPC 710-492064

Commercial coupon/component testing

2002

TRL 5-6

Pilot Line installed at Enduro Industries (hydraulic bars)

2004

TRL 7

SDTC 2008-A-1455

Commercial aerospace dem/val installation (Q3, 2010)

2006

2008

2010

Nanovate™ CR nanocrystalline cobalt alloy

- Developed and demonstrated at the lab scale
- Scaled up to industrial production & moved to DoD depot

SERDP PP-1152

ESTCP WP-0411

Dem/Val installation at ITI

CTC (USAF) NLOS Phase I

Dem/Val installation at FRC-SE

CTC (USAF) NLOS Phase 2

ESTCP Supplement

ESTCP WP-0936

2000

TRL 1-4

TPC 710-492064

Commercial coupon/component testing

2002

TRL 5-6

Pilot Line installed at Enduro Industries (hydraulic bars)

2004

TRL 7

SDTC 2008-A-1455

Commercial aerospace dem/val installation (Q3, 2010)

2006

2008

2010
Nanovate™ CR Process (at TRL 7)

Nanovate™ CR provides significant process improvements over chrome

- Environmentally compliant
- High deposition rate
- High current efficiency
- Drop-in technology
- Excellent bath stability
- JAX, Enduro, SDTC–DemVal Aerospace

<table>
<thead>
<tr>
<th>Deposition Method</th>
<th>Nanovate™ CR</th>
<th>Hard Chrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable Geometries</td>
<td>Electrodeposition</td>
<td>Electrodeposition</td>
</tr>
<tr>
<td>Efficiency</td>
<td>85-95%</td>
<td>15-35%</td>
</tr>
<tr>
<td>Deposition Rate</td>
<td>50 – 200 µm per hour</td>
<td>12 – 25 µm per hour</td>
</tr>
<tr>
<td>Emission Analysis</td>
<td>Below OSHA limits</td>
<td>Cr+6</td>
</tr>
</tbody>
</table>
Nanovate™ CR reduces friction, enhances wear & corrosion resistance

<table>
<thead>
<tr>
<th>Property</th>
<th>Nanovate™ CR</th>
<th>Hard Chrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Free of pits, pores & cracks</td>
<td>Microcracked</td>
</tr>
<tr>
<td>Hardness (VHN)</td>
<td>530 – 680</td>
<td>Min. 600</td>
</tr>
<tr>
<td>Wear volume loss (10^-6 mm^3/Nm)</td>
<td>6 – 7</td>
<td>9 – 11</td>
</tr>
<tr>
<td>Coefficient of Friction</td>
<td>0.4 - 0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Corrosion Resistance (1000 h)</td>
<td>Protection Rating 8</td>
<td>Protection Rating 2</td>
</tr>
<tr>
<td>Hydrogen Embrittlement</td>
<td>Pass with bake</td>
<td>Pass with bake</td>
</tr>
</tbody>
</table>
Nanovate™ CR provides enhanced corrosion protection

Nanovate™ CR

Properties

ASTM B537 Ranking following 1000h ASTM B117 Salt Spray

µ-EDXRF Spectra

Coating Oxidation

Hard Chrome

µ-EDXRF Spectra

Substrate Corrosion
Nanovate™ CR provides corrosion protection in aqueous environments.

In 3.56wt% NaCl, aerated

Linear Polarization

Nanovate™ CR enhances fatigue life

Rotating Beam Fatigue
- 4340 substrate (UTS: 1790-1930 MPa)
- Significant credit vs. chrome
- Comparable to bare

Axial Fatigue
- 4340 substrate (UTS: 1240-1380 MPa)
- Preliminary data
- Credit vs bare & chrome
Nanovate™ CR

Applications

• FRC-SE (NAVAIR JAX) Dem/Val Process Line
 • 250 gallon Plating Tank (2.5’x4’x4’)
 • 370 gallon Activation Tank (3’x3’x6’)
 • Pulse Power supply (1500A Peak Current)
 • Remote Controller (Dynatronix)
Nanovate™ CR

Applications

- **Sample Aerospace Applications**
 - OEM and rebuild/repair
 - Gas turbine engines
 - Actuators
 - Landing gear
 - Propeller hubs
 - Valves
 - Pistons
 - Shocks

Success Story:
Enduro Industries

- Commercial scale deployment of Nanovate™ CR
- Produce Nanovate™ CR-coated hydraulic actuators for fluid power

Nanovate CR production plating line at Enduro Industries (Hannibal, MO)
Nanovate™ CR
Applications - NAVAIR

T-45 Arresting Hook Pivot Assembly

Pivot Assembly

T-45 Goshawk Trainer Aircraft

Extended Disassembled Actuator Assembly

Spotting Dolly

A/S32A-32 Aircraft Towing Tractor “Spotting Dolly” Spread Cylinder Hydraulic Rod
Nanovate™ CR
Applications - NAVSEA

- Marine Corps MK48 LVS (Logistic Vehicle System) Hydraulic Cylinders
 - Reduce corrosion maintenance requirements and repair costs of vehicles
- Test plan
 - Bench testing on carburized steel panels (in progress)
 - Accelerated corrosion testing (GM9540P)
 - Field test on MK48 vehicles
Summary

Nanovate™ CR Hard Chrome Alternative

• Environmentally compliant EHC alternative
• Process compatible with existing plating infrastructure
• Reduced energy consumption, increased throughput
• Enhanced corrosion and wear
• Non-embrittling
• Improved fatigue performance vs. EHC