Selectively Plated Trivalent Chrome

Presented by
Chris Mance, Tinker AFB
Selectively Plated Trivalent Chrome

Report Documentation Page

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>MAR 2005</th>
<th>2. REPORT TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. DATES COVERED</td>
<td>00-00-2005 to 00-00-2005</td>
<td></td>
</tr>
<tr>
<td>4. TITLE AND SUBTITLE</td>
<td>Selectively Plated Trivalent Chrome</td>
<td></td>
</tr>
<tr>
<td>5a. CONTRACT NUMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b. GRANT NUMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c. PROGRAM ELEMENT NUMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d. PROJECT NUMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e. TASK NUMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f. WORK UNIT NUMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. AUTHOR(S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</td>
<td>Oklahoma City Air Logistics Center, Tinker AFB, OK, 73145</td>
<td></td>
</tr>
<tr>
<td>8. PERFORMING ORGANIZATION REPORT NUMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. SPONSOR/MONITOR’S ACRONYM(S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. DISTRIBUTION/AVAILABILITY STATEMENT</td>
<td>Approved for public release; distribution unlimited</td>
<td></td>
</tr>
<tr>
<td>13. SUPPLEMENTARY NOTES</td>
<td>25th Replacement of Hard Chrome and Cadmium Plating Program Review Meeting, March 15-17, 2005, Greensboro, NC. Sponsored by SERDP/ESTCP.</td>
<td></td>
</tr>
<tr>
<td>14. ABSTRACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. SUBJECT TERMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. SECURITY CLASSIFICATION OF:</td>
<td>a. REPORT</td>
<td>b. ABSTRACT</td>
</tr>
<tr>
<td></td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
<tr>
<td>17. LIMITATION OF ABSTRACT</td>
<td>Same as Report (SAR)</td>
<td></td>
</tr>
<tr>
<td>18. NUMBER OF PAGES</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>19a. NAME OF RESPONSIBLE PERSON</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Background

- Developed 10 years ago by Dr. Zoltan Mathe at Liquid Development Corporation (LDC).

- Process is fully developed, but main customer interest has been for smaller, limited applications such as touch-up of existing chrome.

- Referred to as LDC-HTC3
Properties of LDC-HTC³

- Hardness (HV) 900-1200
 - As good or better than Electrolytic Hard Chrome (EHC)

- Taber Wear Index of 0.7 mg/1000 cycles
 - 3 times better than EHC

- Coefficient of friction equal to EHC

- Can build deposits 3 times faster than EHC

- Application of a nickel flash prior to LDC-HTC³ eliminates need for post bake. No hydrogen embrittlement.

- Line of sight NOT required
- LDC-HTC³ can build new chrome on existing chrome.

- No need to strip existing chrome if remaining coating is acceptable.
Coating Thickness

- Can plate to thicknesses in excess of 10-mils.
- Cause of pitting seen at thicker coatings isolated and identified at Tinker AFB.

Sample-19 0.0% Carbon
Sample-16 48.7% Carbon
Sample-17 62.5% Carbon
Carbon contamination caused by corrosion of graphite anode used in the process.

Replacement of graphite anode with platinum niobium mesh eliminates graphite contamination.
Coating Thickness

- Coating thickness can very accurately be predicted by measuring amp-hrs during the process.
 - Thickness predictions +/- 0.00001 inches possible with selective plating.

- “Plate To Tolerance”
Coating Finish

- Surface finishes as good as 10 Ra have been measured at Tinker.
 - Surface finishes better than 16 Ra generally called for after grinding and polishing.

- “Plate To Finish”
Post Machining

- “Plate to Tolerance, Plate to Finish”
- Post grinding and polishing may be completely eliminated
Micro/Macro Cracking of Coating

- To date, no micro or macro cracking has been observed in LDC-HTC3 coated samples
 - EHC has large tensile stresses associated with it, resulting in microcracking “spider webs”.

- The lack of cracking in LDC-HTC3 could mean:
 - Large residual stresses could remain in the coating and are not being relieved by microcracking as in EHC.
 - Coating does not crack during cutting and grinding of metallurgical samples.
 - Residual stresses in LDC-HTC3 could be less than those in EHC.
 - Selectively plated coatings in general are less porous and more dense when compared to tank plated coatings.
 - Lack of cracking could mean a dramatic improvement in corrosion resistance of LDC-HTC3 as compared to EHC.
Environmental/Safety Hazards

- **LDC-HTC** is
 - Non-oxidizing
 - Non-toxic
 - Non-carcinogenic
 - Non-corrosive
 - pH of 7.0

- Process is carried out in a “closed system”.
 - 6 gallons of solution contained in a closed heater/pump system.
 - Solution is passed through anode over part and returned to heater/pump.
 - No chrome rinse water is generated.
 - Solutions used to prepare parts (~65 mL per part) are segregated and collected.

- A finding of “CATEX” is anticipated at Tinker
 - “No significant individual or cumulative effect on the human environment”
Lean Cell Applicable

- LDC-HTC³ is ideally suited to the Lean Cell concept.
 - Equipment is low cost
 - Less than $30,000 per station.
 - Small footprint needed
 - Equipment fits on a workbench
 - Very little masking of part is required
 - Taping of boundaries using plating tape
 - Cleaning and preparatory steps carried out using selective plating equipment
 - Parts can be completely processed in as little as 4 hours
 - Ready to be reinstalled
Cost Comparison for Trivalent Brush Plated Chrome vs. Electrolytic Chrome Technologies

<table>
<thead>
<tr>
<th></th>
<th>Trivalent Brush Plated Chrome</th>
<th>Hexavalent Chrome Plating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital and Installation (Per Trichrome Lean Cell)</td>
<td>$30,000</td>
<td>N/A</td>
</tr>
<tr>
<td>Operational Costs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumables Cost (25 square inch area, 1500 parts annually)</td>
<td>$121,247</td>
<td>$109,875</td>
</tr>
<tr>
<td>Gas</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Labor (Including "Shipping & Handling" and Post-Plate Machining and Polishing for HVOF and Hexchrome)</td>
<td>$29,580</td>
<td>$318,750</td>
</tr>
<tr>
<td>Rinsewater treatment</td>
<td>$0</td>
<td>$500</td>
</tr>
<tr>
<td>Disposal</td>
<td>$0</td>
<td>$1,000</td>
</tr>
<tr>
<td>Annual Total (w/o capital)</td>
<td>$150,827</td>
<td>$430,125</td>
</tr>
<tr>
<td>Economic Analysis Summary:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Savings for Trivalent Brush Plated Chrome:</td>
<td>$279,298</td>
<td></td>
</tr>
<tr>
<td>Capital Cost for Diversion Equipment/Process:</td>
<td>$30,000</td>
<td></td>
</tr>
<tr>
<td>Payback Period for Investment in Equipment/Process:</td>
<td>Years 0.11</td>
<td>Months 1.29</td>
</tr>
</tbody>
</table>
Current Status

- Submission of project to ESTCP complete.
 - Submitted with contributors from
 - Tinker Air Force Base
 - Oklahoma City ALC
 - Army Research Labs
 - Naval Research Labs
 - NAVAIR
 - Naval Air Systems
 - PEWG
 - HCAT
 - Boeing
 - Pratt & Whitney

- Supplementary funding obtained at Tinker AFB
- Testing will continue during ESTCP review process.
Summary

- Metallurgical properties measured to date “as good or better” than EHC
- Process does not require line of sight
- Could eliminate stripping of existing chrome
- Could eliminate post grinding and polishing
- Environmental and health concerns greatly reduced or eliminated