
Presented by: Brad Martin
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Date</td>
<td>SEP 2009</td>
</tr>
<tr>
<td>Report Type</td>
<td></td>
</tr>
<tr>
<td>Dates Covered</td>
<td>00-00-2009 to 00-00-2009</td>
</tr>
<tr>
<td>Title and Subtitle</td>
<td>U.S. Air Force Reduction of Hexavalent Chromium on Landing Gear Components via Implementation of HVOF Tungsten Carbide Coatings</td>
</tr>
<tr>
<td>Author(s)</td>
<td></td>
</tr>
<tr>
<td>Performing Organization Name(s) and Address(es)</td>
<td>Air Force Materiel Command, Wright-Patterson AFB, OH, 45433</td>
</tr>
<tr>
<td>Performing Organization Report Number</td>
<td></td>
</tr>
<tr>
<td>Sponsor/Monitor's Agency Name(s) and Address(es)</td>
<td></td>
</tr>
<tr>
<td>Sponsor/Monitor's Acronym(s)</td>
<td></td>
</tr>
<tr>
<td>Sponsor/Monitor's Report Number(s)</td>
<td></td>
</tr>
<tr>
<td>Distribution/Availability Statement</td>
<td>Approved for public release; distribution unlimited</td>
</tr>
<tr>
<td>Supplementary Notes</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td>Subject Terms</td>
<td></td>
</tr>
<tr>
<td>Security Classification of:</td>
<td></td>
</tr>
<tr>
<td>a. Report</td>
<td>Unclassified</td>
</tr>
<tr>
<td>b. Abstract</td>
<td>Unclassified</td>
</tr>
<tr>
<td>c. This Page</td>
<td>Unclassified</td>
</tr>
<tr>
<td>Limitation of Abstract</td>
<td>Same as Report (SAR)</td>
</tr>
<tr>
<td>Number of Pages</td>
<td>20</td>
</tr>
<tr>
<td>Name of Responsible Person</td>
<td></td>
</tr>
</tbody>
</table>
Overview

- HVOF Implementation process
- HVOF Implementation progress
- Other engineering services
HVOF Implementation Process

- All line-of-site Chrome plated high strength steel components are targeted
- **3-Step Component Approval:**
 - 3D Modeling
 - Stress Analysis
 - System Safety Evaluation (SSE)
- **6-Step Part Conversion:**
 - HVOF Fixture Design
 - HVOF Fixture Fabrication
 - HVOF Spray prototype
 - Grind Prototype
 - Process Order Digital Display System (PODDS)
- **Technical Documentation:**
 - Technical Order Update
 - Engineering Change Orders (ECO)
HVOF Implementation Process

- **Step 1 of 3 - 3D Modeling:**
 - Used for component stress analysis (later used for fixture design)
 - Generated from original prints
 - Pro-E or Solidworks

- **Step 2 of 3 - Stress Analysis:**
 - Each component must go through a stress analysis at coating location
 - Performed using limit loads to ensure function under normal stress conditions
 - Not all components identified are suitable for HVOF conversion
 - High stress thin walled (spallation)
HVOF Implementation Process

• **Step 3 of 3 - System Safety Evaluation (SSE):**
 • An SSE must be performed on each component
 • Formal review of safety related changes to original part configuration
 • Separated into two separate cases:
 • General case SSE:
 • Limit stress are below material yield or 226 KSI and at least one of the following:
 • HVOF and EHC finished thickness are equal
 • HVOF is replacing an existing flame spray repair
 • HVOF is specified by the OEM
 • Special case SSE:
 • All others not defined by the General case
HVOF Implementation Process

- Step 1 of 6 - HVOF Fixture Design:
 - Uses previously generated 3D model
 - Fixtures are designed with consideration of booth(s) to be used including:
 - Movement restrictions and limitations.
 - Cost effective manufacturing methods
 - Ease of overspray stripping
 - Ease of operator use

- Step 2 of 6 - HVOF Fixture Fabrication:
 - Fixture validation:
 - Dimensional inspection
 - Fit check on actual component
 - Fixture delivery:
 - Custom container including all hardware, fixture blueprints, tolerance stack and run out sheets
 - Recommended spare parts lists
 - Instruction manual
HVOF Implementation Process

- **Step 3 of 6 - HVOF Spray Prototype:**
 - Prototyping ensures:
 - Application program incorporates all optimized coating methods
 - Ensures part cooling cycles are correct
 - Verifies actual part processing times
 - Verifies tolerances

- **Step 4 of 6 - HVOF Grind Prototype:**
 - Prototyped component is diamond ground
 - Ensures final dimensional and surface finish attributes are achievable within optimized grinding parameters
 - Grinding accomplished per Air Force drawing 200310642
HVOF Implementation Process

- **Step 5 of 6 - Process Order Digital Display System (PODDS):**
 - Process Orders are the detailed, step-by-step instructions for operators to use to ensure process repeatability
 - The digital instruction database is available on line for all operators

- **Step 6 of 6 – Technical Documentation:**
 - Technical Orders updated
 - Engineering Change Orders:
 - Ensures new procurement using HVOF WC/Co in lieu of EHC
 - Converting components ensures future use of EHC will be reduced, thus lowering hexavalent chrome volume and related exposure issues
HVOF Implementation Progress

[Bar chart showing the number of parts converted, in process, and identified for different aircraft models: A-10, T-38, F-15, F-16, C-5, KC-135, E-3, C-130, B-1, B-52.]
Other Engineering Services

- Duplex Coating

- **Finishing Methods:**
 - Diamond Grinding
 - Superfinishing
 - Diamond Belt Finishing

- **Stripping Methods:**
 - Rochelle Salt
 - Pulsed Water Jet

- **WC/Co Alternatives**

- **WC/Co & WC/Co/Cr Qualification**
Duplex Coating:

- The optimized HVOF WC/Co coatings are currently limited to 0.003”-0.015”

- Coatings thicker than 0.015” are periodically needed

- Duplex coating enables application up to 0.030” while maintaining all mechanical properties

- Phase I complete and working on Phase II

Table 5: Experiment Design Candidates Summary

<table>
<thead>
<tr>
<th>Experiment Design Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powder Types studied</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Runs</td>
<td>124</td>
<td>124</td>
<td>72</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Included replicates</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Highest order interaction</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Quantity/Model system</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Quantity/Variance model</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Predict multi-output optimal</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>DOC mitigates influence</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Study-size control</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Total change-over time</td>
<td>1,200</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td></td>
</tr>
</tbody>
</table>

* No replicates at corner and axial points. Multiple replicates, however, placed on center point.
Duplex Coating
(Phase I)

- **Phase I:**
 - Identified initial group of coating chemistries
 - Tested per Air Force drawing 200310641
 - Down-selected to 4 chemistries
 - Generated a coating model tool using a Design of Experiment (DOE) method
 - DOE input parameters:
 - Oxygen Flow Rate
 - Fuel Flow Rate
 - Powder Flow Rate
 - Stand-off Distance
 - Coating model tool predicts coating bond strength, ductility, porosity and hardness given changes in the input variables
 - Significantly reduces Phase II testing
Duplex Coating
(Phase II)

- **Phase II:**
 - 4-point bend integrity testing:
 - 0.020” and 0.030” total coating thickness with 0.003” inch WC-Co cap
 - 0.017” and 0.027” total coating thickness without WC-Co cap
 - 5 cycles at 190ksi, 210ksi and 230ksi stress levels or until failure (spallation)
 - Corrosion testing of duplex system to chrome and WC-Co
 - Per ASTM B117
 - Coating integrity (large bar) testing of 2 best chemistries
Phase II Coating Integrity Testing Results:

- The optimized build coat performed worse than expected
- Adding WC-Co cap to build coat failed coupons at lower than predicted stress levels
- Important observations:
 - The bond strength of WC-Co to build coat was very high
 - The bond strength of build coat to substrate was low
 - Possibly WC-Co bond coat followed by build coat could improve overall bond
- Integrity testing with WC-Co bond coat:
 - Much better results (at 230 ksi):
 - No spallation at 0.027 without WC-Co top coat
 - No spallation at 0.030 from 3 of 4 chemistries with WC-Co top coat
Duplex Coating (Phase II)

WC/Co Bond-0.027 Build-0.003 WC/Co Top @ 230 ksi
Finishing Methods

• **Diamond Grinding of 300M:**
 • Air Force drawing 200310642:
 • Cylindrical, Face (contoured) and Surface grinding techniques were optimized to reduce/eliminate grinding burns

• **Superfinishing:**
 • Seal surfaces containing HVOF applied WC/Co coatings must be Superfinished after diamond grinding has been completed
 • Superfinishing methods were optimized and written into AF Drawing 200310642

• **Diamond Belt Finishing:**
 • The initial results of testing indicate an increase of processing efficiency by 3-5 times over standard diamond wheel grinding
 • HAFB long bed grinder has been retrofitted with belt attachment
 • Optimization testing will begin this year, specification to follow.
Stripping Methods

• **Rochelle Salt Stripping:**
 - Industry standard for removing HVOF applied WC/Co materials
 - Electrolytic method under controlled temperature and pH to break down the binder (Co) in the HVOF applied coating
 - Parameters identified within Air Force HVOF application specification-200310641

• **Forced Pulse Water Jet:**
 - Optimized for HVOF WC/Co and WC/Co/Cr stripping
 - Environmentally friendly
 - Fast, very efficient
WC-Co Alternatives

- **WC/Co Alternatives:**
 - Currently, HVOF WC/Co & WC/Co/Cr is the only approved Landing Gear coating
 - These coatings are expensive and have fatigue and spallation concerns
 - It is desirable to qualify alternative coatings which provide:
 - As good as or better than chrome performance characteristics
 - More cost effective
 - Conventionally finished
 - Landing Gear Thermal Spray Specification
 - Requirements which will enable the Air Force to qualify other thermal spray chemistries
 - Modeled after the Landing Gear HCAT JTP
WC/Co & WC/Co/Cr Qualification

- WC/Co & WC/Co/Cr Qualification:
 - Enables the USAF to qualify vendors for HVOF WC application on OEM components
 - Qualification based on coatings passing standard metallurgical and performance baselines
 - Specification completed and signed off on 28 July 2009 (200925098)
 - Located at www.fbo.gov
Conclusion

• **Benefits:**
 - Improved wear performance
 - Removing a known embrittling process
 - Component longevity
 - Reduction in hexavalent chrome waste stream
 - Greatly reduced rework
 - Faster processing of parts

• **Issues:**
 - Solid infrastructure for EHC
 - Momentum change