Technology Transition: The Dynamic Role of the US Army Research Laboratory Coatings and Corrosion Offices.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

ASETSDefense 2012
August 28th, 2012
Fred Lafferman & John A. Escarsega
fred.lafferman@mail.mil john.a.escarsega@mail.mil
Technology Transition: The Dynamic Role of the US Army Research Laboratory Coatings and Corrosion Offices

1. REPORT DATE
28 AUG 2012

2. REPORT TYPE

3. DATES COVERED
00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Technology Transition: The Dynamic Role of the US Army Research Laboratory Coatings and Corrosion Offices

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U. S. Army Research Laboratory, Aberdeen Proving Ground, MD, 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
12

19a. NAME OF RESPONSIBLE PERSON
• Technology Transition
• Key Drivers to Support New Technology
• Major Gaps in Pretreatments
• Coatings and Corrosion Updates
• Transition of New Pretreatment Technology

Courtesy of U.S. Army

Courtesy of U.S. DoD
Critical Coating Performance Requirements

Affordable
Multifunctional
Military
Coatings

VOC/HAP Reduction
Cr(VI) and heavy metal elimination

UV Resistance
Flexibility
Corrosion resistance

Chemical agent protection
Camouflage

Environmental
Survivability
Durability
Affordability
Key Drivers to Support New Technologies

• Transitioning New and Enhanced Technology
 - Reduction of Hazardous Air Pollutants
 - Elimination of Heavy Toxic Metals
 - Reduction of Volatile Organic Compounds
 - Enhanced Performance-Corrosion and Weathering
• Specifications
 - Powder Coating-MIL-PRF-32348
 - E-Coat-MIL-DTL-53084
 - Enhanced Corrosion-MIL-DTL-53022/MIL-DTL-53030
 - HAP-free Solvent-Memorandum and NSN’s, future MIL-T-81772 type
 - Crystalline Silica Elimination-CARC Topcoats
Major Gaps in Pretreatments

• Pretreatment for Ferrous Substrates-TT-C-490 CHEMICAL CONVERSION COATINGS AND PRETREATMENTS FOR FERROUS SURFACES (BASE FOR ORGANIC COATINGS)
 ❖ Type I-Zinc Phosphate
 ❖ Type III-Wash Primer conforming to DoD-P-15328
 ➢ Contains hexavalent chromium-7% Zinc Chromate
 ➢ Contains HAPS
 ➢ Contains high levels of VOC-6.7 lbs/gal
 ➢ Only pretreatment for spray application not requiring contained and regulated spray booth
 ➢ Only pretreatment for multi-metal application
• Defense Federal Acquisition Regulation Supplement; Minimizing Use of Hexavalent Chromium (DFARS Case 2009-D004).
• Proposed-52.211-4017 (TACOM) PREPARATION, APPLICATION, AND QUALITY ASSURANCE OF CARC PAINT SYSTEMS
• TACOM- Products containing hexavalent chromium shall not be used
• No available replacement for wash primer for spray application in existing spray booths.
• Direct to metal is not recommended or approved.
• **Planned action to resolve this gap in technology is revision to TT-C-490.**
• Evaluation and demonstration of Zr pretreatments as alternatives to both Zinc phosphate and chromate conversion coatings-SERDP and ESTCP

• Evaluation of Mg-Rich and Mg-Oxide primers for application to Army aircraft-ESTCP/NAVAIR&AMCOM

• ARL pursuing non-isocyanate topcoat technologies-SERDP
• Cadmium elimination on fasteners-ESTCP

• Evaluation and demonstration of spray in place hexavalent chromium free pretreatments to replace wash primer for multi-metal application-TMR and OSD

• Development of rapid cure CARC Coatings-OSD

• Non-chromate ZVOC pretreatments-ESTCP/Kelley*
• Major Questions to be Asked:

- What is the transition method to implement new pretreatment technologies.

- Transition to Chemical Agent Resistant Coating System.

• *Planned action to resolve this gap in technology is revision to TT-C-490.*
• Revision to TT-C-490-CHEMICAL CONVERSION COATINGS AND PRETREATMENTS FOR METALLIC SUBSTRATES (BASE FOR ORGANIC COATINGS)
 - Multi-metal application
 - Immersion and spray technologies
 - Organic and inorganic pretreatments
 - Silanes
 - Nano-Technology
 - Zirconium Technology
 - Qualification of new technologies, cancellation of DoD-P-15328
 - Legacy systems, as zinc phosphate, will not be affected
 - Legacy systems—**Does Not Require Qualification**
 - Referenced in MIL-DTL-53072, CARC application specification
QUESTIONS?