Coating Requirements & Projects for USMC Vehicles

Matt Koch
08 February 2011
ASETSDefense 2011
Coating Requirements & Projects for USMC Vehicles

United States Marine Corps, Corrosion Prevention and Control, Arlington, VA, 22203

Approved for public release; distribution unlimited

ASETSDefense 2011: Sustainable Surface Engineering for Aerospace and Defense Workshop, February 7 - 10, 2011, New Orleans, LA. Sponsored by SERDP/ESTCP.
Why Corrosion is a concern

DoD Annual Cost of Corrosion, July 2009 Report:

Total cost of corrosion for DoD of $22.5 billion
~17% of this costs is associated with the HMMWV Family of Vehicles

Department of Defense Instruction 5000.67

“Trade-off decisions involving cost, useful service life, and effectiveness shall address corrosion prevention and mitigation”

“Corrosion prevention and control (CPC) programs and preservation techniques shall be implemented throughout the life cycle of all military equipment and infrastructure in accordance with this Instruction.”

Corrosion Prevention and Control Planning Guidebook, Spiral 3 (USD, AT&L)

“For ACAT I programs, the program manager shall prepare a corrosion prevention and control plan.”
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Reference</th>
<th>When Required</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition Info Assurance Strategy</td>
<td>DoDI 8580.1</td>
<td>MS A, B, C & FRPDR or FDDR</td>
<td>All IT, Including NSS</td>
</tr>
<tr>
<td>Analysis of Alternatives (AoA)</td>
<td>DoDI 5000.02</td>
<td>MS A, B, & C Full Deployment DR for AIS</td>
<td>Updated as necessary at MS B and C</td>
</tr>
<tr>
<td>AoA Study Guidance</td>
<td>DoDI 5000.02</td>
<td>MDD</td>
<td></td>
</tr>
<tr>
<td>Component Cost Estimate</td>
<td>DoDI 5000.02</td>
<td>MDAP: MS B & FRPDR MAIS: whenever EA is required</td>
<td>Mandatory for MAIS; optional for MDAP</td>
</tr>
<tr>
<td>Corrosion Prevention Control Plan</td>
<td>DoDI 5000.02</td>
<td>MS B & C</td>
<td>Part of Acq Strategy ACAT I only</td>
</tr>
<tr>
<td>Life Cycle Sustainment Plan</td>
<td>DoDI 5000.02</td>
<td>MS B, C & FRPDR</td>
<td>Part of Acq Strategy</td>
</tr>
<tr>
<td>Life Cycle Signature Support Plan</td>
<td>DoDD 5250.01</td>
<td>MS A, B, & C</td>
<td></td>
</tr>
</tbody>
</table>

• 2.2 Management Planning
• 2.2.1 CPC Planning
• To achieve viable CPC planning, program managers should complete the following:
 – Prepare a corrosion prevention and control plan as early in a program or project as possible. In the case of weapon systems, the program manager should generate the document no later than Milestone B, Program Initiation.
 – Implement the CPCP with an accompanying process/finish specification and organize the Corrosion Prevention Action Team.
Corrosion Control Strategy

• Integral and essential part of the acquisition process

• Borrows from and provides to other disciplines

• Corrosion is impacted by:
 – Final design / materials selection
 – Inconsistencies within and across fielded variants
 – Operational requirements / life-cycle environment

• Corrosion impacts:
 – Fully realized total ownership cost
 – Warfighter Safety
 – Asset Availability
Benefits of Incorporating Corrosion Control

- Reduces life-cycle costs
- Majority of issues corrected during design
- Other issues highlighted by testing
- Repairs / upgrades made before FRP
- Verification of life expectancy
- Identification of maintenance needs
- Lessons learned for next generation systems
Methods of Corrosion Control

• Performance Requirements
 – Known acceptable systems
 – Test methods and requirements

• Chemical Agent Resistant Coating (CARC)

• Maintenance impact on corrosion control

• Consistent corrosion control across all configurations

• Establishment of exempt item criteria
Corrosion Prevention and Control Plan (CPCP)

Government Version
Program Management
Pre-Contract Planning

- Corrosion Prevention Action Team (CPAT) establishment
- Funding
- Source selection criteria
- Integration with other disciplines: Systems Engineering, Logistics, Safety, Testing, EH&S
- Sustainment / Maintenance
- Demilitarization
Program Management
Contract Execution

- Performance Specification
- RFP requirements / wording
- CDRLs: Contractor CPCP, Process / Finish Specifications
- Facilities / Requirements for CPCP execution
- Reviews & audits
- TM development
- ECP evaluation
- Testing / Acceptance
• CPCP execution
 – Specialized requirements
• Repair / Rebuild
 – Exposure to hazardous materials
• Corrosion maintenance
 – Organic vs. Contractor
• Life-cycle costs
• Demilitarization
CPCP Summary

- Government CPCP establishes system corrosion requirements
- Provides OEM with specific requirements
- Establishes CPAT for evaluation of corrosion control performance
- Provides expectations for maintenance / sustainment
- Considers life-cycle impact of design and manufacturing decisions
CPCP Basics - Example

Joint Light Tactical Vehicle (JLTV)
Accelerated Corrosion Testing

RATIONALE
These tests are the best, commercially available methods for evaluating the corrosion resistance of fasteners, parts, components, and subsystems.

EXECUTION
When testing fasteners, parts, components, and subsystems, 176 cycles of the SAE J2334 or the GMW 14872 (replaces GM 9540P) laboratory accelerated corrosion test shall be used.
Surface Condition

RATIONALE
Surface condition greatly affects the adhesion of painting systems.

EXECUTION
For surfaces intended to be painted, the condition, profile, and cleanliness of the surface shall meet the requirements of MIL-DTL-53072.

Workmanship must be consistent with best commercial practices (i.e., commercial automotive).

Base materials (i.e., substrates) should be free of cracks, burrs, sharp edges, and weld spatter that may affect the corrosion performance and coating adhesion.
Pretreatment

RATIONALE
Surface pretreatment enhances the corrosion protection of subsequent coating systems.

EXECUTION
Pretreatments shall be compatible with the cleaning method and the primer used, and may include, but are not limited to, conversion coatings (i.e. phosphate coatings), or other organic or inorganic materials. The application of such pretreatments shall be performed in accordance with manufacturer’s recommendations.
Primer

RATIONALE
Primers provide the majority of corrosion protection for coating systems and are of critical importance.

EXECUTION
Primer shall be per MIL-DTL-53072 or, in the case of e-coating, per MIL-DTL-53072 or CID A-A-52474.
Topcoat

RATIONALE
Topcoats provide the barrier to water and contaminants; a critical first layer of defense, and need to be compatible with other components, particularly the primer.

EXECUTION
Topcoat shall be per MIL-DTL-53072. Units shall be inspected for surface imperfections, total film thickness and adhesion. The minimum dry film thickness (DFT) shall be the sum of the minimum thickness specified by MIL-DTL-53072. The frequency and location of DFT per unit measurements and the repair procedure for deficiencies shall be IAW the CPCP.
Steam and Water Jet Cleaning

RATIONALE
Need to ensure that the barrier provided by the painting system is not breached by normal cleaning procedures.

EXECUTION
The JLTV and all its components shall withstand cleaning with high-pressure steam or water jet cleaner (2500-3000 psi) at a distance no closer than 0.3 meters (1 ft) to any surface, compatible with A-A-59133 without deterioration.
Accelerated Corrosion Durability Road Test (ACDRT)

RATIONALE

1) Using CARC does not guarantee 20 years service life
2) Physical geometry, joint design, materials, processes, environment, and many other factors affect service life.
3) It is significantly less expensive to design for corrosion protection than to repair poorly designed systems that prematurely corrode.

EXECUTION

One JLTV LRIP vehicle per contractor shall be tested at Aberdeen Proving Grounds IAW Joint United States Army and Marine Corps Systems Command Test Operations Procedure for Development of a Corrosion/Durability Road Test for Tactical Vehicles.
RATIONAL
Water entrapment provides an ideal environment for the promotion of corrosion, and must be avoided wherever possible.

EXECUTION
The JLTV shall be designed to avoid water collection and entrapment in manufacturing, operation, storage, and transportation orientations. Where cavities are unavoidable, functional drain holes of adequate number, size, and shape shall be provided at the lowest possible location during operations and storage. Drain holes shall not interfere with the structural integrity of the JLTV.
Design Considerations: Debris Collection

RATIONALE
Debris can entrap moisture providing an environment for corrosion, while debris in areas with moving parts can erode the topcoat and provide a path for corrosion.

EXECUTION
The JLTV shall be designed to avoid the collection of debris, dirt, grime, and other matter to which the JLTV may be exposed during normal operations. Where collection points are unavoidable due to other design considerations, access shall be provided for cleaning and removal of debris.
RATIONAL

Galvanic corrosion associated with dissimilar metal contact is greatly enhanced in a seawater/salt spray environment and must be avoided wherever possible.

EXECUTION

The JLTV shall be designed to avoid the potential for galvanic corrosion. The galvanic series in seawater presented in ASTM G82 may be used as a guide to determine materials compatibility. Specific methods for isolating dissimilar materials shall be documented in the CPCP and in the process/finish specification(s). The contractor shall itemize and provide drawings and materials of construction for all joints susceptible to galvanic corrosion.
Projects for USMC Vehicles
Project Types

Acquisition Support
• Need identified by specific USMC or joint military platform
• Funded in part by acquisition program
• May be applicable across other platforms

Office of the Secretary of Defense (OSD) Research
• High return on investment (ROI) initiative
• Funded in part by OSD
• Typically cross-platform application

Corrosion Prevention Products and Materials Program (CPPMP)
• Commercial–off-the-shelf (COTS) products tested for identified needs
• Equal or better performance than existing solutions
• Typically for prevention or maintenance applications
• Fully CPAC funded

Special Project Initiatives (SPI)
• Internal projects designed to support external initiatives
• Typically informational in nature, such as database and website design
Acquisition Program Support
Acquisition Support Example – Corrosion Control Support to JPO MRAP/M-ATV

DESCRIPTION
Direct program support to the Joint Program Office (JPO) for MRAP and M/ATV; evaluation of as-built systems for corrosion issues; provide recommendations for maintenance and upgrades; review manufacturing operations for possible technology insertion and develop long-term maintenance procedures.

APPLICATION
MRAP, M/ATV

ROI ESTIMATE
TBD

TIMELINE
- 2007/08 – formal support to JPO MRAP started
- 2008/09 – manufacturer visits and fleet surveys performed
- 2009 – demonstrations of maintenance issues performed, MI submitted to JPO, end of formal support
- 2010 – continue other projects that will benefit MRAP / M-ATV

ACCOMPLISHMENTS/HIGHLIGHTS
- Identified and categorized corrosion issues (systemic and OEM specific).
- Provided coating application training to SPAWAR (GFE integration site).
- Developed MI for bilge painting to reduce hull corrosion.
- Investigated quality and corrosion issues (e.g., Caiman paint delamination).
- Reviewed M-ATV manufacturing operations at McConnelsburg, PA and provided feedback / recommendations to JPO.
- Investigated inhibitors for bilge space corrosion.
Examples of MRAP Corrosion Findings

- Corrosion in hard-to-reach locations
- Corrosion and particles in V Hull drain
- Corrosion in crevices and between welds
- Corrosion in shadow areas
- Corrosion in holes and recesses
- Corrosion in hard-to-reach locations
Demonstration MRAP Program – “Bilge” Painting

- Unaccessible bilge identified a problem area
 - Evidence of rusting from SPAWAR inspections
 - Observation of little paint in these areas
 - Contaminants tend to collect in these locations
- For FPII trucks axle upgrades provided access to bilge
- Developed Maintenance Instruction (MI)
- Use of high build immersion paints in this area to improve corrosion resistance
MRAP Bilge Painting Process (MI)

1. Vacuum out dirt / debris
2. Mask all hoses followed by solvent wipe
3. Needle gun cleaning of corrosion and loosely adherent coating
4. Hand sanding to roughen existing, intact coating
5. Final solvent wipe after vacuuming to remove all remaining debris
6. Brush application of coating, 2 coats, recommend using contrasting colors
Example OSD Project: High Build Coating Systems to Improve the Corrosion Resistance of Ground Weapon Systems (W10MC04)

DESCRIPTION
Application of higher thickness (build) primer coatings (CARC primers, MIL-DTL-23236, etc.) to improve the corrosion resistance of ground weapon systems.

APPLICATION
All ground weapon systems (e.g., Trailers, HMMWV, MTVR, AAV, Dozers, MRAP, LVSR, etc.).

ROI ESTIMATE
150:1

ASSESSMENT

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th>JAN</th>
<th>APR</th>
<th>JUL</th>
<th>OCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TECHNICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANAGEMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVERALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Green: No disruption on costs, scheduling, and performance.
Yellow: Potentially may cause some disruptions (e.g., scheduling, increases in cost, degradation of performance, etc.).
Red: Likely to cause disruptions (e.g., scheduling, increases in costs, etc.).

MILESTONE SCHEDULE

ACCOMPLISHMENTS/HIGHLIGHTS

- Applied candidate systems to test panels, including those with complex geometries to simulate real world application.
- Identified potential incompatibility issue with Navy epoxy coatings and water reducible CARC epoxy primer.
- Prepared samples for testing.
- Performed adhesion and flexibility testing.
- Accelerated corrosion testing underway.
- Exploring demonstration opportunities with USMC CRFs and Depots.
- Coordinating testing and demonstration opportunities between the Army and USMC.
High Build Coating Systems: Phase I Test Systems

- CARC primers (53022 & 53030)
 - At specified thickness
 - At 2x specified thickness
- MIL-DTL-24441 (1 coat)
- MIL-PRF-23236 (1 coat)
 - Conventional spray
 - Airless spray (high solids)
High Build Coating Systems: Phase I Test Methods

- Adhesion
- Flexibility
- Topcoating
- Weather Resistance (QUV)
- GMW14872

Testing being performed on compatible samples
High Build Coating Systems: Coating System Compatibility

- Observed issue between Navy epoxies and water-reducible CARC products
 - MIL-DTL-24441 incompatible with
 - MIL-DTL-53030 primer and
 - MIL-DTL-64159 topcoat
 - MIL-PRF-23236 conventional spray incompatible with
 - MIL-DTL-53030 primer

- Investigated possible causes
 - Overcoat time
 - Surface contaminants / amine blush
 - Surface roughness
High Build Coating Systems: Timeline

- Phase I – completed by 31 May 2011
 - Compatibility testing performed concurrently and completed by 28 February 2011

- Phase II
 - Applications performed by 30 April 2011
 - Testing completed by 30 September 2011

- Phase III
 - CRF vehicle / component demonstrations concurrently with Phase II applications
 - Vehicles inspected at 6 and nominally 12 months
 - Documentation and briefings performed by 30 April 2012
Corrosion Prevention Products and Materials Program (CPPMP)
Motivations

The underlying motivation of the CPPMP process is to control the introduction and use of all products used by the CSTs and CRFs.

All products submitted are to be treated as potential candidates; however, there are a series of steps in place to ensure the product is used properly and appropriately.

These steps are:
1. Initial review
2. Laboratory evaluation
3. Field evaluation
Process – Flowchart

Initial Review

Submission to USMC CPAC

Send receive letter to submitter

Review submission information

Meets 5 CPAC criteria?

Lab testing required?

Yes

CPAC creates lab test plan

Commence lab testing

Write final report

Passed lab evaluation?

Yes

No

Send CPPMP rejection letter

Lab testing required?

Yes

Field testing required?

Yes

CPAC creates field test plan

Commence field testing

Write final report

Passed field evaluation?

Yes

No

Product is authorized in TM4795

Communicate changes within CPAC

Save entry for TM4795 revision

Send CPAC acceptance letter to submitter

Authorization
Example CPPMP:
Tough Coat & Mil-Tough

DESCRIPTION
Polyurethane and polyurea coatings for use as chip and abrasion resistant coatings within cargo beds of USMC vehicles.

APPLICATION
USMC ground weapon systems with cargo beds (e.g., Trailers, MTVRs, etc.)

Accomplishments/Highlights
- Currently being used at CRFs and depots

<table>
<thead>
<tr>
<th>ASSESSMENT</th>
<th>2010</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>TECHNICAL</td>
<td>Green</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANAGEMENT</td>
<td>Green</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVERALL</td>
<td>Green</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Green: No disruption on costs, scheduling, and performance.
Yellow: Potentially may cause some disruptions (e.g., scheduling, increases in cost, degradation of performance, etc.).
Red: Likely to cause disruptions (e.g., scheduling, increases in costs, etc.).
Special Project Initiatives (SPI)
CLSD is a tool designed for engineers, technicians and program managers to view snap shots, or current status of projects at NSWC Carderock Division.

Schedule

<table>
<thead>
<tr>
<th>Task</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Requirements Gathering</td>
<td></td>
</tr>
<tr>
<td>Database Design Phase</td>
<td></td>
</tr>
<tr>
<td>Usability Design Phase</td>
<td></td>
</tr>
<tr>
<td>Database Review</td>
<td></td>
</tr>
<tr>
<td>Overall Design Document</td>
<td></td>
</tr>
<tr>
<td>Programming Phase</td>
<td></td>
</tr>
<tr>
<td>Design and Usability Review</td>
<td></td>
</tr>
<tr>
<td>Modifications / Redesigns</td>
<td></td>
</tr>
<tr>
<td>Design and Usability Review 2</td>
<td></td>
</tr>
<tr>
<td>Modifications and Reworks</td>
<td></td>
</tr>
<tr>
<td>Final Product Release</td>
<td></td>
</tr>
</tbody>
</table>

HIGHLIGHTS

- Initial designs have been produced
- Review of overall work-flow has been done and noted
- Initial database design has been drafted
- This tool will be used to track status of various tests including but not limited to:
 - Cyclic corrosion testing (4 chambers)
 - B117
 - Specimen status
 - Machine Shop
 - Paint schedules

ASSESSMENT

- **Green:** No disruption on costs, scheduling, and performance.
- **Yellow:** Potentially may cause some disruptions (e.g. scheduling, increases in cost, degradation of performance, etc.).
- **Red:** Likely to cause disruptions (e.g. scheduling, increases in costs, etc.).