Field and Numerical Study of the Columbia River Mouth

Guy Gelfenbaum
400 Natural Bridges Dr.
Santa Cruz, CA 95060
Phone: (831) 460-7417 email: ggelfenbaum@usgs.gov

Jamie MacMahan
Oceanography Department, Spanagel 327c
Naval Postgraduate School
Monterey, CA 93943
Phone: (831) 656-2379 email: jmacmah@nps.edu

Ad Reniers
Rosentiel School of Marine and atmospheric Science
Miami, FL 33149
Phone: (305) 421-4223 email: areniers@rsmas.miami.edu

USGS Award Number: N0001413IP2004

LONG-TERM GOALS

The overall goal is to improve the predictive capability and skill of Delft3D to simulate complex hydrodynamics in an inlet setting in which tides, river discharge, winds, waves, and bottom friction are all important.

OBJECTIVES

The main objectives of our effort are to measure and model from the inner-shelf to the Columbia River estuary: 1) the three-dimensional flow velocity distribution spatially and temporally during a range of conditions, 2) the tidal exchange of sediments, optics, salinity, and temperature, 3) the surface particle pathways, horizontal mixing, transport, and corresponding Lagrangian Coherent Structure (LCSs) as a function of tidal flow and stratification, 4) the sea-swell and infragravity wave-current interactions, 5) the spatial variability of bed sediment grain size and the concomitant bedform development to evaluate the spatial distribution of bottom friction required for model validation, and 6) the residual flow circulation associated with the forcing by waves, wind and density differences. In addition, our effort will utilize unique measurement platforms for collecting data in this harsh environment using autonomous and mobile platforms and new inexpensive tracking drifters.

APPROACH

USGS scientists and staff from the Pacific Coastal and Marine Science Center in Santa Cruz CA teamed with co-PIs Dr. Jamie MacMahan, Naval Postgraduate School and Dr. Ad Reniers, University of Miami, as well as Dr. Chris Sherwood, USGS Woods Hole to deploy instruments to measure
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 SEP 2013</td>
<td></td>
<td>00-00-2013 to 00-00-2013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field and Numerical Study of the Columbia River Mouth</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Postgraduate School, Department of Oceanography, Monterey, CA, 93943</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
<td>Same as Report (SAR)</td>
<td>7</td>
</tr>
<tr>
<td>b. ABSTRACT unclassified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE unclassified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Z39-18
hydrodynamics, map bathymetry, bedforms and seabed grain size, and deploy drifters around the Mouth of the Columbia River (MCR) during the spring freshet 2013. USGS is also working with Dr. Edwin Elias, Deltares to test Delft3D hydrodynamic and sediment transport model in MCR during high river discharge conditions.

WORK COMPLETED

The observations at the MCR consist of time-series measurements from instrumented tripods at three locations between May 9 and June 16, 2013 (Figure 1; Table 1). Each tripod was equipped with an upward-looking ADCP, a near-bed ADV, and a pressure sensor to measure hydrodynamics, a CTD and OBS to measure water properties near the bed, and fan- and pencil-beam sonars to measure bedform geometry (Table 2).

Figure 1. Map showing the locations of 3 instrumented tripods deployed at the MCR between May 9 and Jun 16, 2013, locations of “flying eyeball” seabed grain size images, CTD casts, Biosonics and vessel-mounted ADCP transects.
Digital images of the seabed were collected at 111 locations within the MCR using the “flying eyeball” (Rubin et al., 2007) from aboard the R/V Parke Snavely (Figure 1). For each location, between 3 and 5 replicate images were collected and will later be analyzed to characterize grain-size distributions (Buscombe, 2008) of surface sediments throughout the MCR.

High-resolution acoustic backscatter data were collected within the water column along three transects within the MCR (Figure 1) using a Biosonics 420 kHz echosounder. The transects were navigated between 4 and 19 times under a variety of tide and flow conditions and the data will be used to delineate plume and shear fronts (eg. Nash and Moum, 2005) within the inlet.

Bathymetry and co-registered acoustic backscatter were collected throughout the MCR with a Systems Engineering & Assessment, Ltd. SWATHplus-M interferometric sidescan sonar system pole-mounted to the USGS survey vessel R/V Parke Snavely. Positioning and orientation of the transducers were measured using an Applanix POS MV 320 and afterwards post-processed using Applanix POSPac MMS software. Continuous speed of sound measurements were collected using an Applied Micro Systems Micro SV mounted at the transducer and sound velocity profiles were collected regularly with a YSI CastAway CTD. The bathymetry and ancillary data were combined and rendered into a 5-m digital elevation model using Caris HIPS and SIPS (Figure 2). Final datum conversions from WGS84 Ellipsoid heights (Epoch 2013.54) into NAD83 (2011)/NAVD88 heights was done using the Proj4 library and then interpolation and application of the National Geodetic Survey Geoid12a offsets was done in Surfer. In total, more than 570 million soundings were collected along 1400 km of trackline.

![Figure 2. Map of 5-m DEM created from SWATHplus bathymetric data.](image)
RESULTS
USGS successfully employed a robust open tripod frame with a dual recovery method on the three instrumented tripods. All instruments successfully collected data for the full duration of the deployment (except two of the sonars due to limited battery life) (Figures 3 and 4). In August 2005 these tripods were successfully deployed during low river discharge conditions and small waves at MCR. One of the goals of the present experiment was to test whether these frames could withstand the more energetic conditions of the spring freshet. Data from the instrumented tripods are presently being processed and checked for QA/QC.

![Figure 3. Seabed image from rotary sonar mounted on North tripod showing multiple three-dimensional bedform fields.](image)

The SWATHplus successfully mapped bathymetry throughout the MCR characterizing large-scale inlet morphology as well as medium and large-scale bedforms. Important features including a deep hole adjacent to Jetty A, the shallow bar between the main jetties that induces wave shoaling, and a linear ledge along the north side of the channel were mapped in detail (Figure 2). Detailed seafloor mapping also characterized a variety of sand bedforms ranging in size from a few meters in wavelength to hundreds of meters.
Figure 4. Time series from North Tripod of water depth, currents, optical backscatter, and range to the bottom from the ADV.

IMPACT/APPLICATIONS

The field measurements collected during the MCR freshet experiment will allow rigorous testing of the Delft3D hydrodynamic and sediment transport model. The model was successfully validated against low river discharge and small wave conditions during August 2005 by Elias et al. (2012). Conditions during the recent experiment were more energetic, with larger waves and higher river discharge. Testing and validating the model during these more energetic conditions will extend the range of applicability of this important model. In addition, the surface drifter deployments (see MacMahan and Reniers annual report) are a new and challenging data set to test the model’s capacity to simulate shear and density fronts.
Detailed maps of bedforms observed in the new SWATHplus data will be used to test various bedform models as well as test various bottom roughness schemes in the Delft3D hydrodynamic and sediment transport model.

RELATED PROJECTS

None

REFERENCES

Table 1. Tripod locations, depths, and times of deployment and recovery

<table>
<thead>
<tr>
<th>Location</th>
<th>Longitude (°E)</th>
<th>Latitude (°N)</th>
<th>Depth (m)</th>
<th>Deployed (GMT)</th>
<th>Recovered (GMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Tripod</td>
<td>-123.97139</td>
<td>46.24498</td>
<td>11.2</td>
<td>9-May-13</td>
<td>15-Jun-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16:35</td>
<td>20:37</td>
</tr>
<tr>
<td>West Tripod</td>
<td>-124.06505</td>
<td>46.26505</td>
<td>12.1</td>
<td>9-May-13</td>
<td>15-Jun-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18:27</td>
<td>22:12</td>
</tr>
<tr>
<td>South Tripod</td>
<td>-123.98542</td>
<td>46.23073</td>
<td>13.0</td>
<td>9-May-13</td>
<td>16-Jun-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19:51</td>
<td>1:47</td>
</tr>
</tbody>
</table>

Table 2. Instruments, sampling scheme, and data products from tripods deployed at the MCR

<table>
<thead>
<tr>
<th>Instrument Type</th>
<th>Sampling Scheme</th>
<th>Quantity Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDI ADCP</td>
<td>1 Hz Continuous Sampling</td>
<td>Velocity profiles from 2.9 m above bed to surface at 0.5-m resolution</td>
</tr>
<tr>
<td>Sontek ADV</td>
<td>22-min burst at 8 Hz every hour</td>
<td>Point measurement of velocity at 0.66 m above bed, range to bed from ADV sensor</td>
</tr>
<tr>
<td>OBS</td>
<td>22-min burst at 8 Hz every hour</td>
<td>Point measurement of optical backscatter at 0.67 m above bed</td>
</tr>
<tr>
<td>Pressure</td>
<td>22-min burst at 8 Hz every hour</td>
<td>Point measurement of velocity at 1.4 m above bed</td>
</tr>
<tr>
<td>RBR CTD</td>
<td>10-sec burst at 6 Hz every 5 min</td>
<td>Point measurement of temperature and salinity at 1.8 m above bed</td>
</tr>
<tr>
<td>Imagenex Fan Beam Sonar</td>
<td>1 scan every hour or every 3 hours</td>
<td>Side-scan imagery of bed forms</td>
</tr>
<tr>
<td>Imagenex Pencil Beam Sonar</td>
<td>1 scan every hour or every 3 hours</td>
<td>Profiles of bathymetry in vicinity of tripod</td>
</tr>
</tbody>
</table>