Award Number: W81XWH-12-1-0029

TITLE: Imaging of Oxidative Stress in Prostate Cancer

PRINCIPAL INVESTIGATOR: Brian M. Zeglis

CONTRACTING ORGANIZATION: Memorial Sloan-Kettering Cancer Center
New York, NY, 10065

REPORT DATE: October 2013

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and
should not be construed as an official Department of the Army position, policy or decision
unless so designated by other documentation.
1. REPORT DATE
October 2013

2. REPORT TYPE
Final

3. DATES COVERED
27 September 2012-26 September 2013

4. TITLE AND SUBTITLE
Imaging of Oxidative Stress in Prostate Cancer

5a. CONTRACT NUMBER

5b. GRANT NUMBER
W81XWH-12-1-0029

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER
E

5f. WORK UNIT NUMBER

6. AUTHOR(S)
Brian Zeglis

E-Mail: zeglisb@mskcc.org

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Memorial Sloan-Kettering Cancer Center
1275 York Avenue, New York, NY, 10065

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

10. SPONSOR/MONITOR’S ACRONYM(S)
USAMRMC

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES
None

14. ABSTRACT
The purpose of this grant was the synthesis, development, and validation of a PET imaging agent for the non-invasive delineation of hydrogen peroxide (H_2O_2) levels in prostate cancer. We are seeking such an imaging agent because the over-production of hydrogen peroxide in prostate tumors has been linked with rapid tumor cell proliferation, aggressive tumor growth, and enhanced metastatic ability. We believe that the project has the potential to be paradigm-shifting, as it would be the first PET agent for the in vivo delineation of cellular H_2O_2 production. The central hypothesis of the project is that the selective, H_2O_2-mediated cleavage of carbon-boron bonds could be used as the centerpiece of a strategy for the PET imaging of H_2O_2. The majority of the work during this funding period was dedicated to elucidating and executing a synthetic route to an 18F-radiolabeled probe containing an H_2O_2-sensitive carbon-boron bond. Unfortunately, the short radioactive half-life and reactivity with boron of 18F ultimately combined with the instability of alkyne-bearing boronates to click chemistry conditions to preclude the synthesis of such an agent. Toward the end of the funding period, we turned to a different positron-emitting radioisotope, 124I, and were subsequently able to synthesize an 124I-labeled, boronate ester-containing probe — 124I-hydroxyphenyl boronate pinacol ester (124I-HPBPE) — that we believe could be a first generation chemoselective imaging agent for the non-invasive in vivo delineation of H_2O_2 levels. Going forward, we plan to further explore the chemical reactivity of 124I-HPBPE, followed by subsequent in vitro and in vivo validation studies. In the end, while the synthesis of the prospective probe required more time and effort than we anticipated, we firmly believe that this research project could lead to the development of a clinically transformative imaging agent.

15. SUBJECT TERMS
Positron Emission Tomography, Oxidative Stress, Hydrogen Peroxide, 18F, 124I, Prostate Cancer

16. SECURITY CLASSIFICATION OF:
a. REPORT
U
b. ABSTRACT
U
c. THIS PAGE
U

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
10

19a. NAME OF RESPONSIBLE PERSON
USAMRMC

19b. TELEPHONE NUMBER (include area code)
203-500-1594
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>5</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>9</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>9</td>
</tr>
<tr>
<td>Conclusion</td>
<td>9</td>
</tr>
<tr>
<td>References</td>
<td>10</td>
</tr>
<tr>
<td>Appendices</td>
<td>10</td>
</tr>
</tbody>
</table>
Introduction

The original goal of this grant was the development of a strategy to non-invasively delineate intracellular hydrogen peroxide (H$_2$O$_2$) levels in prostate tumors using positron emission tomography (PET). It has been well-established that H$_2$O$_2$ is over-produced in many types of prostate cancer, and, more importantly, its over-production has been linked with rapid tumor cell proliferation, aggressive tumor growth, and enhanced metastatic ability. As we wrote in the original proposal, we believe that the “project has the potential to be paradigm-shifting, as it would be the first PET agent for the in vivo delineation of cellular H$_2$O$_2$ production. The ability to image this novel target would be particularly important in prostate cancer, as the non-invasive determination of intratumoral H$_2$O$_2$ levels could be of significant value in the clinic, both as a means of monitoring treatment efficacy and for identifying tumors of aggressive phenotype.”

The central hypothesis of the project is that the selective, H$_2$O$_2$-mediated cleavage of carbon-boron bonds could be used as the centerpiece of a strategy for the PET imaging of H$_2$O$_2$ (Figure 1).

As we described in the original proposal, “the basic design of the system is straightforward. While whole, the [18F]-fluoroethylarylboronate ([18F]-FEAB) probe will be freely cell permeable, and thus it will pass into and subsequently out of cells with low basal levels of H$_2$O$_2$. In contrast, when the [18F]-FEAB enters a cell with high levels of H$_2$O$_2$, the hydrogen peroxide will oxidatively cleave the boron-carbon bond, producing a [18F]-labeled borinic acid product that, due to its negative charge once deprotonated (pKa < 7), will become entrapped in the cell (Figure 2).”

“By this mechanism, cells with high levels of H$_2$O$_2$ will accumulate much higher levels of 18F than cells with lower H$_2$O$_2$ levels. Standard organic synthesis and radiochemistry methods will be employed to synthesize the [18F]-FEABs, with the key steps being the boron-carbon bond formation via palladium-catalyzed coupling and the subsequent [18F]-radiolabeling reaction. The substituents on the aryl ring will be strategically varied to optimize the cell permeability of the intact agent (e.g. R$_1$ = amine, short aliphatic chain, triethylene glycol, monosaccharide, etc.). Once the probes have been synthesized and characterized, logP values and rates of H$_2$O$_2$-mediated cleavage will be determined for all of the prospective agents. In vitro studies will be performed to determine the cellular uptake, efflux, and
retention of the different agents under varying H₂O₂ production conditions. The LNCaP and LNCaP-AR prostate cancer cell lines will be used for all \textit{in vitro} experiments, and intracellular H₂O₂ levels will be modulated in three ways: direct incubation with H₂O₂; addition of paraquat (a mitochondrial poison that prompts increased H₂O₂ production); and treatment with testosterone or prostate specific antigen, for these cells are known to increase ROS production when exposed to these agents. Importantly, independent fluorometric measurements of H₂O₂ concentration will be made in all experiments to verify the amounts of intracellular hydrogen peroxide and allow for the quantitation of trends. Finally, the most promising probes \textit{in vitro} will be evaluated \textit{in vivo} with small animal PET imaging using nude mice implanted with LNCaP and LNCaP-AR xenografts. In both cases, the levels of intratumoral H₂O₂ production will be modulated through exposure to testosterone or prostate specific antigen.'

Body

As may be expected for a hypothesis-based grant like this one, the execution of the project did not quite line up with the plan outlined in the original proposal. However, during the year funded by this grant, we have made massive strides in the synthesis of the H₂O₂-cleavable imaging agents (Statement of Work Objective #1). This wasn’t easy, however, and we have gone through multiple iterations of prospective compounds before finally — and very recently — arriving at a compound that seems to be promising. As we will discuss, in the coming weeks and months, we will use this compound for \textit{in vitro} (Statement of Work Objective #2) and \textit{in vivo} (Statement of Work Objective #3) studies.

The first alteration we had to make was to the nature of the ester on the compound. In the original proposal, we proposed a phenyl-based, catechol-like ester (Figure 3). We began synthesizing these compounds; however, we soon learned through a combination of our own experience and an in-depth reading of the literature that unhindered esters like this one are not particularly stable in water or serum. Therefore, we switched our design to contain a pinacol ester such as those used in the work of Chang, \textit{et al} (Figure 3).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{Revision to the core structure of the probe}
\end{figure}

This change in the core structure of the probe made us think critically about how we planned to incorporate the 18F into the finished probe. There are two essential options: (A) labeling the organic pinacol-based moiety prior to the formation of the boronate pinacol-like ester and (B) labeling the intact ester (Figure 4).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{Two possible routes to 18F-labeled probes bearing a boronate pinacol ester: (A) labeling the pinacol-based moiety prior to the creation of the boronate ester; (B) incorporating the radiolabel after the formation of the ester.}
\end{figure}
Unfortunately, we soon found that neither of these routes would do. We could eliminate Option A rather quickly, because the deprotection and ester formation reactions are far too slow to be compatible with the short radioactive half-life of \(^{18}\text{F}\): \(^{18}\text{F}\)'s physical half-life is \(\sim 2\) hr, while each of these reactions (especially the ester formation) requires hours to complete.

The problems with Option B were somewhat more surprising. Recent work in the laboratory of David Perrin at the University of British Columbia has focused on exploiting the incredible strength of the boron-fluorine bond as method of radiofluorination.\(^{15-21}\) This, of course, presents a problem for Option B: given the strength of the B-F interaction, any \(^{18}\text{F}\) we introduce, will almost certainly attach to the boron rather than displace a leaving group (Figure 5).

Figure 5. The dangers of trying to incorporate an \(^{18}\text{F}^-\) in the presence of a boron

Since the work of Perrin's group strongly suggested that the boron (and not the triflate) will be the target of a radiofluoride nucleophile, we did not want to go through with the time-consuming synthesis of the triflate-bearing pinacol boronate ester.\(^{15-21}\) However, in order to confirm the affinity of \(^{18}\text{F}^-\) for boron, we did mix together \(^{18}\text{F}\) with hydroxyphenyl boronate pinacol ester and, as expected, we did see the \(^{18}\text{F}^-\) binding to the boron (Figure 6). Ultimately, we do believe that displacing a triflate leaving group with \(^{18}\text{F}^-\) in the presence of a boron is possible with the right combination of electron-donating or electron-withdrawing groups on the phenyl ring attached to the boron. However, we did not believe that pursuing that fundamental radiochemistry problem was worth the time in our execution of this grant.

Figure 6. The reaction between \(^{18}\text{F}\) and a 4-hydroxyphenyl boronate pinacol ester

Not to be deterred, our next plan was to incorporate the \(^{18}\text{F}\) into the finished probe using copper-catalyzed click chemistry.\(^ {22-26}\) This method, shown below in Figures 7 and 8, allows for the rapid incorporation of the \(^{18}\text{F}\) into the compound without having to label with \(^{18}\text{F}^-\) in the presence of the boron. A number of literature reports describing the synthesis of \(^{18}\text{F}\)-labeled azides can be found in the literature, and standardized techniques for the copper-catalyzed click reaction between \(^{18}\text{F}\)-labeled azides and alkenes have been reported as well.\(^ {22,27-30}\)

Figure 7. The Cu-catalyzed [3+2] Huisgen cycloaddition between an azide and an alkyne
Figure 8. Proposed structure of a H$_2$O$_2$-reactive PET probe based on Cu-catalyzed click chemistry.

Prior to performing any radiochemistry with this system, we wanted to see if the pinacol boronate ester was stable under click chemistry conditions. To this end, we had 4-ethynylbenzyl boronate pinacol ester specially made for our laboratory by Frontier Scientific, and we purchased azidoaniline from Sigma-Aldrich as a model compound for the reaction (Figure 9).

Figure 9. Model click reaction between azidoaniline and an alkyne-containing pinacol boronate ester.

In subsequent HPLC-based stability studies, we learned that 4-ethynylbenzyl boronate pinacol ester was completely stable in the presence of Cu(II)SO$_4$ or ascorbic acid. When mixed together, however, Cu(II)SO$_4$ and ascorbic acid create Cu(I), a species necessary for the click reaction. Unfortunately, our stability experiments suggest that 4-ethynylbenzyl boronate pinacol ester is unstable in the presence of Cu(I) (Figure 10). Future experiments are currently underway on this system, because we firmly believe this click chemistry approach represents the best the best way to create an 18F-based, boron-containing PET probe.

Figure 10. Illustration of the decomposition of 4-ethynylbenzyl boronate pinacol ester in the presence of Cu(I). While the compound is stable alone (A), in the presence of 5 mM ascorbic acid (B), and in the presence of 5 mM CuSO$_4$ (C), the compound falls apart to a number of other species in the presence of a combination of 5 mM ascorbic acid and 5 mM CuSO$_4$ (a combination that readily forms Cu(I)).
At this point, we felt to some degree like we were out of 18F-related options. The radionuclide’s short half-life and high affinity for boron abrogated our first two synthetic routes, and the instability of 4-ethynylbenzyl boronate pinacol ester in the presence of Cu(I) seems to preclude the use of Cu-catalyzed click chemistry. Luckily, 18F is not the only radiohalogen available. As an alternative, we have decided to turn to 124I, a positron-emitting radiohalogen with a longer half-life (~4 days) and without the affinity of 18F for born. Radiolabeling proteins with isotopes of radioiodine most often centers upon radiolabeling tyrosines, and we have recently used this chemistry to create a prospective first generation H$_2$O$_2$-sensitive PET imaging agent. We have labeled 4-hydroxylphenyl boronate pinacol ester with 124I using a Chloramine T based procedure to produce 124I-hydroxylphenyl boronate pinacol ester (124I-HPBPE) in high yield and purity (see Figures 11 and 12).

Further, while the data is very preliminary at the time of writing this report, initial studies seem to indicate that the 124I-HPBPE is, indeed, specifically cleaved by H$_2$O$_2$. However, much more validation is needed prior to asserting this with full confidence. Once the chemistry has been further elucidated, we plan to take 124I-HPBPE into both in vitro (Statement of Work Objective #2) and in vivo (Statement of Work Objective #3) experiments as soon as possible.

In the end, we admittedly and regrettably were unable to move past the synthesis phase of the experimentation during the funding period (Statement of Work Objective #1). However, we made incredible strides toward the synthesis of an H$_2$O$_2$-sensitive PET imaging agent during the funding period, and we are thus incredibly grateful to the Department of Defense and the CDMRP for the funds. They were essential to getting the project off the ground and moving it from an exciting idea towards a reality.
Key Research Accomplishments

• The synthesis of an 124I-labeled radiopharmaceutical bearing a boronate pinacol ester that may be developed into an chemoselective PET imaging agent for the non-invasive in vivo delineation of H$_2$O$_2$ levels.

Reportable Outcomes

• A manuscript on the synthesis and characterization of the 124I-labeled hydroxyphenyl boronate pinacol ester is planned, but more data must be collected first.

• The general theory behind this work was used to apply for a Department of Defense Breast Cancer Research Program Idea Award. However, the proposal, entitled “PET Imaging of Highly Reactive Oxygen Species in Breast Cancer” was not funded.

• The progress achieved during this funding period on the development of ROS-sensitive PET imaging agents was used to support a successful application for an intramural Seed Grant (entitled “PET Imaging of Reactive Oxygen Species”) from the Memorial Sloan-Kettering Cancer Center Imaging and Radiation Sciences Program.

• The PI (Brian Zeglis) has used the overall mission of this grant (i.e., the development of reactive oxygen species-sensitive PET imaging agents) as a centerpiece of the research plan that he has used to apply for faculty positions at universities across the country, including the University of Chicago, Ohio State University, Penn State University, Dartmouth College, Brown University, Columbia University, and New York University.

Conclusion

The majority of the work during this funding period was dedicated to elucidating and executing a synthetic route to an 18F-radiolabeled probe containing an H$_2$O$_2$-sensitive carbon-boron bond. Unfortunately, the short radioactive half-life and reactivity with boron of 18F ultimately combined with the instability of alkyne-bearing boronates to click chemistry conditions to preclude the synthesis of such an agent. Toward the end of the funding period, we turned to a different positron-emitting radioisotope, 124I, and were subsequently able to synthesize an 124I-labeled, boronate ester-containing probe — 124I-hydroxyphenyl boronate pinacol ester (124I-HPBPE) — that we believe could be a first generation chemoselective imaging agent for the non-invasive in vivo delineation of H$_2$O$_2$ levels. Going forward, we plan to further explore the chemical reactivity of 124I-HPBPE, followed by subsequent in vitro and in vivo validation studies. In the end, while the synthesis of the prospective probe required more time and effort than we anticipated, we firmly believe that this research project could lead to the development of a clinically transformative imaging agent.
References

Appendices

Because all figures have been embedded in the text, there are no appendices for this report.