Kinetics Studies of Radical-Radical Reactions (I): The NO₂ + N₂H₃ System

H. Sun, G. L. Vaghjiani, S. D. Chambreau, A. Schenk, C. K. Law,

Air Force Research Laboratory (AFMC)
AFRL/RQRP
10 E. Saturn Blvd
Edwards AFB CA 93524-7680

Air Force Research Laboratory (AFMC)
AFRL/RQR
5 Pollux Drive
Edwards AFB CA 93524-7048

Distribution A: Approved for Public Release; Distribution Unlimited. PA#13505

Viewgraph for the WSS-Combustion Meeting, Fort Collins, CO, 7-8 October 2013

The state-of-the-art hypergol combination currently used in the US for many space propulsion applications consists of monomethyl hydrazine, as the fuel, and nitrogen tetroxide, as the oxidizer. The Air Force Research Laboratory is developing new hypergolic fuels which will provide enhanced performance capabilities as well as improved affordability and efficiency. Furthermore, handling of these new hypergolic fuels is also expected to have a much smaller logistical footprint due to the fact that they are being designed to be environmentally benign. However, practical realization of these hypergols in spacecraft propulsion systems will only come after attaining a satisfactory understanding of how to optimize their combustion characteristics in relevant operating environments. Here we report theoretical results obtained on the prototypical radical-radical reaction: NO₂ + N₂H₃, and the progress made towards building an apparatus consisting of laser photolysis/fast flow-tube reactor coupled to a mass spectrometer for investigating the kinetics of this elementary reaction.
Kinetics Studies of Radical-Radical Reactions
The NO₂ + N₂H₃ System

H. Sun, G.L. Vaghjiani, S.D. Chambreau, and A. Schenk
Air Force Research Laboratory, Edwards AFB

C.K. Law
Princeton University

Fall 2013 Technical Meeting, Western States Section of
the Combustion Institute, Colorado State University

October 7-8, 2013

DISTRIBUTION A: Approved for public release, distribution unlimited
N$_2$H$_4$ + NTO Hypergolic Ignition

• N$_2$H$_3$ and NO$_2$: major components of N$_2$H$_4$ + NTO earlier ignition

• NTO consists of structural conformers:
 NO$_2$, sym-N$_2$O$_4$ (D$_{2h}$), cis-ONONO$_2$, trans-ONONO$_2$

• Hypergolicity of hydrazine/N$_2$O$_4$:

 \[
 \begin{align*}
 N_2H_4 + cis-ONONO_2 & \rightarrow HONO_2 + H_2NN(H)NO \quad (k_{1a}) \\
 N_2H_4 + trans-ONONO_2 & \rightarrow HONO_2 + H_2NN(H)NO \quad (k_{1b}) \\
 H_2NN(H)NO & \rightarrow N_2H_3 + NO \quad (k_2)
 \end{align*}
 \]

\[
\begin{align*}
 k_1 &= 4 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \quad (\geq 250 \text{ K}) \\
 k_2 &= 1 \times 10^7 \text{ s}^{-1} \quad (1000 \text{ K})
 \end{align*}
\]

• Fast exothermic reactions:
 N$_2$H$_3$ + NO$_2$ (Radical + Radical) \rightarrow addition \rightarrow products
 N$_2$H$_3$ + N$_2$O$_4$ (Radical + Stable) \rightarrow abstraction \rightarrow products
Motivation: NO$_2$ + N$_2$H$_3$

- **Practically**
 - Occurs with negative energy barrier and large exothermicity, significant importance in N$_2$H$_4$ + NTO ignition

- **Theoretically**
 - Occurs via a complex reaction mechanism
 - Multireference characters of wavefunction are significant due to the electron repulsion between electronegative O and N atoms
 - Quantitatively correct description of the electron correlation in presence of configurational quasi-degeneracy effects
 - Chemically accurate representation of exact molecular wave function, and exact energy for prediction of accurate rate coefficient
Theoretical Approach

Electronic Structure Calculations

- Geometries optimization and ro-vibrational frequencies by multireference second-order perturbation theory (CASPT2) with aug-cc-pVDZ or aug-cc-pVTZ basis sets
- For R + R addition and abstraction, the energies were extrapolated to the CBS limit from those of CASPT2/aug-cc-pVQZ and CASPT2/aug-cc-pVTZ
- For dissociation of addition adducts, the energies were extrapolated to the CBS limit from those of CCSD(T)/cc-pVQZ and CCSD(T)/cc-pVTZ

Kinetic Rate Coefficients

- Two transition state theory for submerged energy barriers
- Microcanonical TST at E/J resolved level
 - rigid-rotor harmonic-oscillator assumptions
 - tunneling correction with asymmetric Eckart potentials
 - Master equation analysis via an eigenvector based approach
 - Exponential down energy transfer models
 - Lennard-Jones collision rates
$N_2H_3 + NO_2$ (Abstraction)

Unit: kcal/mol

CASPT2/CBS
RCCSD(T)/CBS//CASPT2
TSA2 \rightarrow NNH$_2$-cisHONO

Optimized at the CASPT2(4e,3o)/aug-cc-pVTZ level
TSA4 \rightarrow NNH$_2$-HNO$_2$

Optimized at the CASPT2(8e,6o)/aug-cc-pVDZ level
Rate Coefficients: Abstraction

- Inner TS
 - Covalent bond formation
 - Energy barriers: CASPT2/CBS
 - Rigid rotor harmonic oscillator

- Outer TS
 - Phase space theory
 - Long range isotropic potential

- Effective TS

\[
\frac{1}{N_{\text{eff}}^{+}} = \frac{1}{N_{\text{inner}}^{+}} + \frac{1}{N_{\text{outer}}^{+}}
\]

\[
k^{\infty}(T) = \frac{1}{h Q_R} \int N_{\text{eff}}^{+}(E,J) e^{-E/k_b T} dE dJ
\]
N–N Addition Potential

\[\Delta H^o_{f, \text{NHNH}_2} = 55.3 \text{ kcal/mol} \]

\[\Delta H^o_{f, \text{NO}_2} = 7.9 \text{ kcal/mol} \]
Addition of $\text{N}_2\text{H}_3 + \text{NO}_2$

Ground state destabilization: orbital splitting ($p_{\pi} - p_{\pi}$ repulsion) on NO_2

Optimized at the CASPT2(2e,2o)/aug-cc-pVDZ level
PES of N₂H₃ + NO₂ (Addition)

CASPT2/aug-cc-pVDZ
RCCSD(T)/CBS///CASPT2
RQCISD(T)/CBS///CASPT2

Unit: kcal/mol
N$_2$H$_3$-NO$_2$ Adduct Decomposition

Electron transfer for N-N bond breaking
Thermodynamic product stability

Adduct-1 \rightarrow TS3

i1067.05 cm$^{-1}$

CASPT2(8e,6o)/aug-cc-pVDZ
PES of $\text{N}_2\text{H}_3 + \text{NO}_2$ (Addition)

Cas: $\text{N}_2\text{H}_3 + \text{NO}_2$

TS-1c: 7.25 kcal/mol

TS-1a: 3.79 kcal/mol

TS-1b: -11.31 kcal/mol

TS-2: -15.18 kcal/mol

TS-3: -9.72 kcal/mol

NH$_2$NHO + NO:

-6.94 kcal/mol

trans-NH=NH + cis-HONO:

-34.81 kcal/mol

CASPT2/aug-cc-pVDZ

CASPT2/aug-cc-pVTZ

RCCSD(T)/CBS//CASPT2

T1 diagnostic: RCCSD(T)/cc-pVQZ//CASPT2
Rate Coefficients: Addition

\[k_1, \text{NO}_2 + \text{N}_2\text{H}_3 \rightarrow \text{NH}_2\text{NHNO}_2 \]

\[k_2, \text{NO}_2 + \text{N}_2\text{H}_3 \rightarrow \text{NH}_2\text{NHONO} \]

Graph:
- **k_1, N-N addition, Ea=-11.73 kcal/mol**
- **k_2, N-O addition, Ea=-11.61 kcal/mol**
Rate Coefficients: Dissociation

- Microcanonical TST at the E/J resolved level employing rigid-rotor harmonic-oscillator assumptions
- The pressure-dependent kinetics analysis using single-well master equation for irreversible dissociation at the E/J resolved level
- The collisional energy transfer probability was approximated by:
 \[\Delta E_{\text{down}} = 200 \times (T/300)^{0.85} \, \text{cm}^{-1} \]
- The Lennard-Jones parameters for collision rates were estimated to be \(\sigma = 4.84 \, \text{Å} \) and \(\varepsilon = 441 \, \text{cm}^{-1} \)
Concluding Remarks

- Four abstraction channels were found with the negative energy barriers up to 12 kcal/mol, and product H-bonded complexes have 5 - 12 kcal/mol energies stable than the dissociation products.

- Abstraction by the nucleophilic O atom forming trans-N_2H_2 + cis-HONO is exothermic to 34.8 kcal/mol, forming NNH_2 + cis-HONO is the dominant channel.

- The NO$_2$ addition to the N$_2$H$_3$ radical proceeds via a complex mechanism. The N–N addition is more favorable than the N–O addition.

- The predominant channel for the dissociation of the N–N addition adduct is an intramolecular H-transfer to form the trans-HONO + trans-N_2H_2 products.
Acknowledgements

• National Energy Research Scientific Computing Center (NERSC) supported by the Office of Science of the U.S. Department of Energy

• The National Research Council for the Senior Research Associateship Award to H. Sun at the Air Force Research Laboratory, Edwards AFB