Abstract

InAs$_{0.6}$Sb$_{0.4}$/Al$_{0.75}$In$_{0.25}$Sb-based barrier photodetectors were grown metamorphically on compositionally graded Ga$_{1-x}$In$_x$Sb buffer layers and GaSb substrates by molecular beam epitaxy. At the wavelength of 8?m and T?=?2150?K, devices with 1-?m thick absorbers demonstrated an external quantum efficiency of 18% under a bias voltage of 0.45?V.

Subject Terms
- aluminium compounds
- buffer layers
- gallium compounds
- III-V semiconductors
- indium compounds
- infrared detectors
- molecular beam epitaxial growth
- photodetectors
Report Title
Metamorphic InAsSb-based barrier photodetectors for the long wave infrared region

ABSTRACT
InAs$_{0.6}$Sb$_{0.4}$/Al$_{0.75}$In$_{0.25}$Sb-based barrier photodetectors were grown metamorphically on compositionally graded Ga$_{1-x}$In$_x$Sb buffer layers and GaSb substrates by molecular beam epitaxy. At the wavelength of 8?µm and T?=150? K, devices with 1-?µm thick absorbers demonstrated an external quantum efficiency of 18% under a bias voltage of 0.45?V.
Continuation for Block 13

ARO Report Number 57965.5-EL
Metamorphic InAsSb-based barrier photodetector...

Block 13: Supplementary Note
© 2013. Published in Applied Physics Letters, Vol. Ed. 0 103, (5) (2013), (5). DoD Components reserve a royalty-free, nonexclusive and irrevocable right to reproduce, publish, or otherwise use the work for Federal purposes, and to authorize others to do so (DODGARS §32.36). The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Approved for public release; distribution is unlimited.
Metamorphic InAsSb-based barrier photodetectors for the long wave infrared region

Ding Wang,1 Dmitry Donetsky,1 Gela Kipshidze,1 Youxi Lin,1 Leon Shterengas,1 Gregory Belenky,1,4) Wendy Sarney,2 and Stefan Svensson2

1Department of ECE, Stony Brook University, Stony Brook, New York 11794, USA
2U.S. Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, USA

(Received 25 June 2013; accepted 23 July 2013; published online 2 August 2013)

InAs0.6Sb0.4/Al0.75In0.25Sb-based barrier photodetectors were grown metamorphically on compositionally graded Ga0.66In0.34Sb/Ga0.75In0.25Sb buffer layers and GaSb substrates by molecular beam epitaxy. At the wavelength of 8 μm and T = 150 K, devices with 1-μm thick absorbers demonstrated an external quantum efficiency of 18% under a bias voltage of 0.45 V. © 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4817823]

Efficient photodetectors for the spectral range from 8 to 14 μm are required for a variety of applications. In the quest for the most efficient technological solution, photodetector heterostructures based on the III–V family of semiconductors have attracted significant attention for a long period of time. Barrier photodetector designs were recently developed to enhance device performance.1–6 The generic design targets of the barrier photodetector include (a) the development of high quality narrow bandgap absorbers with sharp absorption edge and sufficiently high diffusion lengths and (b) the development of wide bandgap barrier materials with proper band alignment with respect to the absorber section. Although a large range of band gaps and band alignments are available within the III–V materials system, the requirement of high quality growth on commercially available substrates limits the practical design flexibility.

Recently, it was shown that for InAsSb-based materials utilization of compositionally graded (Al)GaInSb buffer layers can turn the lattice constant into a design parameter. This technology allowed the growth of high quality unstrained unrelaxed InAsSb narrow gap layers with thickness up to 4 μm on commercially available GaSb substrates.7–11 The lattice mismatch of more than 2% between the GaSb substrate and InAsSb alloys having Sb compositions exceeding 40% is effectively accommodated by a network of misfit dislocations confined in the compositionally graded GaInSb buffer layer. It was shown that Te-doped GaInSb relaxed layers do not impede electron transport and thus do not cause any significant voltage penalty in light emitting and laser diodes.8–10 Transmission electron microscopy (TEM) studies demonstrated that the density of dislocations threading into the bulk unstrained unrelaxed InAsSb from the GaInSb buffers is below the limit detectable by TEM. It was also confirmed that the optimization of the growth and design parameters allowed the growth of InAsSb bulk layers without any apparent self-ordering.11

In this work an unstrained and unrelaxed InAs0.6Sb0.4 1-μm-thick bulk layer was grown by MBE on a 3 μm thick GaInSb compositionally graded buffer layer and a 500 nm Ga0.66In0.34Sb virtual substrate.8 We utilized this layer as the absorber section of the barrier photodetector. This nominally undoped alloy section demonstrated an absorption edge near 9.5 μm at 77 K. Figure 1(a) is a schematic band diagram of the barrier photodetector heterostructure under flat band condition. The InAsSb absorber was grown undoped. Our assumption about the n-type of InAsSb is based on its similarity to InAs. The background electron concentration in this layer cannot be high (probably below 1016 cm−3) since we did not observe the Burstein-Moss shift between the detector cut-off wavelength (as shown in Figure 2(b)) and the low energy edge of the photoluminescence spectra of the absorber (see also Ref. 7). For the barrier layer we selected an Al0.75In0.25Sb ternary alloy that was lattice matched to InAs0.6Sb0.4. The calculation predicted that the large band offset in conduction band between the InAsSb absorber and the AlInSb barrier should suppress the electron transport from the absorber to the n+ InAsSb contact layer. The valence band edges can be expected to be nearly aligned between InAsSb and AlInSb; hence, the photo and thermally generated holes can reach the top contact. This idealized picture neglects any effects of possible residual doping in the AlInSb.

To elucidate the effect of the doping type and density of the AlInSb barrier layer on the performance parameters of the barrier photodetectors we produced devices with different intentional doping levels. We compared nominally undoped, with moderately p-doped (Be, 1016 cm−3), and heavily p-doped (Be, 1017 cm−3) AlInSb. The wafers were processed into front side illuminated devices (Figure 1(b)). We used an inductively coupled H2/CH4/Ar plasma reactive ion etching process to define the top contacts into square mesas with sides ranging from 50 to 600 μm. A silicon nitride mask was used for mesa definition, and the etching process was stopped in the top half of the barrier layer as confirmed by the Scanning Electron Microscopy (SEM) image shown in the inset of Figure 1(b). The mesas were covered by a 300-nm-thick silicon nitride layer followed by the deposition of Ti/Pt/Au contacts. Square optical windows with sides of 200, 300, and 400 μm were opened on the front side on mesas with side lengths of 400, 500, and 600 μm, respectively. The external quantum efficiency (EQE) was measured with illumination from the epi-side. No antireflection coating was applied. The backside contact consisted of an annealed Ni/Au/Ge/Ni/Au layer and a Ti/Pt/Au final metallization.
The quantum efficiency was measured using an 800°C blackbody source with a 2.5 mm aperture at distances from 5 to 30 cm. Figure 2(a) plots the bias dependence of the EQE at 8 µm measured at 77 K for all three types of devices. A bias of 0.45 V was required for devices with moderately and heavily p-doped barriers to reach saturation of the EQE while a bias nearly double that was required for devices with nominally undoped barrier layers. Figure 2(b) plots the EQE spectrum at the bias corresponding to saturation.

FIG. 2. (a) The bias dependence of normalized EQE at 8 µm at 77 K for all three types of devices. (b) EQE spectra at biases corresponding to saturation in a temperature range from 77 K to 150 K. The spectra were smoothed by averaging of adjacent points. The atmospheric absorption causes the distortions of the spectra within the 5–7 µm regions.

For the structure with AlInSb layer grown undoped the potential profile of the valence band is formed by the band offset between InAsSb and AlInSb, by the contribution of the modulation doping effect (we assume slightly n-type AlInSb) and by the difference in doping of the absorber and the top contact layer. In this case the major portion of the bias voltage drops across the AlInSb layer, and a relatively large bias voltage (0.9 V) is required to enable the hole transport.

Apparently even low p-doping of the AlInSb layer leads to the annihilation of the effect of modulation doping and decreases the voltage drop across the AlInSb barrier. The potential barrier which impedes the hole transport in cases of structures with p-doped AlInSb is smaller which results in a moderate bias (0.45 V) and the identical behavior of dependences EQE versus V for both p-doped structures (Figure 2(a)).

The values of EQE in the 1–µm-thick absorber correspond to an estimated absorption coefficient above 2000 cm⁻¹ for photon energies of about 15 meV above the absorption edge (e.g., at the wavelength of 8 µm at 77 K). The high
absorption coefficient value is an inherent advantage of the bulk III–V absorber material.

Figure 3 plots the dark current-voltage characteristics at 77 K for all three types of devices. The dark current values corresponding to biases required to reach the maximum EQE are nearly the same for devices with nominally undoped and moderately p-doped barrier layers. The device with moderately doped barrier layer has a dark current density of 5×10^{-4} A/cm² at a bias voltage of 0.45 V. The estimated specific detectivity of this device at 77 K is about 4×10^{10} cm Hz¹/₂ W⁻¹.

The character of the I–V for structures with AlInSb layer grown undoped reflects the complex nature of the potential profile in the valence band discussed above. The suppression of the barrier for hole transport occurs gradually over a wide range of bias voltages. We can see the change of the slope at the bias voltage of 0.6 V where EQE starts; however, no signature is visible at 0.9 V where EQE reaches the maximum. At high voltage the contribution of G-R currents increases, the activation energy of temperature-dependent dark current decreased from 124 meV at 0.6 V to 77 meV at 1 V bias. Taking into account the small energy gap of heterostructure materials the effect of tunneling can affect the I–V curve behavior (see the difference in the I–V for structures with different p-doping in Figure 3).

In summary, long-wave infrared nBn photodetectors with bulk, unrelaxed InAs₀.₆Sb₀.₄ absorbers and Al₀.₇₅In₀.₂₅Sb barriers grown on compositionally graded GaInSb buffers on GaSb substrates were fabricated by molecular beam epitaxy and characterized. The heterostructures with 1-µm-thick absorbers demonstrated external quantum efficiencies of 12% and 18% at 8 µm at a bias voltage of 0.45 V and temperatures of $T = 77$ and 150 K, respectively. The estimated specific detectivity of this device at 77 K is about 4×10^{10} cm Hz¹/₂ W⁻¹.

The work was supported by US Army Research Office through grants (Nos. W911NF1110109 and W911NF1220057) and by US National Science Foundation through grant (No. DMR1160843).