SPATIALLY TARGETED ACTIVATION OF A SHAPE MEMORY POLYMER-BASED RECONFIGURABLE SKIN SYSTEM

Greg Reich, James Joo, and Nate DeLeon
Design and Analysis Branch
Aerospace Vehicles Division

Richard Beblo and John Puttmann
University of Dayton Research Institute

DECEMBER 2013
Interim Report

Approved for public release; distribution unlimited.
See additional restrictions described on inside pages
Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the USAF 88th Air Base Wing (88 ABW) Public Affairs Office (PAO) and is available to the general public, including foreign nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RQ-WP-TM-2013-0264 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

//Signature//
JAMES J. JOO
Program Manager
Design and Analysis Branch
Aerospace Vehicles Division

//Signature//
THOMAS C. CO, Chief
Design and Analysis Branch
Aerospace Vehicles Division

//Signature//
CARL TILMANN, Principal Scientist
Aerospace Vehicles Division
Aerospace Systems Directorate

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.
<table>
<thead>
<tr>
<th>1. REPORT DATE (DD-MM-YY)</th>
<th>December 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. REPORT TYPE</td>
<td>Interim</td>
</tr>
<tr>
<td>3. DATES COVERED (From - To)</td>
<td>01 October 2012 – 30 September 2013</td>
</tr>
</tbody>
</table>

| 4. TITLE AND SUBTITLE | SPATIALLY TARGETED ACTIVATION OF A SHAPE MEMORY POLYMER-BASED RECONFIGURABLE SKIN SYSTEM |

| 6. AUTHOR(S) | Greg Reich, James Joo, and Nate DeLeon (AFRL/RQVC)
| | Richard Beblo and John Puttmann (University of Dayton Research Institute) |

| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) | Design and Analysis Branch (AFRL/RQVC)
| | Aerospace Vehicles Division
| | Air Force Research Laboratory, Aerospace Systems Directorate
| | Wright-Patterson Air Force Base, OH 45433-7542
| | Air Force Materiel Command, United States Air Force |
| | University of Dayton
| | Research Institute
| | 300 College Park
| | Dayton, OH 45469 |

| 8. PERFORMING ORGANIZATION REPORT NUMBER | AFRL-RQ-WP-TM-2013-0264 |

| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) | Air Force Research Laboratory
| | Aerospace Systems Directorate
| | Wright-Patterson Air Force Base, OH 45433-7542
| | Air Force Materiel Command
| | United States Air Force
| | AFRL/RQVC |

| 10. SPONSORING/MONITORING AGENCY ACRONYM(S) | AFRL-RQ |
| 11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S) | AFRL-RQ-WP-TM-2013-0264 |

| 12. DISTRIBUTION/AVAILABILITY STATEMENT | Approved for public release; distribution unlimited. |

| | This document is comprised wholly of a slide show presentation. |

| 14. ABSTRACT | The objective of the project is to investigate the thermomechanical behavior of engineered shape memory polymer (SMP) materials for use as composite reconfigurable skin systems in morphing aircraft applications. An anisotropic, reconfigurable skin based on selective heating of a cellular SMP material will be designed and investigated to understand its material characteristics. |

| 15. SUBJECT TERMS | |

16. SECURITY CLASSIFICATION OF:	
a. REPORT	Unclassified
b. ABSTRACT	Unclassified
c. THIS PAGE	Unclassified
17. LIMITATION OF ABSTRACT:	SAR
18. NUMBER OF PAGES	40
19a. NAME OF RESPONSIBLE PERSON (Monitor)	James J. Joo
19b. TELEPHONE NUMBER (Include Area Code)	N/A
Spatially Targeted Activation of a Shape Memory Polymer Based Reconfigurable Skin System

Dr. Greg Reich
Dr. James Joo
Capt Nate DeLeon
Aerospace Systems Directorate
Dr. Richard Beblo
Mr. John Puttmann
UDRI
Outline

- Project Outline
- Project Roadmap
- Magnetic and Thermal Modeling
- Heating Scheme Proof of Concept
- Epoxy SMP Characterization
- Composite Analytic Model
- Composite Characterization
- Composite FEA Model
- System Modeling
- Honeycomb Geometry Optimization
- Heating Pattern Optimization
- Future Work
- Conclusions
Project Outline

Skin Objectives (via MAS)
Nominal Panel Size 15” x 20”
Shear from 30° to 75°
No Wrinkling of Skin
Total Skin Weight <0.95 lb/sqft
Aerodynamic Load 400lb/sqft
Max Out-of-Plane Deflection 0.1”

Heating Patterns
- 0 degrees
- +45 degrees
- -45 degrees
- 90 degrees
- Diamond
- Large Honeycomb
 - Auxetic
 - Isotropic
- 0 Poisson
- Top/Bottom
- Left/Right

Approved for public release; distribution unlimited.
Project Roadmap

System Concept

Material Characterization

Composite Modeling

Composite Characterization

System Modeling

Validation

System Optimization

Validation

Material Characterization

Composite Characterization

Heating Concept

Magnetic Modeling

Thermal Modeling

Heating Scheme Proof of Concept

Thermal Characterization

Experimentally Validated Design Optimization Tool

Approved for public release; distribution unlimited.
Project Roadmap

System Concept

Material Characterization

Composite Modeling

Composite Characterization

System Modeling

System Optimization

VALIDATION

VALIDATION

FEA Modeling

Heating Concept

Magnetic Modeling

Thermal Modeling

Heating Scheme

Proof of Concept

Thermal Characterization

Experimentally Validated Design

Optimization Tool

Approved for public release; distribution unlimited.
Magnetic and Thermal Modeling

Magnetic Field Lines Between Two Magnets

- Nickel: 3-7 µm diameter
- Epoxy SMP
- Neodymium (NdFeB) N42SH magnets

Magnetic Field Lines b/t Ni Particles

- 0.04 T
- 0.13 T
- 0.06 T

Particle Diameter
- 5 µm
- 65 µm
- 125 µm
- 185 µm
- 245 µm

Time to Transition (s)

5 vol% = 2 s

Approved for public release; distribution unlimited.
Project Roadmap

- System Concept
- Material Characterization
- Composite Modeling
- Composite Characterization
- System Modeling
- System Optimization
- FEA Modeling
- Magnetic Modeling
- Thermal Modeling
- Heating Scheme Proof of Concept
- Experimentally Validated Design Optimization Tool

Approved for public release; distribution unlimited.
Velocity of a particle subject to a pulsating fluid

\[u = \frac{3\rho}{\rho + 2\rho_s} v_\infty \]

- \(u \) particle velocity
- \(\rho \) fluid density
- \(\rho_s \) particle density
- \(v_\infty \) imposed pulsating field

Approved for public release; distribution unlimited.
Heating Scheme Proof of Concept

5 vol% 3-7 µm Nickel particles
Neodymium magnets 40mm separation
350 Hz vibration
212°F for 3 hours
Mold: 10 x 10 x 0.75 cm

$\phi_c = 0.41$ (50 µm diameter, δ_c 10 nm)
$\phi_{exp} = 0.10$
10 vol%, 10V, random orientation: 60s
Heating Scheme Proof of Concept

Tested several Copper, Steel, and NiChrome mesh electrodes. 100x100 Cu most promising.

Current activation: 10V, ~60s

End View of Nickel

Side View Nickel

End View of Particle Chains
Project Roadmap

System Concept

Material Characterization

Composite, Modeling

Composite Characterization

System Modeling

System Optimization

VALIDATION

FEA Modeling

Thermal Characterization

Experimentally Validated Design Optimization Tool

Thermal Modeling

Magnetic Modeling

Heating Concept

Heating Scheme Proof of Concept

Approved for public release; distribution unlimited.
Epoxy SMP Characterization

Epoxy SMP Formulation
0.02 mol (7.28g) EPON 826
0.01 mol (2.3g) Jeffamine D230
100°C for 1.5hr, 130°C for 1hr

Experimental Results

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_g</td>
<td>65 °C</td>
</tr>
<tr>
<td>E (ambient)</td>
<td>1300 MPa</td>
</tr>
<tr>
<td>E (115 °C)</td>
<td>19 MPa</td>
</tr>
</tbody>
</table>

Values consistent over several batches, 0-8 week sample age

T Xie, IA Rousseau, *Facile tailoring of thermal transition temperatures of epoxy shape memory polymers*, Polymer, 2009
\[\delta_j = \sum_m \left\{ \int_0^{L_m} \frac{N_m^2}{2E_m A_m} \partial_z + \int_0^{L_m} \frac{M_{x,m}^2}{2E_m I_{x,m}} \partial_z \frac{\partial}{\partial F_j} \right\} \]

\[\delta_0 = \delta_a + 2\delta_{lr} + 2\delta_{ls} \]

\[E_{c0} = \frac{F_{00}}{\delta_0} \frac{(a + x_0)}{2cy_0} \]
Composite Analytic Model

- Analytic Model

- Empty Honeycomb Young’s Modulus (MPa)

- Hot Composite Young’s Modulus (MPa)

- Cold Composite Young’s Modulus (MPa)
Composite Characterization

<table>
<thead>
<tr>
<th></th>
<th>23 °C</th>
<th>115 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{Epoxy}</td>
<td>1.3 GPa</td>
<td>19 MPa</td>
</tr>
<tr>
<td>E_{HX}</td>
<td>62.8 kPa</td>
<td></td>
</tr>
<tr>
<td>E_{HY}</td>
<td>16.6 kPa</td>
<td></td>
</tr>
<tr>
<td>E_{CX}</td>
<td>2.19 GPa</td>
<td>33.9 MPa</td>
</tr>
<tr>
<td>E_{CY}</td>
<td>2.04 GPa</td>
<td>11.8 MPa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>23 °C</th>
<th>115 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_{Epoxy}</td>
<td>1.27 GPa</td>
<td>1.06 MPa</td>
</tr>
<tr>
<td>G_{CXY}</td>
<td>1.19 GPa</td>
<td>13.9 MPa</td>
</tr>
<tr>
<td>G_{CYX}</td>
<td>1.13 GPa</td>
<td>13.0 MPa</td>
</tr>
</tbody>
</table>
Composite Characterization

Analytic Model
Experimental Results

Empty Honeycomb Young’s Modulus (MPa)

Hot Composite Young’s Modulus (MPa)

Cold Composite Young’s Modulus (MPa)
Project Roadmap

System Concept

Material Characterization

Composite Modeling

System Modeling

VALIDATION

Validation

FEA Modeling

Heating Concept

Magnetic Modeling

Thermal Modeling

Heating Scheme

Proof of Concept

Composite Characterization

Thermal Characterization

Experimentally Validated Design Optimization Tool

20

Approved for public release; distribution unlimited.
Composite FEA Model

FEA supports force distribution assumption of analytic model.

X soft tension, axial stress top left beam.

Even stress distribution
-0.2 – -0.3 MPa

Linear stress distribution
0.18 MPa

-0.10 MPa
Composite FEA Model

<table>
<thead>
<tr>
<th></th>
<th>23 °C</th>
<th>115 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{CX}</td>
<td>1.40 GPa</td>
<td>52.4 MPa</td>
</tr>
<tr>
<td>E_{CY}</td>
<td>1.08 GPa</td>
<td>17.9 MPa</td>
</tr>
<tr>
<td>G_{CXY}</td>
<td>0.81 GPa</td>
<td>16.3 MPa</td>
</tr>
<tr>
<td>G_{CYX}</td>
<td>0.81 GPa</td>
<td>16.4 MPa</td>
</tr>
</tbody>
</table>

X hard tension, axial stress top left beam

X Hard Von-Mises Stress (MPa)

XY Hard Von-Mises Stress (MPa)
Composite FEA Model

<table>
<thead>
<tr>
<th></th>
<th>23 °C</th>
<th>115 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{CX}</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>E_{CY}</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>G_{CXY}</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>G_{CYX}</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

X hard tension, axial stress top left beam

![Graph showing Von-Mises Stress](image)

Approved for public release; distribution unlimited.
Composite FEA Model

Tension (Von-Mises Stress)

Shear (Von-Mises Stress)

Approved for public release; distribution unlimited.
Composite FEA Model

- Analytic Model
- Experimental Results
- FEA Results

- Empty Honeycomb Young’s Modulus (MPa)
- Hot Composite Young’s Modulus (MPa)
- Cold Composite Young’s Modulus (MPa)

Approved for public release; distribution unlimited.
Project Roadmap

System Concept

Material Characterization

Composite Characterization

System Modeling

Composite Modeling

VALIDATION

Validation

FEA Modeling

VALIDATION

System Optimization

Experimentally Validated Design Optimization Tool

Thermal Characterization

Heating Scheme Proof of Concept

Thermal Modeling

Magnetic Modeling

Heating Concept

Composite Modeling

Material Characterization

System Concept

Approved for public release; distribution unlimited.
System Modeling

Low fidelity FEA
Homogenization scheme using effective composite properties
Plane Stress (z direction neglected)
In-plane only
Calculates effective E_x, E_y, G_{xy}, G_{yx}
given heating pattern

Material Stiffness Matrix

\[
\begin{bmatrix}
\varepsilon_{11} \\
\varepsilon_{22} \\
\varepsilon_{12} \\
\varepsilon_{21}
\end{bmatrix} =
\begin{bmatrix}
\frac{1}{E_1} & \frac{\nu_{21}}{E_2} & 0 & 0 \\
\frac{\nu_{12}}{E_1} & \frac{1}{E_2} & 0 & 0 \\
0 & 0 & \frac{1}{G_{12}} & \frac{G_{21}}{G_{12}} \\
0 & 0 & \frac{G_{21}}{G_{12}} & \frac{1}{G_{21}}
\end{bmatrix}
\begin{bmatrix}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{12} \\
\sigma_{21}
\end{bmatrix}
\]

\[
\mu_{12,21} = \frac{1}{\mu_{21,12}} = \frac{(l^3 + a^3 \cos^2(\theta))(a + x_0)}{2 y_0 a^3 \cos(\theta) \sin(\theta)}
\]

Non-zero shear coupling (Chentsov) coefficients

10% Strain X Direction
Stress X (Pa)

Approved for public release; distribution unlimited.
Project Roadmap

System Concept
- Material Characterization
- Composite Modeling
- Composite Characterization
- System Modeling

Heating Concept
- Magnetic Modeling
- Thermal Modeling
- Heating Scheme
- Proof of Concept

System Optimization
- Experimentally Validated Design Optimization Tool

Approved for public release; distribution unlimited.
Honeycomb Geometry Optimization

Design Variables

\begin{align*}
0 & \leq l (m) < \infty \\
0.00005 & \leq d (m) < \infty \\
0 & \leq a (m) < \infty \\
0 & \leq \theta \leq \frac{\pi}{2} \\
0 & \leq h_{\text{core}} (m) < \infty \\
0 & \leq t_f (m) < \infty
\end{align*}

Self-Imposed Constraints

\begin{align*}
\varepsilon_{\text{max}} & > 0.1 \\
\varepsilon_{\text{y max}} & > 0.1 \\
\frac{1}{2} & \leq \frac{2y_0}{a + x_0} < 2
\end{align*}

Equation Constraints

Unit Cell Equations

\begin{align*}
\left. \begin{array}{c}
\leq \sin (\theta) \\
\geq \sin (\theta) \cos (\theta) \\
\leq 2 \sin (\theta) - \sin (2\theta) \cos (\theta)
\end{array} \right\} \\
\frac{a}{l} & \geq 0 \\
\sin \left(\frac{3\pi}{2} + 2\theta \right) & \geq \cos (\theta)
\end{align*}

Thin Beam Theory

\begin{align*}
\left. \begin{array}{c}
\leq a \\
\geq \frac{l}{a}
\end{array} \right\} \\
d & \leq \frac{8}{l}
\end{align*}

Sandwich Plate Deflection

\begin{align*}
\delta & \leq (h_{\text{core}} + 2t_f) \\
\delta_{\text{cell}} & \leq t_f
\end{align*}

Material Properties Constraints

\begin{align*}
\frac{C_i w^2 h_{\text{panel}}^2}{t_f h_{\text{core}}} & = \sigma_{\text{max}} \leq \frac{1.0E7 \text{(Pa)}}{2} = \frac{\sigma_f}{\text{FOS}} \\
\varepsilon_{\text{x max}} & \leq \varepsilon_{sf} = \left(\frac{(\beta_x - \cos (\theta))}{a + l \cos (\theta)} \right) \\
\beta_x & = \cos^{-1} \left[\frac{\varepsilon_{f} a}{l} + \cos (\theta) (\varepsilon_{sf} + 1) \right] \\
\varepsilon_{y max} & \leq \varepsilon_{sf} = \frac{\sin (\beta_y) - \sin (\theta)}{\sin (\theta)} \\
\beta_y & = \cos^{-1} \left[\sin (\theta) (\varepsilon_{sf} + 1) \right] \\
\varepsilon_{sf} & = 200\%
\end{align*}

Optimized Geometry

\begin{align*}
l & \quad 10 \text{ mm} \\
a & \quad 1.0 \text{ mm} \\
d & \quad 0.05 \text{ mm} \\
\theta & \quad 62^\circ \\
h_{\text{core}} & \quad 172 \text{ mm} \\
t_f & \quad 2.5 \text{ mm}
\end{align*}

Approved for public release; distribution unlimited.
Heating Pattern Optimization

Genetic Algorithm

- 13 full cells
- 12 partial cells
- 7 hot cells
- 18 cold cells

Not included:
Out-of-plane def.
Deformation req.

Minimize E_{xx}

Minimize E_{yy}

Minimize E_{xy}

Minimize E_{yx}
Project Roadmap

System Concept

Material Characterization

Composite Modeling

Composite Characterization

System Modeling

System Optimization

Heating Concept

Magnetic Modeling

Thermal Modeling

Heating Scheme
Proof of Concept

Thermal Characterization

Experimentally
Validated Design Optimization Tool

Approved for public release; distribution unlimited.
Future Work

Future Work System Scheme
• Heating Pattern Optimization
• System Integration / Fabrication
• System Characteristics Envelope

Future Work Heating Scheme
• Thermal characterization of heating scheme
• Thermal diffusion between cells
• Direct write electrodes (variable patterns)
Conclusions

• Viable Option for Morphing Structures
• 30-40% In-plane Strain Achievable
• Accurate Analytic Model of Filled Honeycomb
• Optimistic High Thickness SMP Heating Scheme