Decomposition of Spectra from the Drum
With Applications to the Chesapeake Bay

Kevin McIlhany, Physics Dept. USNA

http://web.usna.navy.mil/~rmm/
Report Documentation Page

1. REPORT DATE
02 OCT 2008

2. REPORT TYPE

3. DATES COVERED
00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
Decomposition of Spectra from the Drum With Applications to the Chesapeake Bay

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
United States Naval Academy, Physics Department, 572 Holloway Rd, Annapolis, MD, 21402

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
at the 2008 COMSOL Conference Boston, 9-11 Oct, Boston, MA

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>b. ABSTRACT</td>
<td>c. THIS PAGE</td>
</tr>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
42

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z39-18
Outline

• Review of Problem Statement / History
• Motivation / Applications
• Methods Applied – Toy Problems
• Analysis
• Conclusions
Drumhead Problem

• Given a sample of a drums sound, attempt to calculate the amplitudes of the modes – time-series at location of microphone

• Related to a famous problem posed by mathematician Mark Kac (1966) asking: “Can One Hear the Shape of a Drum?”

• Lead to idea of iso-spectral drums
Isospectral Drums

• Drums with differing boundaries that have identical k_n values – so they sound alike!

Milnor, 1966 … Driscoll, 1997 SIAM
Outline

• Review of Problem Statement / History
• Motivation / Applications
• Methods Applied – Toy Problems
• Analysis
• Conclusions
Why Measure the Amplitudes?

• Being able to measure modes strengths suggests dynamics about the system.
• By measuring “windows” in time that overlap, the time-dependence of the amplitudes can be seen.
• Energy conservation – once a mode is excited, where does the energy go?
• Lead to prediction of amplitudes beyond the time window (forecasting).
Outline

• Review of Problem Statement / History
• Motivation / Applications
• Methods Applied – Toy Problems
• Analysis
• Conclusions
Methodology

• Three key issues:
 – Delta Function
 – Solution Architecture
 – Degeneracy of States

• Midn 1/C Grant Hundley
 – Developed a drum simulator
 – Working on numerical scheme to extract amplitudes from simulated time-series
Delta Function

\[u(x, t) = \sum_{n=0}^{\infty} \left[a_n(t) \sin(k_n x) + b_n(t) \cos(k_n x) \right] \]

\[a_n(t) = \frac{1}{L} \int_{-L}^{+L} u(x, t)\text{data} \sin(k_m x) dx \]

\[a_m(t) = \frac{1}{L} \int_{-L}^{+L} \sum_{n=0}^{\infty} \left[a_n(t) \sin(k_n x) + b_n(t) \cos(k_n x) \right] \sin(k_m x) dx \]

\[a_n(t) = \sum_{n=0}^{\infty} \left[a_n(t) \frac{1}{L} \int_{-L}^{+L} \sin(k_n x) \sin(k_m x) dx + b_n(t) \frac{1}{L} \int_{-L}^{+L} \cos(k_n x) \sin(k_m x) dx \right] \]

\[a_n(t) = \sum_{n=0}^{\infty} \left[a_n(t) \delta_{nm} + b_n(t) \delta \right] \]

\[a_m(t) = \Delta_{mn} a_n(t) \]

\[a_n(t) = \int u(x, t)\text{data} \sin(k_n x) dx \]

\[b_n(t) = \int u(x, t)\text{data} \cos(k_n x) dx \]
Delta Function Assumptions

\[\omega_n = \frac{n \pi}{2T} \quad \text{and} \quad \omega_m = \frac{m \pi}{2T} \]

\(\omega_n \) and \(\omega_m \) have integer relationship

\[(T_1 = 4T')\]

Wavelength is set from the window and is symmetric

Define: \(\delta_{mn} \) and \(\varphi \)

\[\delta_{mn} = \frac{1}{T} \int_{-T}^{+T} \sin(\omega_n t) \sin(\omega_m t) \, dt \]

\[\varphi = \frac{1}{T} \int_{-T}^{+T} \cos(\omega_n t) \sin(\omega_m t) \, dt \]

\[\Delta_{mn} = \frac{1}{T} \int_{-T}^{+T} \sin(\omega_n t) \sin(\omega_m t) \, dt \]

\[\varepsilon_{mn} = \frac{1}{T} \int_{-T}^{+T} \cos(\omega_n t) \sin(\omega_m t) \, dt \]

Define: Delta and Epsilon

Should these conditions fail.
Delta Function

\[\Delta_m = \frac{1}{T} \int_{-T}^{+T} \sin(\omega_n t) \sin(\omega_m t) dt \]

\[\Delta_m = \frac{1}{2T} \int_{-T}^{+T} \cos((\omega_n - \omega_m) t) - \cos((\omega_n + \omega_m) t) \, dt \]

\[\Delta_m = \frac{1}{2T} \frac{1}{\omega_n - \omega_m} \sin((\omega_n - \omega_m) x) \left[\frac{1}{T} \cos((\omega_n + \omega_m) x) \right] - \frac{1}{2T} \frac{1}{\omega_n + \omega_m} \sin((\omega_n + \omega_m) x) \left[\frac{1}{T} \cos((\omega_n - \omega_m) x) \right] \]

\[\Delta_m = \frac{1}{2T} \frac{1}{(n-m)\pi} \sin \left(\frac{(n-m)\pi}{2T} x \right) \left[\frac{1}{T} \cos \left(\frac{(n+m)\pi}{2T} x \right) \right] - \frac{1}{2T} \frac{1}{(n+m)\pi} \sin \left(\frac{(n+m)\pi}{2T} x \right) \left[\frac{1}{T} \cos \left(\frac{(n-m)\pi}{2T} x \right) \right] \]

\[\Delta_m = \frac{2}{\pi(n-m)} \sin \left(\frac{\pi}{2} (n-m) \right) - \frac{2}{\pi(n+m)} \sin \left(\frac{\pi}{2} (n+m) \right), \quad \text{for even } n \to 2n \]

\[\Delta_m = \text{sinc}(n-m) - \text{sinc}(n+m), \quad \text{assuming } m \text{ is free (real)} \]

\[\Delta_{\pm m, 2n} = \delta_{\pm m, 2n}, \quad \text{assuming } n \text{ is even and } m \text{ is an integer} \]

\[\varepsilon_m = \frac{1}{T} \int_{-T}^{+T} \sin(\omega_n t) \cos(\omega_m t) dt \]

\[\varepsilon_m = \frac{1}{2T} \int_{-T}^{+T} [\sin((\omega_n - \omega_m) t) - \sin((\omega_n + \omega_m) t)] \, dt \]

\[\varepsilon_m = \phi \]
Delta Function \sim \text{Sinc}(\pi^*(n-m))

The Δ_{nm} function shown below shows its clear approximation to δ_{nm} when (n, m) are integers. Also shown are the twin responses at $(-m, +m)$ for the $n = 10$ case.
Delta & Epsilon Function

- Delta function is a measure of the “mixing” between the eigenmodes.
- Slightly different Delta function for the cos*cos term (more on this later).
- Epsilon will be identically zero for symmetric domains.
Epsilon(\(\omega_m\))

Epsilon Timing Resolution Function

\[
\varepsilon(\omega_m = 10) = \cos(\pi(10-x))/(\pi(10-x)) - \cos(\pi(10+x))/(\pi(10+x))
\]
Solution Architecture:
Solutions to space-time problems

\[u(x, t) = f(x) \cdot g(t) \]

\[f(x) = \sum_{n=0}^{\infty} A_n f_D(k_n x) + B_n f_N(k_n x) \]

\[g(t) = \sum_{n' = 0}^{\infty} C_{n'} g_D(\omega_{n'} t) + D_{n'} g_N(\omega_{n'} t) \]

\[u(x, t) = \left[\sum_{n=0}^{\infty} A_n f_D(k_n x) + B_n f_N(k_n x) \right] \left[\sum_{n' = 0}^{\infty} C_{n'} g_D(\omega_{n'} t) + D_{n'} g_N(\omega_{n'} t) \right] \]

\[u(x, t) = \sum_{n=0}^{\infty} AC_n f_{D,n} g_{D,n} + BC_n f_{N,n} g_{D,n} + AD_n f_{D,n} g_{N,n} + BD_n f_{N,n} g_{N,n} \]

\[u(x, t) = \sum_{n=0}^{\infty} \sum_{n' = 0}^{\infty} AC_{n,n'} f_{D,n} g_{D,n'} + BC_{n,n'} f_{N,n} g_{D,n'} + AD_{n,n'} f_{D,n} g_{N,n'} + BD_{n,n'} f_{N,n} g_{N,n'} \]
Nature of Eigenmodes with both space and time in solution

• Two types:
 – Coupled - for each k eigenvalue in space there exists a unique ω eigenvalue in time
 • Dispersion relationship, $\omega(k)$, for most differential equations in (x,t).
 • Dispersion relationship is generally monotonic and increasing.
 – Decoupled – for systems not well motivated physically, yet can be described with a space-time basis set (river bank problem).
Solution Architecture

At one location, x_1, sample the data in a time-series.

Project out the sin and cosines.

\[
\alpha_m = \frac{1}{T} \int_{-T}^{+T} \sin(\omega_m t) \; u(x_1, t) \; dt
\]

\[
\beta_m = \frac{1}{T} \int_{-T}^{+T} \cos(\omega_m t) \; u(x_1, t) \; dt
\]

The outer product becomes a matrix of Δ_{mn} and ε_{mn}.
Solution Architecture

\[\begin{align*}
\begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_m
\end{pmatrix} &=
\begin{pmatrix}
\Delta_{11} & \Delta_{12} & \Delta_{13} & \cdots & \Delta_{1n} \\
\Delta_{21} & \Delta_{22} & \Delta_{23} & \cdots & \Delta_{2n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\Delta_{m1} & \Delta_{m2} & \Delta_{m3} & \cdots & \Delta_{mn}
\end{pmatrix}
\begin{pmatrix}
\varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} & \cdots & \varepsilon_{1n} \\
\varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} & \cdots & \varepsilon_{2n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\varepsilon_{m1} & \varepsilon_{m2} & \varepsilon_{m3} & \cdots & \varepsilon_{mn}
\end{pmatrix}
\end{align*} \]

\[\begin{pmatrix}
f_D(k_1x_1) \\
f_D(k_2x_1) \\
\vdots \\
f_D(k_mx_1)
\end{pmatrix} =
\begin{pmatrix}
\beta_1 \\
\beta_2 \\
\vdots \\
\beta_m
\end{pmatrix}
\begin{pmatrix}
\varepsilon_{11} & \varepsilon_{21} & \varepsilon_{31} & \cdots & \varepsilon_{n1} \\
\varepsilon_{12} & \varepsilon_{22} & \varepsilon_{32} & \cdots & \varepsilon_{n2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\varepsilon_{1m} & \varepsilon_{2m} & \varepsilon_{3m} & \cdots & \varepsilon_{nm}
\end{pmatrix}
\begin{pmatrix}
\Delta_{11} & \Delta_{12} & \Delta_{13} & \cdots & \Delta_{1n} \\
\Delta_{21} & \Delta_{22} & \Delta_{23} & \cdots & \Delta_{2n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\Delta_{m1} & \Delta_{m2} & \Delta_{m3} & \cdots & \Delta_{mn}
\end{pmatrix}
\begin{pmatrix}
f_D(k_1x_1) \\
f_D(k_2x_1) \\
\vdots \\
f_D(k_mx_1)
\end{pmatrix} \]

- Mixing nature of Delta, Epsilon matrix can clearly be seen.
- No nodes can exist in the f(k*x) matrix.
- Solve for Amplitudes thru matrix inversion.
Solution Architecture

- Short-hand notation:

\[
\begin{align*}
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix} &= \begin{pmatrix}
\Delta_t & \varepsilon_t \\
\varepsilon_t^t & \Delta_t^c
\end{pmatrix} \begin{pmatrix}
f_D \\
f_D^c
\end{pmatrix} \begin{pmatrix}
AC \\
AD
\end{pmatrix} \\
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix} &= \begin{pmatrix}
\Delta_t & \varepsilon_t \\
\varepsilon_t^t & \Delta_t^c
\end{pmatrix} \begin{pmatrix}
f_D & O \\
O & f_D
\end{pmatrix} \begin{pmatrix}
AC \\
AD
\end{pmatrix}
\end{align*}
\]

\[
\begin{align*}
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix} &= \frac{1}{T} \int_{-T}^{+T} \left(\begin{pmatrix} g_D & g_N \end{pmatrix} \otimes \begin{pmatrix} f_D & O \\
O & f_D \end{pmatrix} \begin{pmatrix} AC \\
AD \end{pmatrix} \right) dt = \frac{1}{T} \int_{-T}^{+T} \left(g_D \otimes \begin{pmatrix} AC \cdot f_D \\
AD \cdot f_D \end{pmatrix} \right) dt \\
\begin{pmatrix}
\alpha_m \\
\beta_m
\end{pmatrix} &= \frac{1}{T} \int_{-T}^{+T} \left(g_{D_m} \otimes \sum_{n=0}^{\infty} \left[AC_n \cdot f_D(k_n \cdot x_1) \cdot g_{D_n} + AD_n \cdot f_D(k_n \cdot x_1) \cdot g_{N_n} \right] \right) dt = \frac{1}{T} \int_{-T}^{+T} \left(g_{N_m} \otimes u(x_1, t) \right) dt
\end{align*}
\]
Drum – Specific Solutions

• Drum problem: membrane stretched over a circular boundary (Dirichlet bc).
• Strike the drum.
• Use a microphone to record the time-series.
• Fourier analyze the time-series to obtain amplitudes for each $\omega_m : A_n$
Drum

\[u(x, t) = \sum_{n=0}^{\infty} \left[A_n J_n(k_n r) \sin(n \theta) + B_n J_n(k_n r) \cos(n \theta) \right] \left[C_n \sin(\omega_n t) + D_n \cos(\omega_n t) \right] \]

\[u(r, t) = \sum_{(n,n')=0}^{\infty} \left[A_{nn'} J_n(k_{nn'} r) \sin(n \theta) + B_{nn'} J_n(k_{nn'} r) \cos(n \theta) \right] \left[C_{nn'} \sin(\omega_{nn'} t) + D_{nn'} \cos(\omega_{nn'} t) \right] \]

- Spatial modes are a combination of Bessel function, \(J(k_n r) \) times \(\sin(n \theta) \) or \(\cos(n \theta) \)
- Temporal modes use \(\sin(\omega_n t) \) or \(\cos(\omega_n t) \)
- For each Bessel function, there exists multiple zero crossings, \(n' \)
- \(k_n \) values are non-integerlike, so \(\omega_n \) fail conditions for orthonormality
Table 1: Bessel Function Zero Crossings

<table>
<thead>
<tr>
<th>n</th>
<th>$J_0(x)$</th>
<th>$J_1(x)$</th>
<th>$J_2(x)$</th>
<th>$J_3(x)$</th>
<th>$J_4(x)$</th>
<th>$J_5(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.4048</td>
<td>3.8317</td>
<td>5.1356</td>
<td>6.3802</td>
<td>7.5883</td>
<td>8.7715</td>
</tr>
<tr>
<td>2</td>
<td>5.5201</td>
<td>7.0156</td>
<td>8.4172</td>
<td>9.7610</td>
<td>11.0647</td>
<td>12.3386</td>
</tr>
</tbody>
</table>

Table 2: Bessel Function Zero Crossings

<table>
<thead>
<tr>
<th>$k_{nn'}$</th>
<th>n</th>
<th>n'</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4048</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5.5201</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8.6537</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.792</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.8317</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7.0156</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>10.173</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>13.324</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5.1356</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8.4172</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>11.62</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>14.796</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>6.3802</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>9.761</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>13.015</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>16.223</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7.5883</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>11.065</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>14.373</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>17.616</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 3: Bessel Function Zero Crossings

<table>
<thead>
<tr>
<th>$k_{nn'}$</th>
<th>n</th>
<th>n'</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4048</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3.8317</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5.1356</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5.5201</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6.3802</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>7.0156</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>7.5883</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>8.4172</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8.6537</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.761</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>10.173</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>11.065</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>11.62</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>11.792</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>13.015</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>13.324</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>14.373</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>14.796</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>16.223</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>17.616</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Degeneracy of States

\[u(r, t) = \begin{pmatrix} g_D(\omega_1 t) & \cdots & g_D(\omega_m t) \end{pmatrix} \begin{pmatrix} g_N(\omega_1 t) & \cdots & g_N(\omega_m t) \end{pmatrix} \]

\[\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \]

the Degeneracy Matrix \(\equiv D \)

\[u(r, t) = \begin{pmatrix} g_D(\omega_1 t) & \cdots & g_D(\omega_m t) \end{pmatrix} \begin{pmatrix} J_0(k_0 r_1) \sin(0 \theta_1) \cdot AC_1 + J_0(k_0 r_1) \cos(0 \theta_1) \cdot AC_3 \\ J_1(k_{11} r_1) \sin(1 \theta_1) \cdot AC_2 + J_1(k_{11} r_1) \cos(1 \theta_1) \cdot AC_4 \\ J_2(k_{21} r_1) \sin(2 \theta_1) \cdot AC_5 + J_2(k_{21} r_1) \cos(2 \theta_1) \cdot AC_6 \\ \vdots \\ J_n(k_{nn} r_1) \sin(n \theta_1) \cdot AC_n + J_n(k_{nn} r_1) \cos(n \theta_1) \cdot AC_n \end{pmatrix} \]

\[\begin{pmatrix} J_0(k_0 r_1) \sin(0 \theta_1) \cdot AD_1 \\ J_0(k_0 r_1) \cos(0 \theta_1) \cdot AD_2 \\ J_1(k_{11} r_1) \sin(1 \theta_1) \cdot AD_3 + J_1(k_{11} r_1) \cos(1 \theta_1) \cdot AD_4 \\ J_2(k_{21} r_1) \sin(2 \theta_1) \cdot AD_5 + J_2(k_{21} r_1) \cos(2 \theta_1) \cdot AD_6 \\ \vdots \\ J_n(k_{nn} r_1) \sin(n \theta_1) \cdot AD_n + J_n(k_{nn} r_1) \cos(n \theta_1) \cdot AD_n \end{pmatrix} \]
Degeneracy and Sampling

- Due to symmetry in the solution, degenerate states are produced.
- Due to degeneracy, there is a 2-1 ratio of unknowns-knowns.
- Solution: add another sample location
The second sampled point →
Calculating the Amplitudes
Drum Solution in Short-hand

- Number of sample locations “squares-off” the degeneracy matrix, allowing the system to be solvable.

\[
\begin{pmatrix}
\alpha \\
\beta \\
\gamma \\
\eta
\end{pmatrix} =
\begin{pmatrix}
\Delta_t & 0 \\
0 & \Delta_t
\end{pmatrix}
\begin{pmatrix}
\mathbb{D} \\
\mathbb{D}
\end{pmatrix}
\begin{pmatrix}
f_{D_1} & 0 \\
0 & f_{D_1} \\
f_{D_2} & 0 \\
0 & f_{D_2}
\end{pmatrix}
\begin{pmatrix}
AC \\
AD
\end{pmatrix}
\]

\[
\begin{pmatrix}
AC \\
AD
\end{pmatrix} =
\begin{pmatrix}
\mathbb{D} \\
\mathbb{D}
\end{pmatrix}
\begin{pmatrix}
f_{D_1} & 0 \\
0 & f_{D_1} \\
f_{D_2} & 0 \\
0 & f_{D_2}
\end{pmatrix}^{-1}
\begin{pmatrix}
\Delta_t & 0 \\
0 & \Delta_t
\end{pmatrix}^{-1}
\begin{pmatrix}
\alpha \\
\beta \\
\gamma \\
\eta
\end{pmatrix}
\]
Drum Problems

- n=0 \sin(n\theta) term needs to be removed, breaking the 2-1 ratio to less than 2-1.
- Test method against drum simulation, with known inputs to the amplitudes, A_n.
- Further degeneracies exist due to closeness of k-eigenvalues.
Chesapeake Bay Problems

• No known analytic solution to the Bay (ie. No analytic hints as to any degeneracy)
• At a given samples location, calculate the projections, \((\alpha_m,\beta_m)\) for a range of \((\omega_m, T)\).
• Observe the patterns of \(\omega_m\) and compare the sequence to \(k_n\)’s.
• Guess the dispersion relationship (map from \(k_n\) to \(\omega_m\))
Degeneracy of States

• From observables at frequencies ω_m, observe projection changes as the period, T, is changed.
• Select an appropriate period, T.
• Construct Degeneracy matrix based on best guess of dispersion relation as well as k-eigenvalues density.
Timing Resolution Nature of Delta Matrix

\[\Delta \omega_{mn} = \frac{\pi}{T} \]

\[dk = \frac{\pi}{\frac{\delta \omega}{\delta k} T} \]
$\Delta(\omega_m, T)$

Timing Resolution - Delta Matrix - $\Delta(T, \omega_m)$

T - Period

ω_m - Frequency
Delta(ω_m, T)

Timing Resolution - Delta Matrix - $\Delta(T, \omega_m)$

T - Period

ω_m - Frequency
Future Plans:

• Run thru the toy model (Drum).
• Add source terms to Chesapeake Bay model.
• Add Delta(spatial) matrix.
Acknowledgements

• Student: MIDN 1/C Grant Hundley
• Collaborator: Reza Malek-Madani
• James W. Kinnear (USN – Ret.)
Chesapeake Bay Problem

- Take data at stations around the Bay, collecting time-series of vector flows.
- How many stations are needed to provide enough data to fully calculate the modes?
Image Processing of the Chesapeake
Advantages

• Eigenmodes fill domain (space), suggest future behavior