Energy, Power, and Thermal Research Overview

US-Indo Power and Energy Roundtable
Bangalore, India
21-23 September 2010

Rick Fingers, Ph.D.
Chief
Energy/Power/Thermal Division
Propulsion Directorate
Air Force Research Laboratory
Energy, Power and Thermal Research Overview

1. REPORT DATE
SEP 2010

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Energy, Power and Thermal Research Overview

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Air Force Research Laboratory WPAFB, Dayton, Ohio, USA

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
SAR

18. NUMBER OF PAGES
25

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Overview

• AFRL
• Drivers and Applications
• Technologies
• Questions
Leading the discovery, development, and integration of affordable warfighting technologies for our air and space force.
AFRL's Core Areas of Expertise

- Space Vehicles
- Directed Energy
- Sensors
- Human Effectiveness
- Propulsion
- Munitions
- Materials
- Information
- Air Vehicles
- AFOSR
AFRL People & Facilities

- 5,764 Government Employees
 - 4570 Air Force Civilian
 - 1194 Military
- 3,844 Onsite Contractors

- 10 Major R&D Sites across US
- 40 Sites World-Wide
- $40B Real Property & Capital throughout AFRL
• **RZ Portfolio addresses long-term AF capabilities**

 - Air-breathing High Speed Strike/ISR
 - Energy Security
 - Long Endurance ISR/Mobility
 - Energy Optimized Aircraft
 - Reusable Access to Space
 - Spacecraft Maneuverability
It’s An Exciting Time!

- TSSS
- HC Boost
- BRITES
- INVENT
- FUELS
- Hall Thrusters
- AIR FORCE RESEARCH LABORATORY
- Space & Missile
- Hypersonics
- Energy Power & Thermal
- Turbines
- ADVENT
- Sustainment
- HEETE
Key Planning Drivers

• **Energy**
 – Make energy a consideration in all we do
 – Ensure continued viability of propulsive energy sources
 – Optimize efficiency at the platform level to increase capabilities by minimizing thermal limitations and also to reduce fuel used

• **Thermal**
 – Address today’s thermal challenges and prevent tomorrow’s thermal limitations

• **System Integration**
 – Deconflict subsystem interactions and define/demonstrate interfaces

• **Infrastructure**
 – Invest in energy, power, and thermal research facilities to establish research foundation for the future
Energy, Power, and Thermal
(FY10-15 from FY11 PBR ~ $54M/year)

- Battlespace Fuels
- Special Purpose Power
- Energy Optimized Aircraft

- 64%
- 26%
- 10%
Energy/Power/Thermal Core Technical Competencies

- Power distribution and electronics
- Electrochemistry
- Mechanical energy conversion
- Thermal management
- Fuel utilization and characterization
- System integration and optimization
- Power and thermal analysis and M&S
Power Distribution and Electronics

- Performance evaluation and advanced insulations
- Energy storage
- Dielectrics
- Carbon nanotubes for power applications
- SiC device and module reliability
- Plasma physics for defect-free high temperature wide-band gap electronics
Power Distribution and Electronics

- Reduce defects by optimizing SiO₂-SiC interface using a low-T growth (300°C) process and atomic oxygen to remove C-atom (CO, CO₂)

- Large area die SiC switch evaluation at high-T
- Inductor design comparison

- Effects of EM fields, corona, discharges on aerospace power systems
- High voltage discharge breakdown experiments

- Demonstrate PCD films for HV isolation and heat spreading layers in high-T power electronic packages
- CNT interface for stress compliance for CTE_{PCD} ~ 1-2 ppm/K
Electrochemistry

- Solid-state electrolyte for Li-ion batteries
- Li-air chemistries for high performance batteries
- High performance SOFCs
- Battery evaluation and analysis
Electrochemistry

- Develop critical process parameters for scaling solid-state Li-ion batteries
- *ab initio* calculations model ionic/electronic transport in a “Phthalocyanine Complex”
- Results validated through synthesis processes

- Enable fuel-flexible capabilities to utilize energy-dense logistic fuels for SOFCs
- Optimize functional gradation to reduce interfacial impedance and increase fuel cell power density

- Evaluate and analyze electrochemical power technologies through simulation of mission profiles
 - Investigate problem solution
 - Recommend solutions
 - Solve aircraft systems integration problems

- Li-air chemistries for high performance batteries
 - New cathodic formulations by enhancing triple phase boundaries
 - *M&S* using classical thermodynamics and chemical species mole balance
Mechanical Energy Conversion

- High temperature superconductors
- Mega-Watt power generation
- Magnetic materials
- Thermoelectric power generation

- Mega-Watt power generation
 - Superconducting and conventional generators
 - Short-circuit, open-circuit and low-load endurance testing
 - Used performance results and empirical analysis to modify generator to improve performance
Mechanical Energy Conversion

- Develop YBCO superconductor properties for optimal performance
- Produce long lengths of YBCO coated conductors (DC and AC)
 - Minimize ac loss due to high power generation…lower heat loss
 - Stability and quench Issues
 - 1000A – 20,000A power transmission cables - lower weight and heat loss

- Soft magnetic material composites
 - High-T up to 500°C
 - Operating frequencies up to 1 MHz
- Hard magnetic materials
 - High-T hybrid systems
 - Exchange spring systems with improved energy products (NdFeB, SmCo/Fe, FeCo)

- Multilayered structures for thermoelectric power generation
 - Oxide materials
 - Promote phonon scattering to inhibit thermal flow and increase efficiency
 - Nanostructure dispersions
Thermal Management

- Thermal management of SiC power modules
- Fuel cooling of turbo machinery
- Loop heat pipe for electronics cooling
- Thermal energy storage for mega-Watt applications
- Vapor cycle technologies for on-demand high-flux cooling applications
Thermal Management

- Investigate and demonstrate SiC packaging technologies, target $R_{q,jc} = 0.15\text{cm}^2\text{K/W}$
 - Optimize heat transfer
 - Increase temp uniformity
 - Minimize CTE-related stress

- Investigate fuel cooling of rotating turbine components
- Combine experimental and modeling activities to understand fluid dynamics and thermal performance

- Dynamic LHP performance with time variant body forces for electronic component cooling
- On-demand VCS for high-flux cooling
- Time-accurate M&S and experimental validation (non-equilibrium physics, theoretical thermodynamics)
Fuel Utilization and Characterization

• Endothermic fuels and hydrocarbon propellants
• Develop and optimize alternative fuels technologies (AAFRF)
• Microbial activity in fuels
• Emissions reduction via fuel technologies
• M&S of fuels technology
• Fuel characterization and fundamental studies
• Small engine fuel testing
• Nanofuels
Fuel Utilization and Characterization

- Develop composition-based physical property models for endothermic fuels
- Thermal-oxidative deposition model enhanced
- Fuel system modeling tools for fuel system design
- Realistic heat flows
- Modules for various fuels
- Complex geometries
- Oxidation and deposition
- Emissions evaluation with alternative fuels
 - Research combustor
 - Military and commercial engines
- Conventional techniques
 - Particle size, mass, and number
 - Chemical analysis of particulates
 - Gaseous emissions
- Leverage small engine technologies for alternative and heavy fuels
System Integration and Optimization

- Basis for SIL/HIL approach to system integration and energy optimization
- Validate HIL concepts for SIL approach to optimize power, thermal management, and propulsion from an energy perspective
Power and Thermal Analysis and M&S

• Power and thermal M&S toolset development
• Power and thermal component and subsystem modeling
• Vehicle system-level modeling “Tip-to-Tail”
 – Power and thermal technology trades
 – Mission impact/benefits assessments for “energy optimized” vehicle architectures
Power and Thermal Analysis and M&S

Engine (quasi-steady state)
- Controls Return to Tank Flow
- Calculates engine heat loads
- Calculates net thrust
- Calculates fuel burn / SFC

Fuel Thermal Management System (FTMS)
- Fuel mass & temp
- Convection, conduction, radiation
- Ram air HX

Power Thermal Management System (PTMS)
- Air cycle or vapor cycle
- Cold air heat sink
- Heat sink for PAO loop

Air Vehicle System (AVS)
- 6-DoF to vehicle model
- Notional Long Range Strike
- Closed loop control over mission profile (speed, altitude, heading)
- Track metrics (range, endurance, fuel burn)
Summary

• Energy, power, and thermal are inter-related technologies and design considerations

• We investigate fuels, power and thermal devices and components, and system level M&S

• System optimization at the platform level saves energy and addresses thermal limitations

• International collaborations on energy, power, and thermal science and technologies are welcomed and desired
Questions?

Warfighters: Today’s and Tomorrow’s