Presented to:
4th US-INDO Round Table 2010, Bangalore, India
21-23 Sept, 2010

Dr. C. Peter Cho
Associate Director, Office of Naval Research Global
Email: peter.cho@onrg.navy.mil

Distribution Statement A: Approved for public release; distribution is unlimited.
**Report Documentation Page**

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEP 2010</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Future Electric Ship and Power and Energy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research Global</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
</tr>
<tr>
<td>c. THIS PAGE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAR</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)  
Prescribed by ANSI Std Z39-18
Outline

Naval Energy Vision/Strategy

Future All Electric Ship

First Navy Hybrid Electric Ship

S&T Issues/Challenges

Power Generation, Energy Storage, Power Distribution & Control, and Thermal

Closing Thoughts
Naval Energy Strategy

Energy Security
Energy security is critical to our mission success. We will safeguard our energy infrastructure and shield ourselves from a volatile fuel supply. The Navy and Marine Corps value energy independence.

Energy Efficiency
Energy efficiency increases our mission effectiveness. We extend our tactical range and minimize operational risks, saving time, money, and lives. We are all responsible for energy efficiency.

Environmental Stewardship
Environmental stewardship protects our mission capabilities. We reduce our dependence on fossil fuels and minimize carbon pollution. The workforce promotes a healthy environment for a sustainable future.

By 2016, the Navy will sail a “Great Green Fleet” composed of nuclear ships, surface combatants with hybrid electric power systems using biofuel, and aircraft flying only on biofuels.

Power & Energy Impacts EVERY Navy & USMC Mission
**Vision:** Increase Naval forces’ freedom of action through energy security and efficient power systems, to provide desired power at the manned/unmanned platform, system, and personal levels.
What We Would Like to Avoid…

…Dedicated Power for each Mission System
Unlock the Propulsion Power

Non-Electric Warship

Future Electric Warship

Total Electrical Power Installed

Total Mechanical Power Installed

Transit Cruise

Max speed

Transit Cruise

Area Protection

Attack Mission

Max. speed

Unlock the Propulsion Power

Distribution Statement A: Approved for public release; distribution is unlimited.
Electric Warship Vision

Integrates and develops system technologies and advanced electrical power systems that enables a quantum leap in both fuel efficiency and seamless transition of power to multiple high power loads.

Challenges:
• Power density
• Duration to transition power between different high power loads
• System efficiency
• Power ramp rate
• Power continuity
Next Generation Integrated Power Systems

Allows all Ship Systems to be Electrical

Power Density

Enabling Technologies
- High Speed Generator
- Advanced propulsion motors
- Common power conversion
- Power and energy control
- Zones ship service distribution
- Energy Storage

Medium Voltage Direct Current (MVDC)
- 6 kVDC
  - Reduced power conversion
  - Eliminate transformers
  - Advanced reconfiguration

High Frequency Alternating Current (HFAC)
- 4-13.8 kVAC
  - 200-400 Hz
  - Power-dense generation
  - Power-dense transformers
  - Conventional protection

Medium Voltage AC Power Generation (MVAC)
- 4-13.8 kVAC
  - 60 Hz

Electric Ship

Now

Near

Future

“Directing the Future of Ship’s Power”
LHD 8 – MAKIN ISLAND

First Step Towards Integrated Power System


The First Navy Hybrid Electric Drive!
Propulsion Plant Arrangement: Motivation (Fuel Economy!)

- Reduces time gas turbine spends at low power levels
- Annual fuel savings over $500,000, life cycle fuel savings over $21,000,000
- Additional savings resulting from reduced maintenance and lower manning
Vision: To increase Naval forces freedom of action through the development of efficient power systems.

1. Power Generation:
   - Fuel Cells & Fuel Reforming
   - Advanced Generators

2. Energy Storage:
   - Batteries
   - Capacitors
   - Flywheels

3. Distribution & Control:
   - Architecture
   - Switching & Conditioning

4. Heat Transfer, Thermal Management:
   - High Waste Heat Flux Removal
   - Adv. Chiller Technologies / HVAC

5. Motor & Actuators:
   - Motors
   - Actuators
   - Electro-Mechanical Devices
**Goal: Increased Capability, Maximum Efficiency**

**Power Generation:**
- Electrical and mechanical engineering of high-speed generators
- Efficient transformation of fuel into electrical energy (i.e. Fuel cells)
- Material reliability, failure mechanisms

**Energy Storage:**
- Advanced materials (high purity, high dielectric breakdown)
- Increased energy density and high temperature operation
**Science and Technology - Issues/Challenges**

**Distribution & Control:**
- Real-time state estimation of complex systems
- Control laws to direct the dynamic flow of power & energy
- Physics-based component- & systems-level M&S and design tools
- Improved yield and cost of power electronics

**Heat Transfer, Thermal Management:**
- Isothermal cooling; Integral & scalable cooling concepts
- Physics-based models
- High thermal conductivity materials; Phase change materials

**Electromechanical Systems:**
- High Power-Density
- Open source validated design tools for electromechanical systems
Wide Band Gap Semi-Conductors

Objectives:

• Physics based modeling and simulation capability to understand and predict complex system behavior; materials development for high power packages

• Physics behind integrated high power switch failure mechanisms (voltage breakdown, electromigration, current filamentation)

• Understand and discovering ways to reduce thermal migration effects in power devices and packages; understand effects of thermal cycling on packaged integrated circuits

Challenges:

• 10-20 kV switching capability
• Large diameter SiC Substrate Wafers
• High Yield Systems
• Cost Reduction
• Next Generation P/E

Investment in wide band gap semi-conductors essential for enabling All Electric Ship concept

Research essential for powering large/diverse electrical loads and electronic warfare systems.

Distribution Statement A: Approved for public release; distribution is unlimited.
Energy Storage

Energy storage is a key enabling technology for electric ship, unmanned vehicle, and person portable power applications.

ONR is investing in a range of activities:

• Dielectric, battery, and ultra-capacitor materials development
• Storage system design, development, optimization, and demonstration
• System architecture, integration, and controls
• Safety and environmental testing to support Fleet use approval requirements

Focus on higher power and energy densities in safe, more compact, lightweight formats
Battery Materials

**Objective:** Enhanced power-dense energy storage for safe, confident use in a variety of Naval applications

**Technical Challenges**

- Developing thin, conformal separator/electrolyte coatings over non-line-of-site surfaces (providing adequate ionic conductivity without shorting)
- 3-D characterization and modeling to quantitatively understand battery electrode structures and properties
- Understanding and quantifying the role of electrochemical double layer overlap as a function of electrode spacing
- Understanding and controlling degradation and failure mechanisms for safer, extended operation

**Approach**

- Develop and demonstrate the scaling of nanoscopic and microscopic 3-D battery designs to support macro-scale 3-D structural batteries for parasitic weight reduction
- Develop and demonstrate novel materials and battery architectures that significantly increase electrochemical storage and charge rates
- Develop fundamental tools for characterizing and designing practical battery electrodes

**Naval Impact**

- High energy batteries and systems with enhanced safety and performance
- 3-D Micro- and Nano-batteries for NEMS/MEMS microsystems and sensors
- Structural 3-D batteries for significant reductions in volume and weight
- High energy density, neutrally buoyant, pressure tolerant batteries for air-independent applications

Distribution Statement A: Approved for public release; distribution is unlimited.
Capacitor Materials

Objective: Capacitors that provide ultrahigh power/energy densities and cycling stability for extended service life in pulsed power (millisecond discharge times), high temperature and auxiliary power applications

Technical Challenges

• Increasing energy storage density (permittivity & breakdown threshold) and maximizing charge/discharge rates
• Understanding and controlling roles of phase morphology and interfaces in complex hybrid systems at all appropriate length and time scales
• Understanding and controlling dielectric break-down mechanisms; identifying/designing benign failure modes
• Scaling up promising materials, processing and packaging technologies for consistent, predictable properties

Approach

• Develop and quantify fundamental understanding of dielectric charge storage & transfer in complex ceramic/polymer systems
• Develop enhanced polymer-based dielectric films and processing technologies for very high pulse power rates
• Develop novel inorganic dielectrics and hybrids with >200°C capability for power conditioning
• Develop hybrid polymer/ceramic dielectric materials and devices, super-capacitors and electrochemical capacitors for auxiliary power applications

Naval Impact

• 10X reduced weight and volume allocation for capacitor banks for pulsed power loads
• Increased discharge rates for pulsed power
• Reliable, energy dense systems for power conditioning and auxiliary power requirements

Distribution Statement A: Approved for public release; distribution is unlimited.
**Objective:**
- Design a ship electrical system architecture based on a main bus that distributes “rough” DC power throughout the ship & all associated control & protection systems.
- Develop & evaluate a ship-wide electrical system universal controller.
- Develop real-time & non-real-time modeling & simulation (M&S) techniques, including hardware-in-the-loop, to evaluate the controller.

**Approach:**
- Develop physics-based component models & M&S design & evaluation techniques
- Identify & investigate new materials & techniques

**Products:**
- Control & protection system requirements
- Robust M&S, evaluation & design capability
- Design guidance for a notional DC distribution system
Architectures

Objectives:
- Electrical system architectures based on optimum power processing concepts to yield reduced size, weight, and cost
- Control & stability hierarchy to manage high-levels of power and energy for all operational conditions

Challenges:
- Reduce power charging
- Increased reliability and safety
- Greater utilization of finite shipboard energy resources

Goals:
- Rapid Recovery & Reconfiguration
- Dynamic Power Management
- Active Isolation
- Solid State – Silicon Carbide Based
- 10kV Standards, Methods, & Tools
- DC 10kV components
Objective:
Provide the power dense and highly efficient electrical backbone enabling high power demanding pulsed loads such as advanced radars, sensors and potentially directed energy weapons thru the development and demonstration of:

- Multifunction Power Converter
- Bi-Directional Power Converter
- Power Manager

Challenges:
- Increased power density by a factor of 2-3
- Improved the efficiency of the power conversion system [~94-98%]

Eliminates the need for single application power and energy storage solutions. Minimize total power conversion through multi-functionality.
Fuel-Efficient Shipboard Fuel Cells

Objective:
To improve:
- Liquid-Phase De-sulfurization
- High power density reforming
- Fuel cell stacks
- Energy recovery & oxidation

Technical Challenges:
- High capacity liquid-phase de-sulfurization
- Effect of dense hydrogen separation membranes
- Improving reformer efficiencies
- Fundamental knowledge of fuel cell materials
- Fundamental knowledge of liquid fuel vortex combustor operation

S&T Products:
- Improved fuel cell system efficiency to > 40%
- 3x improvement in reformer power density
- 65% fuel cell stack efficiency at 25% power & 55% at rated power

Technical Approach:
- Enhance sulfur adsorption bed capacities
- Develop and validate process models
- Demonstrate and validate fuel cell stack characteristics in the Navy environment
High Waste Heat Flux Removal

Objectives:
- Physics-based models of evaporative cooling, including heat transfer and critical heat flux
- Two phase flow in complex geometries
- Heat transfer through interfacial engineering
- Advanced thermal fluids for convective heat transfer
- High efficiency, compact, and light weight HVAC system architectures
- Alternative refrigeration systems for distributed cooling
- Waste heat reuse to for ship cooling and thermal energy storage

Challenges:
- Heat Transfer Coefficient (single-phase, two-phase)
- Increased Thermal Conductivity
- Increased Thermal Energy Storage
Closing Thoughts

Vision: Great Green Fleet
- Near Term - Reduce vehicle petroleum use
- Long Term - Increase alternative energy across DoN

Opportunities:
- Engagement with Global S&T Community

Near-Term Topics of Collaboration:
- Power Generation – High Speed Generator
- Energy Storage – Batteries, Capacitors, and Fuel Cells,
- Power Conversion – Multifunctional, Bi-Directional Power Converter and its Devices
- Physics Based Modeling & Simulation

Global S&T Partnering is key to success

Distribution Statement A: Approved for public release; distribution is unlimited.
Thank you very much!!!

Q & A

This presentation materials were provided by:
Dr. John Pazik, ONR331, and CAPT. Lynn Petersen, NAVSEA, Electric Ship Office

Distribution Statement A: Approved for public release; distribution is unlimited.