Developing Coalition BML for Air Operations

Contact: Adam Brook (+44 (0) 1252 396427) RABROOK@QINETIQ.COM

Adam Brook
Simulation and Training Group
QinetiQ
Farnborough
GU14 0LX
UK

February 2010
Developing Coalition BML for Air Operations

See also ADA564685. 2010 Coalition Battle Management Language Workshop (Atelier 2010 sur le langage de gestion du champ de bataille pour les operations en coalition). RTO-MP-MSG-079

Approved for public release, distribution unlimited

Security Classification Of:
- Report: Unclassified
- Abstract: Unclassified
- This Page: Unclassified
BML for Air Operations

• Aims:
 – To permit a BML capability in Joint Air-Land environment
 – To represent Air Tasking Order & Airspace Coordination Orders in C-BML
 – To permit simulated aircraft to be controlled using BML orders
 – To provide a Recognised Air Picture for use in, e.g., a Brigade C2 cell

• Benefits:
 – Orders and Reports are available to any federated BML system
 – Tactical graphics may be shared with other users, e.g. air corridors, SEADs
 – Air tasking may be generated by any BML-capable air planning system
 – Reports from ground units may be displayed on air C2 systems
 – Swivel chairs eliminated
1. Objectives
2. Targets
3. Weapons
4. Force Application
5. Planning & Execution
6. Assessment

C-BML Can help here
The ACO – Airspace Coordination Order

- Lists ACMs – Airspace Control Means
 - Geometrical features, e.g. routes, race-tracks, SEAD areas
 - May be constrained by flight levels
 - May be given temporal properties, when active, dormant, expired, etc
 - May be associated with control command networks
 - May be parameterised, e.g. race-tracks, circular orbits
- C-BML permits control measures to have temporal rules associated
- ACOs used to coordinate and deconflict air operations

- ACOs are used to specify the control measures associated with C-BML Orders
PTL – Prioritised Target List

- Targets – What the targets are
- DMPI – Desired Mean Point of Impact – Where the targets are
- Weapon Solutions – Which weapons are to be used against which targets

- PTL is used to assign targets to aircraft and missions
The ATO – Air Tasking Order

• Helps plan the use of air force assets:
 – Resource allocation – *which* aircraft are available, *where* they are based, what their capabilities are
 – Time coordination – *when* aircraft need to take off, *when* they need to be on station
 – Spatial coordination – *where* the aircraft will fly, what flight level
 – Interaction with ground and naval forces – CAS, SEAD, pre-determined ground targets

• Gives air crew their allotted tasks

• Does not ‘micro-manage’ the air crew tasks
ATO Contents

- Header
- Groups of Tasks (per country, per service)
 - Groups of Missions
 - Aircraft
 - Route to: location, refuelling, target, recce, new airfield
 - Mission notes
- SPINS – Special Instructions – all free text, e.g.:
 - General information, ROE, Comms plan, EW plans
 - Free text is a challenge!
Example ADatP3 F058 ATO

EXER/UK C-BML Demo//
MSGID/ATO/UK Air Gp Cmd/0/
AKNLDG/NO//
AIRTASK/ATO A/3510N07901W/LOCATION OF COALITION AIR BASE//

Who – Tasker

Who – Taskee

What – Mission type

When – Start & End Where - Eln Where Ctrl Measure

Task 1

TASKUNIT/23SQN/
AMSDAT/AM01/-/ZZ/MC/JCP/-/BAT/
AMSNLOC/141325ZFEB/142000ZFEB/AWACS ORBIT/350/1A/LATM:3510N07901W/NAM:PT ALPHA//

Task 2

TASKUNIT/617SQN/
AMSDAT/AM02/-/ZZ/MC/EW/-/BAT/
GTGLOC/P/TOT:141325ZFEB/NET:141320ZFEB/TOF:141325ZFEB/MOBILE COMMAND
POST/ID:B1234F12345/CP/-/DMPID:351025.3N0790125.7W/W84//

Where – RouteWhere

ROUTE

1/3510N07901W/ IP/141400Z/450KTS/300
2/3520N07908W/TRN/142000Z/450KTS/300
3/3530N07914W/TRN/142500Z/450KTS/200
4/3560N07918W/ RP/143000Z/450KTS/ 5//
Review Process

- Battle Damage Assessment
- Assign recce aircraft
- Get reports & imagery
- Amend task orgs, etc
- Feed info into another targeting/planning/execution cycle
BML Requirements

- Resource allocation *not* required – this is an MSDL requirement
- Mission planning
- Mission execution
- Aircraft reporting

- Response to requests:
 - CAS – US MTF, ADatP-3 messages (CASREQ, AIRSUPREQ)
 - Scramble – associated air task data required
 - Corrections, rescheduled and cancelled missions

- C-BML FRAGO processing is appropriate
 - not part of BML, part of operating procedures
ICC Data Tables

- ICC maintains numerous data tables in a database
- To generate a representative ATO a subset of these is required:
 - **Who** Units
 - **Where** Air bases, Routes, Patrol Areas, Targets*, etc
 - **What** Mission types
 - **When** Allocation and timing of missions

* Targets are also Affected Who
Air Additions to C-BML Schema

- Simple schema modifications:
 - `<Task>` split into:
 - `<AirTask>`, `<GroundTask>` & `<MaritimeTask>`
 - Not really necessary – will recommend all domains simply use `<Task>`
 - Locations added:
 - `<height above ground level>`
 - Reports added:
 - `<velocity vector>`
Timing Considerations

• Real aircraft fly with time-based goals, e.g. fly to location X to arrive at time T
 – ATO does not give intermediate timings
• JSASF does not have any such behaviours – typically the behaviour will be: fly
 route R at speed S, arrival is consequential and speed is not moderated
• Air Control Measures usually have a temporal validity:
 C-BML* has always permitted the expression of a Taskee’s control measure
 being associated with a particular Tasker for a specified period of time

* 06S-SIW-68 Schade, Hieb
Sequencing Considerations

- A **single** mission in an ATO consists of a **sequence** of tasks

- C-BML requires this breaking down into single tasks

- Beware of default simulation behaviour at end of tasks, e.g. Orbiting or Landing
Mapping C-BML onto Simulation

- Does a representative behaviour exist in the simulation?
- If so, can it be scheduled and tasked?
- Does it need extra information not available from the C2 system?

- `<AirTask>`
 - `<Who>`
 - `<Where>`
 - `<What>`
 - `<When>`
 - `<Why>`

- [Simulation Task]
 - [Task static data]
 - [Task parameters]
 - [Task scheduling]

- In a Semi-automated simulation how acceptable is it to use human intervention?
- Can MSDL supply extra information?
Task Mapping

<table>
<thead>
<tr>
<th>Scenario</th>
<th>ATO Mission Type</th>
<th>C-BML</th>
<th>JS AF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fly Route</td>
<td>AR</td>
<td>Line</td>
<td>Route</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Refuel (Orbit)</td>
<td>AR</td>
<td>Area</td>
<td>Route</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defensive Combat Air (Orbit)</td>
<td>DCA</td>
<td>Area</td>
<td>Route</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Interdiction (Ground target)</td>
<td>AI</td>
<td>Point</td>
<td>Target</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airborne Command (Circular orbit)</td>
<td>ABC</td>
<td>Point</td>
<td>Air Control Point</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suppression of Enemy Air Defence (Jam orbit)</td>
<td>SEAD</td>
<td>Area</td>
<td>Route</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example for Air FRAGO

Tgt identified by UAV recce, CAS FRAGO issued
Questions