Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics

Jonathan Cameron, Ph.D., Steven Myint, Calvin Kuo, Abhi Jain, Ph.D., Håvard Grip, Ph.D.
Jet Propulsion Laboratory, California Institute of Technology

Paramsothy Jayakumar, Ph.D.
U.S. Army TARDEC

Jim Overholt, Ph.D.
U.S. Air Force Research Laboratory
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>07 AUG 2013</td>
<td>Briefing Charts</td>
<td>05-07-2013 to 03-08-2013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jonathan Cameron; Steven Myint; Calvin Kuo; Abhi Jain; Harvard Grip</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet Propulsion Laboratory, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>#24087</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, Mi, 48397-5000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TARDEC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#24087</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM (GVSETS), SET FOR AUG. 21-22, 2013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>briefing charts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>c. THIS PAGE</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
</tr>
</tbody>
</table>
Introduction

Ground Vehicle Research Simulation Tradeoffs

• Fast but low physical fidelity
 – Block that slides on the ground

• High physical fidelity but slow
 – Highly detailed model

Goal of Research

• Construct a ground vehicle simulation that is fast with good physical fidelity
 – Real-time
 – Full suspension, wheel-soil interaction, navigation, and control
ROAMS Background

ROAMS

- The JPL DARTS lab team has been involved in vehicle modeling and simulation for over 20 years
- Many key JPL/NASA missions require high-fidelity simulations
 - Spacecraft missions (Cassini, MER, MSL)
 - Planetary rovers (Pathfinder, MER, MSL, research rovers)
- The DARTS lab team created ROAMS for ground vehicle simulations of planetary rovers (http://dartslab.jpl.nasa.gov)
Example ROAMS Vehicles
ROAMS Simulation Models

- Encoders
- IMU
- Sun sensor

Sensor devices

- Rover Vehicle & Arm
- Dynamics and Kinematics

Motor Control Controllers

- Battery
- Solar panels
- Power models

Vision/Nav. Sensors

- Cameras

Contact model

- Compliance model

Goal Commands

- Way-Point Generation

Visualization

- Dspace

Navigation

- Locomotion & Haz. Avoidance
- Stereo Vision

- Terrain data
- DEM, Mesh

- Science Instruments

- Terrain data

DARTS
Rigid/Flexible Real-Time Multibody Dynamics Engine

Recipient of the NASA Software of the Year Award.

* DARTS solves equations of motion for flexible multi-body system based on the dynamics properties of the bodies in the system and the forces applied to those bodies. Based on Spatial Operator Algebra state-of-the-art algorithms.
• Kinematics and Dynamics of rigid/flex multibody systems
• Uses minimal DOF, **internal coordinate** formulation – eliminates constraints, is an **ODE** approach, and has superior numerical properties;
• Implements highly efficient **O(N)** recursive multibody dynamics algorithm in contrast with the more commonly used **O(N^3)** algorithm
• Based on **Spatial Operator Algebra** mathematical framework for multibody dynamics.
• General purpose with model data driven interface
• Models **multi-flexible** body systems and captures nonlinear rigid/flex nonlinear coupling

The more common and traditional approach uses a DAE formulation

Pros
- Full descriptor formulation
- Ability to handle any arbitrary constraint
- Diagonal mass matrix
- Conceptually easy to understand

Cons
- Computationally expensive
- Inexact constraint satisfaction
- Numerical issues of DAEs - stability and non-physical oscillations, convergence, singularity
Wheel/Soil Terramechanics

- Contact forces and torques on a six-wheel rover are statically indeterminate
 - $6 \times (6 \text{ wheels}) = 36$ unknowns
 - 6 equations (+3 for rocker/bogey)

- Wheel/soil interaction model
 - Lumped model for wheel/soil interaction (Bekker/Terzaghi)
 - Use Hunt/Crossley spring/damper models for normal forces at each wheel
 - Traction model to detect when in slippage regime – uses 2D tangent plane, 2 DOF spring/damper compliance model for contact point.
 - Tune model parameters based on empirical data

We chose to simulate the HMMWV vehicle

- Representative military vehicle
- Complex suspension
- U.S. Army interest as sensor platform
- Vehicle parameters from existing ADAMS model
HMMWV Quarter-Car Model

- Complex suspension model for each wheel
 - 5+ bodies (including chassis) in closed chain
 - revolute and ball joints
- Double “A-arm” suspension on each wheel
 - 2 A-arms (tan)
 - Spring-damper (green)
 - Wheel mount (pink)
 - Rider arm / steering linkages (purple)
- Not modeled: revolute joint bushings, drive train
Modeling Closed Chains

- Modeling multi-body systems with “closed chains” is inefficient.
- Tree topologies can be modeled using efficient recursive techniques to model body forces and motions.

internal closed loop
Modeling Closed Chains

- Fully Augmented (FA) model (DAE)
 - Non-minimal coors + constraints
 - Simple setup

- Tree Augmented (TA) model (DAE)
 - Minimal tree coors + constraints
 - Better for large loops

- Constraint Embedding (CE) model (ODE)
 - Minimal coors
 - Optimal for small loops
Comparison of multi-body modeling efficiency for HMMWV model

<table>
<thead>
<tr>
<th>Method</th>
<th>No. of coordinates</th>
<th>No. of constraints</th>
<th>Augmented size</th>
<th>Sim time ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>TA</td>
<td>45</td>
<td>30</td>
<td>75</td>
<td>4.1</td>
</tr>
<tr>
<td>FA</td>
<td>216</td>
<td>201</td>
<td>417</td>
<td>120.0</td>
</tr>
</tbody>
</table>
Urban Simulation Environment (1km x 2km)

- Created using CityEngine
 - Combines high-rise section (middle) and “sub-urban” (outer)
 - Straight and curved roads
- Extracted surface height map for wheel-soil models
Off-Road terrain created with Height Map Editor and added textures
HMMWV Simulation in Urban Environment

GPS: (34.007666, -118.997819)

LIDAR Simulation
HMMWV Simulation in Urban Environment (autonomous)

- GPS Output
- LIDAR sim (live)
- Navigation based on waypoint following
- Obstacle avoidance
- Driver’s View (live)
- Data Logging/plotting
Lane Change Maneuver

- Speed up to 20 m/s (72 kph)
- Change lanes at 30s
- Maintain lane for 20s
- Change back to original lane

Normal forces acting vertically on wheels by the soil
Lane Change Maneuver Plots

- Roll degrees
- Pitch degrees
- Yaw degrees

Time (s)

Velocity (m/s)
- Longitudinal Velocity m/s
- Lateral Velocity m/s

Time (s)

Rate (deg/s)

Time (s)

Acceleration (m/s²)

Time (s)
Off-road simulation

Simulated control of HMMWV on off-road using teleoperation (joystick for driver steering and gas/brake)
Conclusions

• Demonstrated high-fidelity HMMWV model
 – Full multi-body dynamics model of front and rear suspension, and steering
 • Significant advantages using constraint-embedding approach
 – Sensor models (LIDAR, GPS, cameras)
 – Navigation and control
 – Operates at ½ real-time (without optimization)

• Useful for HMMWV modeling simulations
 – Sensor simulations, vehicle design, etc
 – Being deployed at ERDC with VANE

• Techniques could be applied to other types of military vehicles
Potential Future Work

• Potential areas to improve suspension model
 – Anti-sway bar
 – Bushings
 – Drive train
 – Steering column dynamics

• Validation against real vehicle data