A Mechanical Energy Budget and Evaluation of an Eddying Global Ocean Model with a Wave Drag Parameterization

David Trossman1 Brian Arbic1 Steve Garner2
John Goff3 Steven Jayne4 E. Joseph Metzger5
Alan Wallcraft5

1University of Michigan-Ann Arbor, Dept Earth & Environmental Sciences
2NOAA/Geophysical Fluid Dynamics Laboratory
3University of Texas-Austin, Institute for Geophysics
4Woods Hole Oceanographic Institution, Physical Oceanography Department
5Naval Research Laboratory-Stennis Space Center, Oceanography Division

LOM Meeting, 2013
Title: A Mechanical Energy Budget and Evaluation of an Eddying Global Ocean Model with a Wave Drag Parameterization

Performing Organization: University of Michigan-Ann Arbor, Department of Earth & Environmental Sciences, Ann Arbor, MI, 48109

Abstract:
1 Introduction
 - Motivation and what wave drag is
 - The model and observations for comparison

2 Putting wave drag into an ocean model
 - Wave drag scheme choices

3 Energy budget
 - Mechanical energy budget from the continuity and momentum equations

4 Model evaluation
 - Taylor diagrams of all five diagnostics
Outline

1. **Introduction**
 - Motivation and what wave drag is
 - The model and observations for comparison

2. **Putting wave drag into an ocean model**
 - Wave drag scheme choices

3. **Energy budget**
 - Mechanical energy budget from the continuity and momentum equations

4. **Model evaluation**
 - Taylor diagrams of all five diagnostics
Motivation and what wave drag is

A truncated history of topographic wave drag studies

Previous studies

- Atmospheric general circulation models improved with wave drag (e.g., *Palmer et al.*, 1986)
Previous studies

- Atmospheric general circulation models improved with wave drag (e.g., *Palmer et al.*, 1986)

- Ample observational evidence that vertical diffusivity is enhanced in regions with rough topography (e.g., *Polzin et al.*, 1997; ...; *St. Laurent et al.*, 2012)
Motivation and what wave drag is

A truncated history of topographic wave drag studies

Previous studies

- Atmospheric general circulation models improved with wave drag (e.g., *Palmer et al.*, 1986)

- Ample observational evidence that vertical diffusivity is enhanced in regions with rough topography (e.g., *Polzin et al.*, 1997; ...; *St. Laurent et al.*, 2012)

- Wave drag boosts vertical diffusivity (e.g., *St. Laurent et al.*, 2002) and improves all considered tidal constituent amplitudes (e.g., *Jayne and St. Laurent*, 2001) in barotropic tidal models
Motivation and what wave drag is

A truncated history of topographic wave drag studies

Previous studies

- Atmospheric general circulation models improved with wave drag (e.g., Palmer et al., 1986)
- Ample observational evidence that vertical diffusivity is enhanced in regions with rough topography (e.g., Polzin et al., 1997; ...; St. Laurent et al., 2012)
- Wave drag boosts vertical diffusivity (e.g., St. Laurent et al., 2002) and improves all considered tidal constituent amplitudes (e.g., Jayne and St. Laurent, 2001) in barotropic tidal models
- Offline estimates suggest wave drag dissipates energy at 0.2 – 0.49 TW in abyssal hill regions (e.g., Nikurashin and Ferrari, 2011; Scott et al., 2011)
Motivation and what wave drag is

A history of topographic wave drag improving models (contd...)

Our goals

- How do we insert wave drag into an eddying global ocean model (without tides)?
Motivation and what wave drag is

A history of topographic wave drag improving models (contd...)

Our goals

- How do we insert wave drag into an eddying global ocean model (without tides)?
- How does wave drag impact the stratification, kinetic energy, and the input and output terms in the kinetic energy equation?
Motivation and what wave drag is

A history of topographic wave drag improving models (contd...)

Our goals

- How do we insert wave drag into an eddying global ocean model (without tides)?
- How does wave drag impact the stratification, kinetic energy, and the input and output terms in the kinetic energy equation?
- Are general circulation ocean models forced only by winds and air-sea fluxes improved when wave drag is included?
What is topographic wave drag? (Froude number $= \frac{U}{NH}$)
Outline

1. **Introduction**
 - Motivation and what wave drag is
 - The model and observations for comparison

2. **Putting wave drag into an ocean model**
 - Wave drag scheme choices

3. **Energy budget**
 - Mechanical energy budget from the continuity and momentum equations

4. **Model evaluation**
 - Taylor diagrams of all five diagnostics
Our models

HYbrid Coordinate Ocean Model (HYCOM)

- 32 hybrid layers
- $1/12.5^\circ$, $1/25^\circ$ resolutions
Our models

HYbrid Coordinate Ocean Model (HYCOM)
- 32 hybrid layers
- 1/12.5°, 1/25° resolutions

Parallel Ocean Program (POP) component of the Community Earth System Model (CESM) 1.1
- 62 z-layers
- 1/10° resolution
The model and observations for comparison

Energy Inputs and Outputs

Inputs

- **Air-sea fluxes** - monthly mean ECMWF Re-Analysis (ERA-40; *Kallberg et al.*, 2004) for HYCOM, Coordinate Ocean Reference Experiment (CORE 2.0; *Large and Yeager*, 2009) for POP
The model and observations for comparison

Energy Inputs and Outputs

Inputs

- **Air-sea fluxes** - monthly mean ECMWF Re-Analysis (ERA-40; *Kallberg et al.*, 2004) for HYCOM, Coordinate Ocean Reference Experiment (CORE 2.0; *Large and Yeager*, 2009) for POP

- **Winds** - monthly mean ERA-40 supplemented with 6-hourly 2003 fields of the Navy Operational Global Atmospheric Prediction System (NOGAPS; *Rosmond et al.*, 2002) for HYCOM, CORE 2.0 for POP
Energy Inputs and Outputs

Inputs

- **Air-sea fluxes** - monthly mean ECMWF Re-Analysis (ERA-40; Kallberg et al., 2004) for HYCOM, Coordinate Ocean Reference Experiment (CORE 2.0; Large and Yeager, 2009) for POP

- **Winds** - monthly mean ERA-40 supplemented with 6-hourly 2003 fields of the Navy Operational Global Atmospheric Prediction System (NOGAPS; Rosmond et al., 2002) for HYCOM, CORE 2.0 for POP

Dissipators

- **Horizontal viscosity** - ($\sim 10^2 - 10^3$ m2 s$^{-1}$) includes the maximum of a Laplacian and a Smagorinsky (1993) parameterization with an additional biharmonic term for HYCOM, biharmonic term for POP

Vertical viscosity - ($\sim 10^{-4} - 10^{-3}$ m2 s$^{-1}$) multiply the vertical diffusivities from KPP (Large et al., 1994) by a Prandtl number (ten)

Bottom drag - quadratic in the momentum equations with coefficient, $C_d = 2.5 \times 10^{-3}$ for HYCOM, 10^{-3} for POP (Taylor, 1919; ...; Arbic et al., 2009)

Wave drag - Garner (2005) scheme is used (see later)
Energy Inputs and Outputs

Inputs

- **Air-sea fluxes** - monthly mean ECMWF Re-Analysis (ERA-40; Kallberg et al., 2004) for HYCOM, Coordinate Ocean Reference Experiment (CORE 2.0; Large and Yeager, 2009) for POP

- **Winds** - monthly mean ERA-40 supplemented with 6-hourly 2003 fields of the Navy Operational Global Atmospheric Prediction System (NOGAPS; Rosmond et al., 2002) for HYCOM, CORE 2.0 for POP

Dissipators

- **Horizontal viscosity** - \((\sim 10^2 - 10^3 \text{ m}^2 \text{ s}^{-1})\) includes the maximum of a Laplacian and a Smagorinsky (1993) parameterization with an additional biharmonic term for HYCOM, biharmonic term for POP

- **Vertical viscosity** - \((\sim 10^{-4} - 10^{-3} \text{ m}^2 \text{ s}^{-1})\) multiply the vertical diffusivities from KPP (Large et al., 1994) by a Prandtl number (ten)
Energy Inputs and Outputs

Inputs

- **Air-sea fluxes** - monthly mean ECMWF Re-Analysis (ERA-40; Kallberg et al., 2004) for HYCOM, Coordinate Ocean Reference Experiment (CORE 2.0; Large and Yeager, 2009) for POP

- **Winds** - monthly mean ERA-40 supplemented with 6-hourly 2003 fields of the Navy Operational Global Atmospheric Prediction System (NOGAPS; Rosmond et al., 2002) for HYCOM, CORE 2.0 for POP

Dissipators

- **Horizontal viscosity** - ($\sim 10^2 - 10^3$ m2 s$^{-1}$) includes the maximum of a Laplacian and a Smagorinsky (1993) parameterization with an additional biharmonic term for HYCOM, biharmonic term for POP

- **Vertical viscosity** - ($\sim 10^{-4} - 10^{-3}$ m2 s$^{-1}$) multiply the vertical diffusivities from KPP (Large et al., 1994) by a Prandtl number (ten)

- **Bottom drag** - quadratic in the momentum equations with coefficient, $C_d = 2.5 \times 10^{-3}$ for HYCOM, 10^{-3} for POP (Taylor, 1919; ...; Arbic et al., 2009)
The model and observations for comparison

Energy Inputs and Outputs

Inputs

- **Air-sea fluxes** - monthly mean ECMWF Re-Analysis (ERA-40; Kallberg et al., 2004) for HYCOM, Coordinate Ocean Reference Experiment (CORE 2.0; Large and Yeager, 2009) for POP

- **Winds** - monthly mean ERA-40 supplemented with 6-hourly 2003 fields of the Navy Operational Global Atmospheric Prediction System (NOGAPS; Rosmond et al., 2002) for HYCOM, CORE 2.0 for POP

Dissipators

- **Horizontal viscosity** - \(\sim 10^2 - 10^3 \text{ m}^2 \text{ s}^{-1} \) includes the maximum of a Laplacian and a Smagorinsky (1993) parameterization with an additional biharmonic term for HYCOM, biharmonic term for POP

- **Vertical viscosity** - \(\sim 10^{-4} - 10^{-3} \text{ m}^2 \text{ s}^{-1} \) multiply the vertical diffusivities from KPP (Large et al., 1994) by a Prandtl number (ten)

- **Bottom drag** - quadratic in the momentum equations with coefficient, \(C_d = 2.5 \times 10^{-3} \) for HYCOM, \(10^{-3} \) for POP (Taylor, 1919; ...; Arbic et al., 2009)

- **Wave drag** - Garner (2005) scheme is used (see later)
The model and observations for comparison

Diagnostics informed by observations and compared with model output

Current meters (Global Multi-Archive Current Meter Database; http://stockage.univ-brest.fr/Šcott/GMACMD/updates.html)

- Mean vertical structure of kinetic energy
Current meters (Global Multi-Archive Current Meter Database; http://stockage.univ-brest.fr/~scott/GMACMD/updates.html)
- Mean vertical structure of kinetic energy

Satellite altimetry (Archiving, Validation and Interpretation of Satellite Oceanographic; http://www.aviso.oceanobs.com/es/data/index.html)
- Surface kinetic energy
- Eddy length scales (inverse first centroid of kinetic energy power spectrum)
- Sea surface height variance
- Intensified jet positions (via Kelly et al., 2007)
Outline

1. Introduction
 - Motivation and what wave drag is
 - The model and observations for comparison

2. Putting wave drag into an ocean model
 - Wave drag scheme choices

3. Energy budget
 - Mechanical energy budget from the continuity and momentum equations

4. Model evaluation
 - Taylor diagrams of all five diagnostics
Wave drag scheme choices

1) What is the range of wavenumbers over which the internal waves are not evanescant?

\[\frac{f}{U} \sim 10^{-4} \text{m}^{-1} < |\vec{k}| < \frac{N}{U} \sim 10^{-1} \text{m}^{-1}. \] \hspace{1cm} (1)

Here,

- \(f \) is the Coriolis parameter
- \(N \) is the buoyancy frequency
- \(U \) is the velocity near the seafloor
- \(|\vec{k}| \) is the wavenumber of the internal wave

\textit{Scott et al.} (2011) used a range that went down to \(f/U \sim 10^{-6} \text{m}^{-1} \).
2) Which wave drag parameterizations are there to choose from?

Using a momentum sink:

- Implement in wavenumber space; e.g., *Bell* (1975)
- Implement in physical space; e.g., *Garner* (2005)
2) Which wave drag parameterizations are there to choose from?

Using a momentum sink:
- Implement in wavenumber space; e.g., Bell (1975)
- Implement in physical space; e.g., Garner (2005)

Features of Garner (2005) vs those of Bell (1975):
- Garner (2005) - allows for topographic blocking, but does not depend on Coriolis
- Bell (1975) - does not allow for topographic blocking, but does depend on Coriolis
- Both schemes - depend on stratification, velocity, and underlying topographic features and assume $f \ll N$
Wave drag scheme choices

2) (cont...) Comparison of the *Bell* (1975) and *Garner* (2005) schemes

We choose to use the *Garner* (2005) scheme, but the *Bell* (1975) scheme yields similar results (offline)
3) Where do we apply wave drag?

- Is the model numerically stable when wave drag is applied everywhere?
- Is it possible and does it make sense to apply wave drag everywhere?

Interpolate over topographic slopes that are supercritical? Apply wave drag only in abyssal hill regions? Apply wave drag only in regions deeper than 500 meters? . . .
4) Estimate the input parameters for the wave drag scheme of your choice

- Integrate *Goff and Jordan* (1988) abyssal hill power spectrum, weighted by wavenumbers from (1)
- parameters for power spectrum from *Goff and Arbic* (2010) and *Goff* (2010) in abyssal hill regions
- use a machine learning algorithm (*Wood*, 2006) to fill in the non-abyssal hill regions
5) How should the momentum be deposited vertically?

- Is there observational evidence for enhanced turbulence, if not lee wave drag, in the bottom, say, 500 meters? (see Naveira-Garabato et al., 2012)

- Is there evidence that there needs to be a depth-dependent vertical deposition of momentum? (Polzin (2009) suggests that there is and the Garner (2005) scheme is capable of doing this)

- Are there locations where a non-trivial vertical deposition of momentum is important? (will not be addressed here)
Outline

1. Introduction
 - Motivation and what wave drag is
 - The model and observations for comparison

2. Putting wave drag into an ocean model
 - Wave drag scheme choices

3. Energy budget
 - Mechanical energy budget from the continuity and momentum equations

4. Model evaluation
 - Taylor diagrams of all five diagnostics
Mechanical energy budget from the continuity and momentum equations

Momentum equations → kinetic energy equation

\[
\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla}) \vec{u} + \frac{1}{\rho} \vec{\nabla} \rho + f \hat{k} \times \vec{u} + g \hat{k} = \\
\frac{\delta_s}{\rho} \frac{\vec{\tau}_{\text{wind}}}{H_s} - \delta_{b,HBD} \frac{C_d}{H_{BD}} |\vec{u}| \dot{\vec{u}} - \delta_{b,HWD} \frac{|r_{\text{drag}}|}{H_{WD}} \vec{u} \\
- \frac{\partial}{\partial z} (\nu_z \frac{\partial}{\partial z} \vec{u}_H) - \vec{\nabla} \cdot (\nu_{h,2} \vec{\nabla} \vec{u}_H + \nu_{h,4} \vec{\nabla} \vec{\nabla}^2 \vec{u}_H)
\]
Mechanical energy budget from the continuity and momentum equations

Momentum equations → kinetic energy equation

\[
\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla}) \vec{u} + \frac{1}{\rho} \vec{\nabla} \rho + f \hat{k} \times \vec{u} + g \hat{k} = \\
\frac{\delta_s R_{\text{wind}}}{\rho H_s} - \frac{\delta_{b, H_{BD}} C_d}{H_{BD}} |\vec{u}| \vec{u} - \delta_{b, H_{WD}} \frac{|r_{\text{drag}}|}{H_{WD}} \vec{u} \\
- \frac{\partial}{\partial z} (\nu_z \frac{\partial}{\partial z} \vec{u}_H) - \vec{\nabla} \cdot (\nu_{h,2} \vec{\nabla} \vec{u}_H + \nu_{h,4} \vec{\nabla} \vec{\nabla}^2 \vec{u}_H)
\]

Multiply the momentum equations by ρ and take a dot product with velocity, \vec{u}; then integrate over the globe.
Momentum equations \rightarrow kinetic energy equation

\[
\frac{\partial \tilde{u}}{\partial t} + (\tilde{u} \cdot \nabla) \tilde{u} + \frac{1}{\rho} \nabla \rho + f \hat{k} \times \tilde{u} + g \hat{k} = \\
\frac{\delta_s}{\rho} \frac{\tau_{\text{wind}}}{H_s} - \delta_{b,\text{BD}} \frac{C_d}{H_{\text{BD}}} |\tilde{u}| \tilde{u} - \delta_{b,\text{WD}} \frac{|r_{\text{drag}}|}{H_{\text{WD}}} \tilde{u} \\
- \frac{\partial}{\partial z} \left(\nu_z \frac{\partial}{\partial z} \tilde{u}_H \right) - \nabla \cdot \left(\nu_{h,2} \nabla \tilde{u}_H + \nu_{h,4} \nabla \nabla^2 \tilde{u}_H \right)
\]

Multiply the momentum equations by ρ and take a dot product with velocity, \tilde{u}; then integrate over the globe

\[
P_{E_K \text{time}} + P_{E_K \text{advection}} = P_{\text{pressure}} + P_{\text{input}} - P_{\text{output}} + C_{E_K \rightarrow E_P} \tag{3}
\]
Mechanical energy budget from the continuity and momentum equations

Bottom and wave drag

a) Bottom drag $[\log_{10}(W \ m^{-2})]$

b) Wave drag $[\log_{10}(W \ m^{-2})]$

c) Wave drag percent difference (offline-inline)
Global Integrals of Input/Output Terms in $TW = 10^{12}W$

$$P_{E_K\text{time}} + P_{E_K\text{advection}} = C_{E_K\rightarrow E_P} + P_{\text{pressure}} + P_{\text{Wind}} - P_{\text{BD}} - P_{\text{WD}} - P_{\text{VV}} - P_{\text{HV}}$$ \hspace{1cm} (4)

<table>
<thead>
<tr>
<th>WD?</th>
<th>Wind</th>
<th>Buoy</th>
<th>BD</th>
<th>WD</th>
<th>VV</th>
<th>HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0.87</td>
<td>0.066</td>
<td>0.31</td>
<td>N/A</td>
<td>0.29</td>
<td>0.29</td>
</tr>
<tr>
<td>yes</td>
<td>0.87</td>
<td>0.066</td>
<td>0.14</td>
<td>0.40</td>
<td>0.28</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Inputs vs Outputs:

- 5% imbalance (outputs less than inputs) without wave drag
- 15% imbalance (inputs less than outputs) with wave drag
Mechanical energy budget from the continuity and momentum equations

Mass conservation equation → potential energy equation

\[
\int dV \frac{d(\rho g z)}{dt} = \int dV \left[\frac{\partial(\rho g z)}{\partial t} + \vec{u} \cdot \nabla (\rho g z) \right]
\] (5)
Mechanical energy budget from the continuity and momentum equations

Mass conservation equation → potential energy equation

\[
\int dV \frac{d(\rho gz)}{dt} = \int dV \left[\frac{\partial(\rho gz)}{\partial t} + \vec{u} \cdot \vec{\nabla}(\rho gz) \right]
\]

\[
\int dV \frac{d(\rho gz)}{dt} = \int dV \left[\rho \frac{d(gz)}{dt} + \frac{d\rho}{dt}(gz) \right]
\]

\[
= \int dV [\rho gw] + \int dx \int dy \left[g\eta \kappa \frac{\partial \rho}{\partial z} \right] - \int dV \left[g\kappa \frac{\partial \rho}{\partial z} \right]
\]
Mechanical energy budget from the continuity and momentum equations

Mass conservation equation \rightarrow potential energy equation

\[
\int dV \frac{d(\rho g z)}{dt} = \int dV \left[\frac{\partial (\rho g z)}{\partial t} + \vec{u} \cdot \vec{\nabla} (\rho g z) \right] \tag{5}
\]

\[
\int dV \frac{d(\rho g z)}{dt} = \int dV \left[\rho \frac{d(gz)}{dt} + \frac{d\rho}{dt} (gz) \right] \tag{6}
\]

\[
= \int dV [\rho g w] + \int dx \int dy \left[g \eta \kappa \frac{\partial \rho}{\partial z} \right] - \int dV \left[g \kappa \frac{\partial \rho}{\partial z} \right]
\]

\[
P_{E_p \text{time}} + P_{E_p \text{advection}} = P_{\text{diffusive}} + C_{E_p \rightarrow E_K} + C_{E_I \rightarrow E_P} \tag{7}
\]
Global Integrals of Mechanical Energy Budget Terms in
$TW = 10^{12} W$

\[
P_{E_K time} + P_{E_P time} + P_{E_K advection} + P_{E_P advection} =

P_{pressure} + P_{diffusive} + P_{input} - P_{output} + CE_{I \rightarrow E_P}
\]

<table>
<thead>
<tr>
<th>KEadv.</th>
<th>PEadv.</th>
<th>press.</th>
<th>diffuse</th>
<th>$E_I \rightarrow E_P$</th>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.00284</td>
<td>.174</td>
<td>< .001</td>
<td>.00309</td>
<td>.0865</td>
<td>.868</td>
<td>1.06</td>
</tr>
</tbody>
</table>

7% imbalance of mechanical energy budget we ignore:
- partial time derivatives of KE and PE
- along-isopycnal contributions to power associated with buoyancy diffusion
- compressibility
Outline

1. Introduction
 - Motivation and what wave drag is
 - The model and observations for comparison

2. Putting wave drag into an ocean model
 - Wave drag scheme choices

3. Energy budget
 - Mechanical energy budget from the continuity and momentum equations

4. Model evaluation
 - Taylor diagrams of all five diagnostics
Taylor diagrams of all five diagnostics

Does wave drag ever make the model simulations in worse agreement with diagnostics informed by observations?

Observations, $1/12^\circ$ HYCOM without wave drag, $1/12^\circ$ HYCOM with wave drag, $1/25^\circ$ HYCOM without wave drag, $1/25^\circ$ HYCOM with wave drag, $1/10^\circ$ POP without wave drag (Taylor, 2001)
Summary

There are several details that could use some work when putting wave drag into a model like:

- what’s the best way to specify the range of relevant wavenumbers for the internal waves to not be evanescent?
Summary

There are several details that could use some work when putting wave drag into a model like:

- what’s the best way to specify the range of relevant wavenumbers for the internal waves to not be evanescent?
- are internal lee waves are generated by bottom flow-topography interactions in non-abyssal hill regions?
There are several details that could use some work when putting wave drag into a model like:

- what’s the best way to specify the range of relevant wavenumbers for the internal waves to not be evanescent?
- are internal lee waves are generated by bottom flow-topography interactions in non-abyssal hill regions?
- physical derivation of wave drag parameters in non-abyssal hill regions?
Summary

There are several details that could use some work when putting wave drag into a model like:

- what’s the best way to specify the range of relevant wavenumbers for the internal waves to not be evanescent?
- are internal lee waves are generated by bottom flow-topography interactions in non-abyssal hill regions?
- physical derivation of wave drag parameters in non-abyssal hill regions?
- what’s the more appropriate wave drag scheme to use and in what context?
Summary

There are several details that could use some work when putting wave drag into a model like:

- what’s the best way to specify the range of relevant wavenumbers for the internal waves to not be evanescent?
- are internal lee waves generated by bottom flow-topography interactions in non-abyssal hill regions?
- physical derivation of wave drag parameters in non-abyssal hill regions?
- what’s the more appropriate wave drag scheme to use and in what context?
- use of the full wave drag tensor that Garner (2005) formulated?
There are several details that could use some work when putting wave drag into a model like:

- what’s the best way to specify the range of relevant wavenumbers for the internal waves to not be evanescent?
- are internal lee waves generated by bottom flow-topography interactions in non-abyssal hill regions?
- physical derivation of wave drag parameters in non-abyssal hill regions?
- what’s the more appropriate wave drag scheme to use and in what context?
- use of the full wave drag tensor that Garner (2005) formulated?
- use of a depth-dependent momentum deposition procedure that Garner (2005) formulated?
Summary

There are several details that could use some work when putting wave drag into a model like:

- what’s the best way to specify the range of relevant wavenumbers for the internal waves to not be evanescent?
- are internal lee waves are generated by bottom flow-topography interactions in non-abyssal hill regions?
- physical derivation of wave drag parameters in non-abyssal hill regions?
- what’s the more appropriate wave drag scheme to use and in what context?
- use of the full wave drag tensor that Garner (2005) formulated?
- use of a depth-dependent momentum deposition procedure that Garner (2005) formulated?
- use of an alternative, non-local momentum deposition procedure?
There are several ways wave drag impacts the model
- active feedback on velocities and stratification
There are several ways wave drag impacts the model:

- Active feedback on velocities and stratification
- Diapycnal diffusivity is generally enhanced all the way up to the surface
Summary

There are several ways wave drag impacts the model:

- active feedback on velocities and stratification
- diapycnal diffusivity is generally enhanced all the way up to the surface
- substantially less bottom drag dissipation with wave drag, and wave drag cannot be substituted for by boosting bottom drag
There are several ways wave drag impacts the model

- active feedback on velocities and stratification
- diapycnal diffusivity is generally enhanced all the way up to the surface
- substantially less bottom drag dissipation with wave drag, and wave drag cannot be substituted for by boosting bottom drag
- all other mechanical energy budget terms are spatially altered, but changed by little in their global integrals
Summary

There are several ways wave drag impacts the model:

- active feedback on velocities and stratification
- diapycnal diffusivity is generally enhanced all the way up to the surface
- substantially less bottom drag dissipation with wave drag, and wave drag cannot be substituted for by boosting bottom drag
- all other mechanical energy budget terms are spatially altered, but changed by little in their global integrals
- wave drag either improves the model or does not make the model worse
Non-input/output mechanical energy budget terms
SST bias

a) SST percent difference 1/12th HYCOM without wave drag
b) SST percent difference 1/25th HYCOM without wave drag
c) SST percent difference 1/10th POP without wave drag
d) SST percent difference 1/12th HYCOM with wave drag
e) SST percent difference 1/25th HYCOM with wave drag
SSH variance

a) SSH variance \([m^2]\) 1/12th HYCOM without wave drag
b) SSH variance \([m^2]\) 1/25th HYCOM without wave drag
c) SSH variance \([m^2]\) 1/10th POP without wave drag
d) SSH variance \([m^2]\) 1/12th HYCOM with wave drag

Detailed analysis and comparison of SSH variance across different models and conditions.