Coastal Modeling System
Advanced Topics

Alex Sánchez
Research Hydraulic Engineer
Coastal and Hydraulics Laboratory
Engineer Research and Development Center
June 18, 2012
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 JUN 2012</td>
<td></td>
<td>00-00-2012 to 00-00-2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal Modeling System Advanced Topics</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army Corps of Engineers, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180-6199</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
<td>Same as Report (SAR)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prepared by ANSI X39-18
Webinar Outline

18 June 2012 - Day 1
- Introduction to CMS (slides)
- Overview of Documentation and Workshop Material – Read it!
- Tips for preparing bathymetry and other scattersets
- Tips for setting up and running Hydrodynamics

19 June 2012 - Day 2
- Initial and Boundary Conditions
- Salinity Transport
- Surface Roller

20 June 2012 – Day 3
- Sediment Transport

21 June 2012 - Day 4
- Numerical Methods
- Advanced Output
- Scripting

22 June 2012 - Day 5
- Debugging and Problem solving
- Model Calibration
- Post-processing
Focus of Workshop

- Not a hands-on tutorial (SMS experience assumed)
- Where and how to find documentation, tutorials, etc
- Theory and numerical methods
 - Model applicability
 - Knowing when and when not to use CMS before you start.
 - Interpreting results
 - So the model ran, now what?
 - Calibration
 - “To reproduce nature you must understand it.”
 - Designing cases or alternatives and making engineering decisions
 - While keeping it real.
- Tips on how to setup, run, and analyze results
 - Effectively:
 - The end result is sufficiently correct or adequate for the purposes of the project
 - Efficiently:
 - The setup process is fast and without wasted time or effort
Coastal Modeling System (CMS)

What is the CMS?
Integrated wave, current, and morphology change model in the Surface-water Modeling System (SMS).

Why CMS?
Operational at 10 Districts
Validated with real applications
Robust and user-friendly
Practice-oriented:
1 year simulation ~ 1-3 days on PC

Types of Applications
Channels: Deepening, widening, lengthening, realigning
Jetties: Lengthening, raising, rehabbing
O&M: Placement areas – berms, wetlands
Processes: Navigability – waves and currents; Environmental – circulation, and sediment transport
Coastal Modeling System

Availability

- Comes with SMS installation package
- CIRP website (under Products)
- CMS is **Free**, interface is relatively inexpensive

Documentation

- Several TR’s, CHETN’s and journal papers
- CIRP Wiki
- New Tech Report will be available later this summer

Training and Support (**Free**)

- Tech Transfer Workshops (32 since 1997)
- Additional workshops by request
- On-site training
- Seminars
- Step-by-step instructional material
- Webinars
Scales of Coverage

<table>
<thead>
<tr>
<th>SPACE SCALE</th>
<th>TIME SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICRO</td>
<td>sec - min</td>
</tr>
<tr>
<td>MESO</td>
<td>hour - week</td>
</tr>
<tr>
<td>MACRO</td>
<td>month - year</td>
</tr>
<tr>
<td>MEGA</td>
<td>decade - century</td>
</tr>
<tr>
<td>ULTRA</td>
<td>century - millennium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPACE SCALE</th>
<th>TIME SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICRO</td>
<td>mm - m</td>
</tr>
<tr>
<td>MESO</td>
<td>m - km</td>
</tr>
<tr>
<td>MACRO</td>
<td>km - 10 km</td>
</tr>
<tr>
<td>MEGA</td>
<td>sub-regional - regional</td>
</tr>
<tr>
<td>ULTRA</td>
<td>regional - continental</td>
</tr>
</tbody>
</table>

FORCING, TIME

- Waves
- Storms
- Tide
- Coastal currents
- Sea level rise / Global warming
- Regional climate variation (e.g., El Niño)
- Turbulence
- Wind
- Seasonal variations
- River discharges
- Transport threshold
- Scour
- Channel Infilling
- Shoals
- Ripples
- Sand Waves
- Bars
- Long term coastal evolution

- Coastal currents
- Regional climate variation
- Tide
- River discharges
- Seasonal variations
- Sea level rise / Global warming
- Transport threshold
- Scour
- Channel Infilling
- Shoals
- Ripples
- Sand Waves
- Bars
- Long term coastal evolution

- Coastal currents
- Regional climate variation
- Tide
- River discharges
- Seasonal variations
- Sea level rise / Global warming
- Transport threshold
- Scour
- Channel Infilling
- Shoals
- Ripples
- Sand Waves
- Bars
- Long term coastal evolution

- Coastal currents
- Regional climate variation
- Tide
- River discharges
- Seasonal variations
- Sea level rise / Global warming
- Transport threshold
- Scour
- Channel Infilling
- Shoals
- Ripples
- Sand Waves
- Bars
- Long term coastal evolution

- Coastal currents
- Regional climate variation
- Tide
- River discharges
- Seasonal variations
- Sea level rise / Global warming
- Transport threshold
- Scour
- Channel Infilling
- Shoals
- Ripples
- Sand Waves
- Bars
- Long term coastal evolution

- Coastal currents
- Regional climate variation
- Tide
- River discharges
- Seasonal variations
- Sea level rise / Global warming
- Transport threshold
- Scour
- Channel Infilling
- Shoals
- Ripples
- Sand Waves
- Bars
- Long term coastal evolution

- Coastal currents
- Regional climate variation
- Tide
- River discharges
- Seasonal variations
- Sea level rise / Global warming
- Transport threshold
- Scour
- Channel Infilling
- Shoals
- Ripples
- Sand Waves
- Bars
- Long term coastal evolution
CMS-Flow Key Features

- Finite Volume Method
 - Conserves mass
 - Stable
 - Accessible
- Coupled with spectral wave model (CMS-Wave)
 - Wave-current interactions
- Inline sediment transport and morphology change
 - Non-equilibrium sediment Transport model (NET)
- Nesting capability
- Tide, river, wind, atm. pres., forcing
- Integrated Particle Tracking Model (CMS-PTM)
CMS-Flow Key Features

- **Grid options**
 - Non-uniform Cartesian grid: Easy to setup
 - Telescoping grid: Efficient and flexible

- **Solver options**
 - Implicit: Tidal flow, long-term morphology change. ~10 min time step
 - Explicit: Flooding, breaching, super-critical flow. ~1 sec time step

- **Parallel Processing**
Sediment Transport: Key features

- Sediment transport models
 - Equilibrium Total Load (Exner equation)
 - Eq. Bed Load + AD Suspended Load
 - Non-Eq. (AD Total Load)

- Sediment transport formulas
 - Lund-CIRP
 - Van Rijn
 - Watanabe
 - Soulsby-van Rijn

- Hard-bottom
- Avalanching
- Bed slope influence on bed load
- Multiple-sized sed. transport

Pensacola Pass, FL
Channel Infilling ~700,000 cu m

Blind Pass, FL
~25,000 cu. m deposition in the dredge pit after 430 days
CMS-Wave: Key Features

- Shoaling, refraction, diffraction, reflection
- Bottom friction
- White capping
- Wave breaking (4 options)
- Wind generation
- Wave-current, and wave-wave interactions
- Transmission, runup and overtopping
- Muddy bottom
- Automatic grid rotation
- Non-uniform Cartesian grid with nesting capability
- “Fast Mode”
Recent Accomplishments

- New features
 - Telescoping grid
 - Multiple-sized sed transp
 - Surface roller
 - Wave-averaged formulation
 - Cross-shore sed transp
 - CSHORE & Lund-CIRP
- 6 Journal papers
- 5 Conference papers
- 2 V&V TR’s
- 6 Wiki-TN’s
- 1 PTM CHETN
- 2 CMS & 1 ADH Workshops
- Physical experiment
- R&D in graded sediments
Verification and Validation Reports

- Provides benchmark data sets and performance with which to evaluate other coastal models
- Applies unambiguous criteria in evaluation of model calculations via goodness-of-fit statistics
- Provides a go-by for applications to similar coastal projects and problems
- Identifies areas for future data collection and research
- Data and draft reports will be posted on CIRP website
Workshop Material

- CMS-Flow data folder (same as workshop)

http://cirp.usace.army.mil/wiki/CMS
The next CIRP workshop will be in San Diego, CA, Aug 19-21, 2011. For more information, see http://cirp.usace.army.mil

60 CIRP documents published as eBooks

http://cirp.usace.army.mil
CIRP Wiki

- 183 Content Pages
- >75,000 views
- Documentation Portal
 - Technical Documents
 - User Guide, tutorials, user-interface, guidance
 - Test cases
- Forum
- Links to CIRP website, publications, products, etc

http://cirp.usace.army.mil/wiki
Other Products and Tools

- Beach Tools
- Inlets Online
- Inlet Reservoir Model
- Channel Equilibrium Area
- Tidal Analysis and Prediction Software
- Filter1D: Time Series Analysis Tool
- Utilities for pre- and post-processing, data analysis and plotting (e.g. HyPAS)
- Downloadable from CIRP website or Wiki
CIRP Publications

Coastal Hydraulics Technical Notes (CHETNs)
Conference Papers
Journal Articles
Technical Reports
Theses and Dissertations

Inlet Publication Archive
Other Publications
Quarterly Newsletters

References

Contents [hide]

1 Reports and Technical Notes
 1.1 Waves
 1.2 Particle Tracking
 1.3 Sediment Transport and Morphodynamics
 1.4 Applications/Projects
 1.5 Structures
 1.6 Experiments
 1.7 Miscellaneous

2 Journal Papers
 2.1 Waves
 2.2 Hydrodynamics
 2.3 Wave-Current
 2.4 Sediment Transport and Morphodynamics
 2.5 Applications/Projects

3 Conference Papers
 3.1 Waves
 3.2 Hydrodynamics
 3.3 Sediment Transport and Morphodynamics
 3.4 Applications/Projects
 3.5 Miscellaneous

4 Other References

Publications: Sediment Transport

Publications: Various

Recommended Software and Hardware

- Decent text editor such as Textpad, UltraEdit, NotePad++, etc.
 - For viewing and editing large ASCII files
- HDFView
 - For viewing and editing XMDF files
- Matlab or Octave (free)
 - For pre-processing, post-processing, data analysis, and visualization.
- Excel is ok, but don’t use it for everything (yes you)
- Good computing machine
Questions?

Alejandro Sanchez
Alejandro.Sanchez@usace.army.mil
601-634-2027

Thanks to the CIRP team and developers: