Coating Performance in Duluth Superior Harbor - Part 1

Richard I. Ray and Brenda Little

Naval Research Laboratory
Oceanography Division
Stennis Space Center, MS 39529-5004

US Army Engineer District Detroit
PO Box 1027
Detroit, MI 48231-1027

Approved for public release, distribution is unlimited.

Nine Coatings were evaluated for corrosion protection of carbon steel coupons and I-beams around Duluth Superior Harbor after 46 and 35 months, respectively. Coupons were intentionally scribed to metal before exposure. Part 1 of this article describes the coatings used and the locations of coupons and I-beams. Part 2, to be published in the October 2012 issue of MP, will discuss the results of the evaluation.
Corrosion Exposure Testing at NASA Launch Facilities

Coating Performance in Duluth Superior Harbor

Corrosion Analysis of a Steel Drinking Water Pipe

Cathodic Protection of Steel Pipe Piles in an Open Sea Environment
Coating Performance in Duluth Superior Harbor—Part 1

Richard L. Ray and Brenda J. Little, FNACE,
Naval Research Laboratory, Stennis Space Center, Mississippi

Nine coatings were evaluated for corrosion protection of carbon steel coupons and I-beams around Duluth Superior Harbor after 46 and 35 months, respectively. Coupons were intentionally scribed to metal before exposure. Part 1 of this article describes the coatings used and the locations of coupons and I-beams. Part 2, to be published in the October 2012 issue of MP, will discuss the results of the evaluation.

Sixteen miles (26 km) of carbon steel (CS) sheet piling (12-mm thick A328 cold rolled) used for docks, bridges, and bulkheads in the Duluth Superior Harbor (DSH) in Minnesota and Wisconsin are corroding at an accelerated rate of 3 mm/y or higher. Piling 30 years old or older are riddled with through-wall pitting (Figures 1[a] and [b]).

The corroded pilings have an orange, rusty appearance characterized by tubercles (i.e., corrosion products and deposits covering areas of localized corrosion [Figures 2[a] and (b)].

Divers reported that tubercles were randomly distributed from the waterline to ~3 m below the surface. Tubercles varied in diameter from a few millimeters to several centimeters and when removed, large and often deep pits were exposed. Divers also reported that the attached zebra mussel (Dreissena polymorpha) population was dense and few tubercles were observed below 3 m. Zebra mussels are small, fingernail-sized mussels native to the Caspian Sea. They were first observed in Lake St. Clair, Minnesota in 1988 and have since spread to all of the Great Lakes.

DSH, located at the extreme western end of Lake Superior, is a fresh water harbor with mg/L concentrations of sulfate SO_4^{2-}. DSH is polymictic (i.e., seiches or free-standing wave oscillations are almost always present, suspending particulates into the water column). DSH is icebound from mid-December to mid-April and during that time has a durable, well-defined ice cover. DSH experiences freeze ice thicknesses that range from 0.5 to 1.4 m, as well as snow ice, stack ice, and ice from wave and splash action along harbor walls.

Ray, et al. reported that a combination of biological, chemical, and physical events contributed to the corrosion of CS pilings in DSH. Dense deposits of iron-
Corrosion of pilings in DSH. Photos courtesy of Gene Clark, Wisconsin Sea Grant Program.

(a) Wet corrosion tubercles and (b) dry corrosion tubercles on pilings in DSH.

CS coupons in a sample tray at DSH.
oxidizing bacteria produced tubercles, creating conditions for Cu precipitation on CS surfaces. Ice scoring disrupted the tubercles and exposed localized areas of Cu-covered CS to oxygen (O₂). The resulting galvanic cell produced aggressive localized corrosion. Barrier coatings provide one option for protection of extensive structures in fresh water. Al Beichman (retired), former director of the Paint Technology Center at the U.S. Construction Engineering Research Laboratory (CERL), Champaign, Illinois, selected the following coatings for this evaluation (hereafter referred to by their corresponding numbers):

1. Aquacure HR
2. Chevron Phillips T9043
3. Coal tar epoxy
4. Humiditex M1
5. Wasser MC-zinc/MC-tar
6. Sherwin-Williams Fast clad ER
7. Sherwin-Williams Sher glass epoxy
8. Standard epoxy
9. Zinc-rich primer VZ108/V766

Methods and Materials

Divers from AMI Consulting Engineers, Superior, Wisconsin, installed trays for coupons and I-beams. Eight sample trays containing eight 1.5 by 7.5 by 1.2-in (114 by 190 by 30-mm) thick A328 steel sample coupons per tray (Figure 3) were prepared.

Each sample tray contained four coated and four uncoated steel coupons. A report prepared for the U.S. Army Corps of Engineers provides details about tray and coupon installation. Trays and coupons were installed in November, 2007. Coupons were retrieved from two locations, U.S. Coast Guard Cell B (CGB-1) and U.S. Coast Guard Cell C (CGC-1) (Figure 4), on September 20, 2011. Table 1 presents coupon coating descriptions.

Trays designed to contain I-beams, 6 by 7 1/4 by 36 in (132 by 184 by 914 mm), were prepared (Figure 5) and installed at the Duluth Seaway Port Authority facility.
thority Facility (Figure 4) in September 2008. Table 2 provides I-beam coatings descriptions.

I-beams were retrieved from the original location at the Duluth Seaway Port Authority Facility in late August 2010 and submerged in plastic barrels for outside storage through one more winter. They were sent to the U.S. Naval Research Laboratory at Stennis Space Center (Mississippi) in October 2011.

Summary
A combination of biological, chemical, and physical events have contributed to accelerated corrosion of 16 miles of CS sheet piling in DSH. A series of coatings were tested on CS coupons and I-beams to evaluate their effectiveness in preventing the localized corrosion. Part 2 of this article, to be published in October 2012 MP, will detail the results of the coatings evaluation.

References

RICHARD L. RAY is a physical scientist at the Naval Research Laboratory, Code 7332, Stennis Space Center, MS 39529-5004. He has worked for the Naval Research Laboratory for 20 years, operating scanning electron microscopes for research on biodeterioration and biodegradation of materials in marine environments. He has a B.S. degree in biology from the University of Southern Mississippi and received four Alan Berman Research Publication Awards and the Sigma XI Award.

BRENDA J. LITTLE, FNACE, is a senior scientist at the Naval Research Laboratory. She uses surface analytical chemistry, electron microscopy, and electrochemical techniques to investigate adsorption, biofouling, biodegradation, biomineralization, and corrosion in marine environments. She is a NACE International Fellow and has been a NACE member since 1984.

TABLE 2

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Product</th>
<th>Product Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>White tw-part solvent-free polyamine epoxy</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Light green/white two-part epoxy</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Grey two-part coal tar polyamide epoxy</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Green two-part polyamide epoxy</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Red urethane micaceous iron oxides and refined coal tar</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>White amine epoxy (one coat)</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Black glass flake reinforced epoxy</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Black two-part polyamide epoxy/zinc primer</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Blue/grey zinc primer/vinyl copolymer</td>
</tr>
</tbody>
</table>

MP Buyers Guide Online
Visit the 2012 MP Buyers Guide Online, www.mpbuyersguide.com, for instant access to thousands of companies and consultants providing the latest in corrosion control products and services. If your company is not yet included, you can add and then edit your listing at any time throughout the year.
NASA Launches Study of Corrosion Exposure Testing
Kotiy Rega, Larsen

Company Showcase

Cathodic Protection

Cathodic Protection of Steel Pipe Piles in an Open Sea Environment
Y. Miyata and T. Azizu

CP Blog

Amine Blush Testing Part 2
Melissa Marsh

Coating Performance in Duluth Superior Harbor—Part 1
Richard L. Ray and Brenda J. Little, EVACE

CI Blog

Chemical Treatment

CT Blog

Materials Selection & Design

Corrosion Analysis of a Steel Drinking Water Pipe in an Indoor Environment
Liangbing Wang, Xia Liu, Linxia Fang, Zhiwei Wu, and Huijuan Chen

Aluminum Oxide Nanoparticles in Cement Mortar
Muhammad Reza Ansari and Zahra Sasojian

MSD Blog

About the Cover
The Beachside Corrosion Test Site at NASA's John F. Kennedy Space Center (KSC) Beachside Atmospheric Corrosion Test Facility includes 600 ft (183 m) of test racks located 100 ft (30 m) from the Atlantic Ocean and -1 mile (1.6 km) from KSC's rocket launch sites. The NASA Corrosion Technology Laboratory at KSC launched a study of corrosion exposure testing to determine if a correlation could be made between marine atmospheric exposure tests and accelerated corrosion tests. See the feature article on p. 28. Photo courtesy of NASA.