GROUNDWATER CIRCULATING WELL ASSESSMENT AND GUIDANCE

Bruce D. Alleman

Battelle Memorial Institute
505 King Avenue
Columbus, OH 60616

Contract No. F08637-95-D-6004-5403

April 1998

DISTRIBUTION A: Approved for public release; distribution unlimited.
DISCLAIMER

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or approval by the United States Air Force. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Air Force.

This report was prepared as an account of work sponsored by the United States Air Force. Neither the United States Air Force, nor any of its employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

This document is submitted as an historical record of work performed. Limitations of the available media rendered editing impractical; therefore it is retained “as is.”
Groundwater Circulating Well Assessment and Guidance

Abstract

Groundwater circulating wells (GCWs) are a developing environmental remediation technology originally developed for removal of hydrocarbon contamination from groundwater. Recent advances in the technology have expanded its applicability to a wide range of contaminants, and new system configurations often incorporate simultaneous vadose zone treatment. While GCWs have been applied at many sites, the technology is immature and continued development and improvements in design and operation efficiency are needed.

The objective of this protocol is to assist the user in all aspects of implementing the GCW technology for remediation at any given site. The protocol was written to guide the user through an effective and systematic process to accomplish the following: evaluate the feasibility of using a GCW system at a contaminated site; select the appropriate system configuration based on the contamination and hydrogeologic properties at the site; develop a site-specific design; install, operate and monitor the system; and evaluate the performance of the system based on operational data.

The protocol is arranged in the following three sections: (1) technology screening, (2) technology implementation guidance, and (3) current vendor information and case history information.

The protocol is not a design document, but rather a guide to help the user understand the GCW technology. This document can be used to ensure that consistent procedures are followed for effective GCW implementation and to ensure the achievement of remediation goals.

Subject Terms

groundwater circulation well, groundwater, contaminant, environmental cleanup, hydrocarbon

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>UU</td>
<td>265</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>UU</td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>UU</td>
<td></td>
</tr>
</tbody>
</table>

Form Approved

OMB No. 0704-0188
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>vi</td>
</tr>
</tbody>
</table>

SECTION 1: TECHNOLOGY SCREENING

1. Introduction ... 1
 1.1 Protocol Objective .. 1
 1.2 Background .. 1
 1.3 Overview of the Groundwater Circulation Well Technology 5
 1.3.1 Methods for Moving Groundwater ... 5
 1.3.1.1 Air lift Pumping ... 5
 1.3.1.2 Mechanical Pumping .. 6
 1.3.2 Common Methods of Groundwater Treatment .. 6
 1.3.2.1 In-Well Processes ... 6
 1.3.2.1.1 Air Stripping ... 6
 1.3.2.1.2 Activated Carbon Adsorption .. 7
 1.3.2.1.3 Biological Treatment ... 8
 1.3.2.2 In Situ Processes ... 9
 1.3.2.2.1 Desorption and Transport ... 9
 1.3.2.2.2 Biological Degradation ... 9
 1.3.2.3 In Situ Oxidation ... 9
 1.3.3 Common Methods for Treating System Off-gas ... 9
 1.3.3.1 In Situ Biodegradation ... 9
 1.3.3.2 Ex Situ Processes ... 10
 1.3.3.2.1 Regulations ... 10
 1.3.3.2.2 Adsorption ... 10
 1.3.3.2.3 Biofiltration .. 12
 1.3.3.2.4 Thermal Oxidation .. 12
 1.3.3.2.5 Catalytic Oxidation ... 13
 1.4 Factors that Affect the Applicability of the Groundwater Circulation Well Technology 13
 1.4.1 Nature of Contaminant .. 13
 1.4.1.1 Contaminant Type(s) ... 13
 1.4.1.2 Contaminant Phase/Distribution .. 15
 1.4.2 Site Hydrogeology ... 17
 1.4.2.1 Saturated Zone ... 18
1.4.2.1.1 Porosity... 18
1.4.2.1.2 Stratigraphy ... 19
1.4.2.1.3 Hydraulic Conductivity.. 19
1.5.1 Area of influence .. 20
1.5.2 Treatment limitations ... 21
1.5.2.1 Groundwater Pumping Rates, and Subsurface Geology and Hydrogeology ... 22
1.5.2.2 Soil Geochemistry ... 23
1.5.2.3 GCW Process Limitations 23
1.5.3 Air lift Capacity vs. In-Well Air Stripping 24
1.5.4 Short-Circuiting of Groundwater Flow 24

2.0 Technology Assessment and Maturity 25
2.1 Current Status of the Technology 25
2.2 DoD Experience with the GCW Technology 26
2.2.1 Port Hueneme Naval Air Station 26
2.2.2 Hill Air Force Base ... 27
2.2.3 Tyndall Air Force Base .. 31
2.2.4 March Air Force Base .. 33
2.2.5 Keesler Air Force Base ... 35
2.2.6 Edwards Air Force Base ... 38
2.2.7 Massachusetts Military Reservation 41
2.3 Technology Assessment ... 45

SECTION 2: TECHNOLOGY IMPLEMENTATION GUIDANCE 47

3.0 GCW Technology Screening Procedure 47
3.1 Decision Tree and Process Description 47
3.2 Decision Process .. 47
3.2.1 Contaminant Type ... 48
3.2.2 Contaminant Distribution 51
3.2.3 Cleanup Strategy .. 52
3.2.3.1 Contaminant Source Treatment 53
3.2.3.2 Plume Reduction .. 53
3.2.3.3 Plume Interception .. 53
3.2.3.4 Hydraulic Containment 54
3.2.4 Hydrogeologic Considerations 54
3.2.4.1 Vadose Zone (Unsaturated) Thickness 54
3.2.4.2 Saturated Thickness .. 55
3.2.4.3 Aquifer Characteristics 55
3.2.4.4 Hydraulic Conductivities 55
3.2.4.5 Stratigraphy .. 56
6.2.2 Water Level/Pressure Measurements
6.2.3 Radius of Influence Measurements
6.2.3.1 Dye/Tracer Tests
6.3 Vadose Zone Monitoring Requirements
6.3.1 Soil Sampling and Analysis
6.3.2 Soil-Gas Sampling and Analysis
6.3.3 Surface Emission Testing
6.4 GCW Off-Gas Monitoring Requirements and Procedures
6.5 GCW Performance Modeling

7.0 GCW Performance Assessment
7.1 In-Well Contaminant Mass Removal Rate
7.2 In Situ Contaminant Concentration Reduction
7.2.1 Vadose Zone Soils
7.2.2 Saturated Zone Soils
7.2.3 Groundwater
7.3 Dilution Effect in Circulation Cell

8.0 REFERENCES AND BIBLIOGRAPHY

LIST OF FIGURES

Figure 1. Generalized Schematic of Upflow and Downflow Groundwater Circulating Wells
Figure 2. Idealized Circulation Pattern Around an Upflow GCW System with Horizontal Groundwater Velocities of (a) 0.0 m/day, (b) 0.3 m/day, and (c) 1.0 m/day (reprinted from Herrling et al., 1991)
Figure 3. Numerical Simulation Showing the Circulation Pattern around Two GCW Systems (Herrling et al., 1994)
Figure 4. Schematic of the Decision Process for Screening Sites for GCW Applicability

LIST OF TABLES

Table 1. Henry’s Constants (atm·m3/mol) for Selected Organic Compounds
Table 2. Compounds Readily Adsorbed onto Activated Carbon
Table 3. Estimated Costs for Off-Gas Treatment with Granular Activated Carbon
Table 4 Contaminant Types and Properties
Table 5 Contaminant Properties to be Considered for Remediation Technology Selection and System Design
Table 6. Metabolic Pathways for Degradation of Environmental Contaminants
Table 7. Solubilities, Henry’s Constant, and Kow Values for Some Common Organic Contaminants
Table 8 Ranges of Porosity for Various Soil and Rock Types
Table 9 Theoretical Oxygen Pumping Requirements for Biodegradation of Some Hydrocarbon Contaminants. ... 24
Table 10. Applicability and Status of the Groundwater Circulating Well Technology 50
Table 11. List of Contaminants Amenable to Treatment with Groundwater Circulating Well Systems along with Case History References ... 52
Table 12. Selected Readily Available Three-Dimensional Groundwater Flow, Particle Tracking, and Contaminant Transport Codes. .. 68
Table 13 Analyses and Appropriate Methods for Site Characterization .. 82
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-D</td>
<td>three dimensional</td>
</tr>
<tr>
<td>AFB</td>
<td>Air Force Base</td>
</tr>
<tr>
<td>AFCEE</td>
<td>Air Force Center for Environmental Excellence</td>
</tr>
<tr>
<td>bgs</td>
<td>below ground surface</td>
</tr>
<tr>
<td>BOD</td>
<td>biological oxygen demand</td>
</tr>
<tr>
<td>BTEX</td>
<td>benzene, toluene, ethylbenzene, and xylenes</td>
</tr>
<tr>
<td>C.V.</td>
<td>coefficient of variance</td>
</tr>
<tr>
<td>DCA</td>
<td>dichloroethane</td>
</tr>
<tr>
<td>DCB</td>
<td>dichlorobenzene</td>
</tr>
<tr>
<td>DCE</td>
<td>dichloroethylene</td>
</tr>
<tr>
<td>DDC</td>
<td>density driven convection</td>
</tr>
<tr>
<td>DNAPL</td>
<td>dense, nonaqueous-phase liquid</td>
</tr>
<tr>
<td>DO</td>
<td>dissolved oxygen</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>GAC</td>
<td>granular activated carbon</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatograph</td>
</tr>
<tr>
<td>GC/MS</td>
<td>gas chromatograph/mass spectrometer</td>
</tr>
<tr>
<td>GCW</td>
<td>groundwater circulating well</td>
</tr>
<tr>
<td>GMS</td>
<td>groundwater modeling system</td>
</tr>
<tr>
<td>HRT</td>
<td>hydraulic residence time</td>
</tr>
<tr>
<td>ICE</td>
<td>internal combustion engine</td>
</tr>
<tr>
<td>IDW</td>
<td>investigation-derived waste</td>
</tr>
<tr>
<td>K</td>
<td>hydraulic conductivity</td>
</tr>
<tr>
<td>k</td>
<td>permeability</td>
</tr>
<tr>
<td>K_H</td>
<td>horizontal hydraulic conductivity</td>
</tr>
<tr>
<td>K_{OW}</td>
<td>octanol-water partition coefficient</td>
</tr>
<tr>
<td>K_V</td>
<td>vertical hydraulic conductivity</td>
</tr>
<tr>
<td>LD$_{50}$</td>
<td>dose resulting in 50% kill</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LEL</td>
<td>lower explosive limit</td>
</tr>
<tr>
<td>LNAPL</td>
<td>light, nonaqueous-phase liquid</td>
</tr>
<tr>
<td>MCL</td>
<td>maximum contaminant level</td>
</tr>
<tr>
<td>MEK</td>
<td>methyl ethyl ketone</td>
</tr>
<tr>
<td>MIBK</td>
<td>methyl isobutyl ketone</td>
</tr>
<tr>
<td>MMOC</td>
<td>modified method of characteristics</td>
</tr>
<tr>
<td>MOC</td>
<td>method of characteristics</td>
</tr>
<tr>
<td>OD</td>
<td>outside diameter</td>
</tr>
<tr>
<td>ORP</td>
<td>oxidation/reduction potential</td>
</tr>
<tr>
<td>PAH</td>
<td>polycyclic aromatic hydrocarbon</td>
</tr>
<tr>
<td>PCB</td>
<td>polycyclic biphenyl</td>
</tr>
<tr>
<td>PCE</td>
<td>perchloroethylene</td>
</tr>
<tr>
<td>PEL</td>
<td>permissible exposure limit</td>
</tr>
<tr>
<td>PVC</td>
<td>polyvinyl chloride</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>ROI</td>
<td>radius of influence</td>
</tr>
<tr>
<td>SAR</td>
<td>sodium adsorption ratio</td>
</tr>
<tr>
<td>SCAQMD</td>
<td>South Coast Air Quality Management District</td>
</tr>
<tr>
<td>SITE</td>
<td>Superfund Innovative Technology Evaluation</td>
</tr>
<tr>
<td>SVE</td>
<td>soil vapor extraction</td>
</tr>
<tr>
<td>SVOC</td>
<td>semi-volatile organic compound</td>
</tr>
<tr>
<td>TCA</td>
<td>trichloroethane</td>
</tr>
<tr>
<td>TCE</td>
<td>trichloroethylene</td>
</tr>
<tr>
<td>TMB</td>
<td>trimethylbenzene</td>
</tr>
<tr>
<td>TOC</td>
<td>total organic carbon</td>
</tr>
<tr>
<td>TPH</td>
<td>total petroleum hydrocarbon</td>
</tr>
<tr>
<td>UFA</td>
<td>Unsaturated Flow Analysis</td>
</tr>
<tr>
<td>U.S. EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>USGS</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>UST</td>
<td>underground storage tank</td>
</tr>
<tr>
<td>UVB</td>
<td>Unterdruck-Verdampfer-Brunnen (vacuum vaporizer well)</td>
</tr>
<tr>
<td>VC</td>
<td>vinyl chloride</td>
</tr>
<tr>
<td>VOA</td>
<td>volatile organic analysis</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
</tbody>
</table>
SECTION 1: TECHNOLOGY SCREENING

1. Introduction

Groundwater circulating wells (GCWs) are a developing environmental remediation technology originally developed for removal of hydrocarbon contamination from groundwater. Recent advances in the technology have expanded its applicability to a wide range of contaminants, and new system configurations often incorporate simultaneous vadose zone treatment. While GCWs have been applied at many sites, the technology is immature and continued development and improvements in design and operation efficiency are needed.

1.1 Protocol Objective
The objective of this protocol is to assist the user in all aspects of implementing the GCW technology for remediation at any given site. The protocol was written to guide the user through an effective and systematic process to accomplish the following:

- evaluate the feasibility of using a GCW system at a contaminated site
- select the appropriate system configuration based on the contamination and hydrogeologic properties at the site
- develop a site-specific design
- install, operate, and monitor the system
- evaluate the performance of the system based on operational data.

The protocol is arranged in the following three sections.

Section I: Technology Screening
Section II: Technology Implementation Guidance
Appendix: Current Vendor Information and Case History Information

Section I provides the user with an introduction to the GCW technology and describes a screening process to determine if a site is a candidate for this technology. Section II contains a guide summarizing GCW design, modeling, monitoring, and system evaluation procedures. The Appendix contains vendor-provided information describing some of their successful GCW installations. This information is included to provide potential GCW users with a reference to sample GCW applications for various contaminant and/or geologic settings, not to promote any specific vendor or vendor system.

The protocol is not a design document but rather a guide to help the user understand the GCW technology. This document can be used to ensure that consistent procedures are followed for effective GCW implementation and to ensure the achievement of remediation goals.

1.2 Background
Historically, aquifer restoration has focused on the use of pump-and-treat technologies that entail installing a network of pumping wells within and around a contaminant plume, and pumping water to the surface for treatment. The pumped water serves to transport contamination to the well for subsequent removal from the aquifer. The rate of remediation is limited by mass transfer and sorption/desorption kinetics. Some pump-and-treat systems have been designed with a reinjection capability for facilitating groundwater movement and/or for introduction of amendments such as nutrients, electron donors or acceptors, or microorganisms. The addition of these amendments has resulted in varying levels of success.
Pump-and-treat technologies have some general limitations associated with the extraction of water from an aquifer. They can require pumping large quantities of groundwater which, if contaminant concentrations in the pumped water exceed regulatory levels, can require further treatment prior to discharge. Common treatment technologies coupled to pump-and-treat systems include aboveground air stripping, activated carbon adsorption, and biological treatment. Treated water can be discharged either to a sanitary or industrial sewer line, depending on local permitting requirements. Reinjection to the aquifer may be possible if the treated water meets local regulatory standards and an injection permit is obtained. These permits are difficult to obtain for reinjection into drinking-water source aquifers.

The major costs of pump-and-treat systems are associated with lifting the water and with the aboveground treatment processes required to achieve stringent treatment levels. At sites with deep groundwater, where large pumps with greater lifting capacities are required, the energy costs associated with lifting the water to the treatment unit can be a significant portion of the remediation cost. On the other hand, the costs associated with aboveground treatment may predominate when large quantities of water are pumped and/or a high degree of treatment is required.

Alternative methods to conventional pumping and treating are being developed that avoid many of these difficulties by providing in situ treatment, thus eliminating the need for groundwater withdrawal and aboveground treatment. Air sparging, enhanced in situ aerobic and anaerobic biodegradation, chemical and biological barrier technologies, and GCWs are examples of such alternatives. This protocol focuses on the use of GCWs for aquifer restoration and site remediation.

GCW systems are designed to create a 3-dimensional (3-D) circulation pattern in an aquifer by drawing groundwater to the well, pumping the water through the well, then reintroducing the water into the aquifer without pumping it above ground. Distinct circulation patterns are established depending on both the operational mode of the GCW and the hydrogeologic conditions of the site. GCWs can be configured with upward in-well flow (upflow) or downward in-well flow (downflow) depending on site requirements such as the type and distribution of contaminant. Figure 1 is a generalized schematic showing the flow schemes for each type.

Figure 2 illustrates ideal circulation patterns that would be established with an upflow GCW system as a function of horizontal groundwater flow velocities (Herrling et. al., 1991). Figure 2a shows that under ideal conditions, and in the absence of background groundwater flow, the circulation pattern forms a symmetrical ellipsoid around the well. Figures 2b and c show that as the horizontal component of the background groundwater velocity increases, the streamlines are skewed and the symmetry is lost. By comparing Figures 2b and c, it can be seen that increasing background flow velocities causes a decrease in the radius of the flow field. This has a direct impact on the GCW-induced circulation cell and dictates the GCW spacing required for effective system design. Circulation patterns for downflow GCW systems would be mirror images in the x-plane of the patterns shown in Figure 2.
Figure 1. Generalized Schematic of Upflow and Downflow Groundwater Circulating Wells.

Figure 2. Idealized Circulation Pattern Around an Upflow GCW System with Horizontal Groundwater Velocities of (a) 0.0 m/day, (b) 0.3 m/day, and (c) 1.0 m/day (reprinted from Herrling et al., 1991).
Figure 3 illustrates the results of numerical simulations showing the effect on the circulation pattern with two GCW systems placed close enough to affect each other significantly (Herrling et al., 1994). This type of well spacing may be required to treat a targeted volume effectively or to develop an effective capture zone. The strong vertical circulation between the two wells may prove beneficial for highly contaminated areas near a source (Herrling et al., 1994).

![Figure 3. Numerical Simulation Showing the Circulation Pattern around Two GCW Systems (Herrling et al., 1994).](STREAMLINES91.CDR)

GCW systems are designed to provide treatment inside the well, in the aquifer, or a combination of both. For effective in-well treatment, the contaminants must be adequately soluble and mobile for transport by circulating groundwater. Current methods for in-well treatment include air stripping, activated carbon adsorption, and biodegradation. The selection of which in-well method will be used is contaminant-, site-, and vendor-specific. Contaminants that cannot be mobilized effectively to the well need to be treated in the aquifer. Most commonly, in situ treatment is achieved through biodegradation. Currently, GCW systems promote aerobic biological activity; however, anaerobic systems are under development. Often, there is a combination of both in-well and in-aquifer treatment, with the relative percentages of removal by each mechanism being contaminant-, site-, and GCW configuration-specific.

Many GCW configurations incorporate air lift pumping to facilitate groundwater circulation, and/or air stripping to remove contaminant from the groundwater passing through the well. These systems transfer volatile contaminants from the aqueous phase to the vapor phase. The off-gas often requires some level of treatment for contaminant vapors prior to discharge. Off-gas treatment can be achieved in situ by direct injection into the vadose zone. More often, the off-gas is treated above ground with any of a variety of processes.

Depending on the specific application, GCW systems may offer several advantages over conventional pump-and-treat technologies. These advantages are site specific and their potential must be considered on a case by case basis. One advantage is that treatment of the contaminated groundwater takes place below grade and does not require that it be pumped out of the ground. Eliminating the need to pump groundwater to the surface is an attractive feature of GCWs for two main reasons. First, treating groundwater in situ may eliminate the need for discharge
permitting requirements associated with conventional pump-and-treat systems. However, it is not certain that this regulatory loophole won't change in the near future. Second, by achieving treatment below ground, the need to lift groundwater can be reduced or eliminated and significant energy cost savings may be realized, especially at sites with deep water tables.

Another advantage of GCW systems over conventional pumping and treating is that they induce a groundwater circulation zone that "sweeps" the aquifer. Pump-and-treat systems cause drawdown around the well, leaving contaminated zones that are not treated. In addition, pump-and-treat systems inherently draw water along preferential pathways in the subsurface, leaving contamination in lower permeability units. Because of this, pump-and-treat systems often become diffusion limited. GCW systems do not cause drawdown and they promote a circulation with both horizontal and vertical flow components that can cut across lower permeable units.

Another potential benefit that can be realized with a number of GCW designs is the simultaneous remediation of contamination above and below the water table. This is achieved by coupling the saturated zone treatment with soil vapor extraction (SVE) or bioventing. Coupling to SVE results in the contaminants being entrained in the vapor flow to the GCW, where they are removed along with the GCW system off-gas for aboveground treatment. Incorporating bioventing into the design can provide for in situ destruction through biodegradation of both residual soil and GCW off-gas contamination.

These general features make GCWs an attractive option for remediation of contaminated groundwater. However, the applicability of the GCW technology is site specific and engineering decisions must be made based on site-specific criteria before selecting a GCW system for remediation at any site.

1.3 Overview of the Groundwater Circulation Well Technology
There are a number of different configurations of GCWs available for a variety of applications; however, the basic operating mechanisms of all configurations are similar. All GCWs function by moving water through a well or borehole placed in a contaminated zone within an aquifer. Contaminated water enters the GCW through the influent section. The water is treated and/or amended within the GCW, then reinjected into the aquifer through the effluent section of the well. All GCWs circulate the water in situ without pumping it above ground. The specifics of the well design, method of pumping, and method of treatment vary by configuration and are selected based upon site- and application-specific requirements. The following sections introduce the basic principles of GCW operation.

1.3.1 Methods for Moving Groundwater. GCW designs are available that move water in either an upflow or downflow direction. The direction depends on the water pumping mechanism, which is often configuration specific. The desired mode of operation depends on the contaminant type and distribution, and on the other hydrogeologic factors discussed in Section II-2.2. The required mode of operation will dictate the selection of the specific GCW configuration.

1.3.1.1 Air Lift Pumping. One of the most common methods GCWs use to move groundwater is air lift pumping. Air lift GCWs have an air line that extend to some depth below the water level in the well system. As air is injected, it mixes with the water and causes a decrease in the specific gravity of the fluid (Powers, 1992). The difference between the weight of the air-water fluid within the well and the water in the formation outside the well causes the water in the well
to rise. As the water rises, the displaced water in the bottom of the well is replaced by water drawn in from the formation. More detailed information on air lift pumping can be found in Stepanoff, 1965; Gaver and Aziz, 1972; Perry et al., 1984; Morrison et al., 1987; Gvertzman and Gorelick, 1992; and/or Francoise et al., 1996.

Depending on the specific GCW configuration, the pumped water is reintroduced into the aquifer either directly through the upper well screen or through a subsurface infiltration gallery. Air lift GCW systems usually operate in an upflow mode. A downflow airlift system has been proposed, but its effectiveness has not been demonstrated in any field application. A more detailed discussion of the individual GCW configurations currently available is provided in the Appendix.

1.3.1.2 Mechanical Pumping. Another method used to facilitate groundwater movement is mechanical pumping. Installing mechanical pumps into GCW units allows the systems to be operated in either an upflow or downflow mode. Mechanical pumps are incorporated into dual-screen well designs that include a packer to separate the two screened sections. Packing off the screens allows for water movement from one screened section to the other without short circuiting within the well. Descriptions of several GCW systems that utilize mechanical pumping can be found in the Appendix.

1.3.2 Common Methods for Treating Groundwater. One of the attractive features of GCW systems is that groundwater treatment occurs in situ, within the well volume and within the aquifer, thus eliminating the need for pumping groundwater above ground. For in-well treatment, various treatment technologies including air stripping, carbon adsorption, and biological degradation have been incorporated into GCW designs. In the aquifer outside the well, contaminants are removed through desorption and transport to the well, and through biodegradation supported through the delivery of nutrients and/or electron acceptors/donors in the circulated water. Brief descriptions of these processes are presented in the following sections.

1.3.2.1 In-Well Processes. The most common method for in-well groundwater treatment within GCW systems is air stripping. Often, this process is coupled with the air lift pumping mechanism described in Section 1.3.1.1. Other in-well groundwater treatment processes include activated carbon adsorption, biological treatment, or air stripping coupled with mechanical pumping.

1.3.2.1.1 Air Stripping. Air stripping is the most commonly applied process for achieving in-well groundwater treatment in GCWs. This process serves both to remove volatile organic compounds from the water, and to aerate the water prior to discharge from the well system. Air stripping is a proven, effective technology for aboveground treatment of water and wastewater containing volatile contaminants. In GCW systems, the air stripping process is often facilitated by the air injected to drive the air lift pumping which in turn drives the groundwater circulation. For systems that couple air lift with air stripping, it is necessary to balance the operation of these two mechanisms for optimum performance.

Air stripping is a phase transfer process during which volatile contaminants are exchanged from the aqueous phase to the gaseous phase. The partitioning between the phases is a function of the temperature of the two phases, the total pressure in the system, and the molecular interactions occurring between the contaminant and the water (Montgomery, 1985). Henry’s law describes
the partitioning of the contaminant between the water and gas phases at equilibrium. Combining Henry’s law with Dalton’s law results in Equation 1 (Montgomery, 1985):

\[Y_i = \frac{X_i H_i}{P_T} \]

where:
- \(Y_i \) = the mole fraction of the gas phase
- \(X_i \) = the mole fraction of the contaminant in the water phase
- \(H_i \) = the Henry’s law constant
- \(P_T \) = the total system pressure

If both the Henry’s constant of a contaminant and the total pressure are known, the above relationship can be used to determine the equilibrium partitioning between gas and water phases during air stripping. In general, compounds with a higher Henry’s constant are more easily stripped from water than compounds with lower Henry’s constants. Table 1 contains Henry’s constants for a list of organic compounds that can be readily air stripped (Montgomery and Welkon, 1990).

Table 1. Henry’s Constants (atm·m³/mol) for Selected Organic Compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>Henry’s Constant</th>
<th>Compound</th>
<th>Henry’s Constant</th>
<th>Compound</th>
<th>Henry’s Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>0.00548</td>
<td>Chloroform</td>
<td>0.0029</td>
<td>perchloroethylene</td>
<td>0.0153</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.00674</td>
<td>Carbon tetrachloride</td>
<td>0.0302</td>
<td>trichloroethylene</td>
<td>0.0091</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.00868</td>
<td>Chlorobenzene</td>
<td>0.00445</td>
<td>1,1-dichloroethylene</td>
<td>0.021</td>
</tr>
<tr>
<td>o-xylene</td>
<td>0.00535</td>
<td>1,2-dichlorobenzene</td>
<td>0.0024</td>
<td>cis-1,2-dichlorehylene</td>
<td></td>
</tr>
<tr>
<td>m-xylene</td>
<td>0.0063</td>
<td>1,3-dichlorobenzene</td>
<td>0.0047</td>
<td>trans-1,2-dichlorehylene</td>
<td>0.00674</td>
</tr>
<tr>
<td>p-xylene</td>
<td>0.0063</td>
<td>1,4-dichlorobenzene</td>
<td>0.00445</td>
<td>vinyl chloride</td>
<td>0.056</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>4.6 × 10⁻⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effective operation of GCW systems that utilize air lift pumping and in-well air stripping of VOCs requires a balance between the pumping and stripping efficiencies. Typically, the optimum air injection rates for air lift pumping and air stripping do not coincide. More detailed information on the theory of air stripping and design procedures for air stripping systems can be found in Canter and Knox, 1986; Montgomery and Welkon, 1990; and Gvirtzman and Gorelick, 1992.

1.3.2.1.2 Activated Carbon Adsorption

GCW configurations are available that utilize activated carbon adsorption as the in-well treatment process. Activated carbon is commonly used in water and wastewater treatment, usually as a polishing step, and also is used for vapor-phase treatment of off-gas from unit processes such as air strippers, soil vapor extraction, and bioslurping systems. In GCWs, granular activated carbon (GAC) canisters are placed within the well. As the contaminated groundwater is pumped through the GCW, it passes through the GAC, where the contaminants are adsorbed to the carbon. The clean water is discharged through the effluent portion of the GCW.

As with air stripping, activated carbon adsorption is a phase transfer process with the contaminant being transferred from the aqueous phase to the solid phase. Adsorption is the
physical/chemical process of accumulating contaminants at a solid/liquid interface. The contaminant is referred to as the “adsorbate” and the activated carbon as the “adsorbent.”

Adsorption occurs when there are forces that attract the adsorbate to the surface of the adsorbent. These forces can result in two types of adsorption, termed “physical” or “chemical” adsorption. Physical adsorption is promoted by weaker electrostatic forces such as hydrogen bonding and London-van der Waals forces and by hydrophobic interactions. Oftentimes, physical adsorption is a reversible process and a “feedback” phenomenon can occur if the adsorbate concentration in the aqueous phase decreases to below the equilibrium concentration.

Chemical adsorption, referred to as “chemisorption,” is promoted by stronger electrostatic forces that resemble covalent or electrostatic bonding between two atoms (Montgomery, 1985). Chemisorption typically occurs at specific sites on the surface of the activated carbon, and may be strongly influenced by specific functional group types and densities. In general, chemisorption is less reversible than physical sorption.

The adsorptive capacity of an activated carbon is dependent on the properties and concentration of the adsorbate and on temperature and pH (Metcalf and Eddy, 1991). Table 2 lists compounds that adsorb readily onto activated carbon (Montgomery, 1985). For more in-depth information on activated carbon adsorption theory and design, see Montgomery, 1985; and Metcalf and Eddy, 1991.

<table>
<thead>
<tr>
<th>Class</th>
<th>Example Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aromatic Solvents</td>
<td>Benzene</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
</tr>
<tr>
<td></td>
<td>Nitrobenzenes</td>
</tr>
<tr>
<td>Chlorinated Aromatic Compounds</td>
<td>Polychlorinated biphenyls (PCBs)</td>
</tr>
<tr>
<td></td>
<td>Chlorobenzenes</td>
</tr>
<tr>
<td></td>
<td>Chlorinated phenols</td>
</tr>
<tr>
<td>Chlorinated Aliphatic Compounds</td>
<td>Carbon tetrachloride</td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
</tr>
<tr>
<td>High Molecular Weight Hydrocarbons</td>
<td>Gasoline</td>
</tr>
<tr>
<td></td>
<td>Diesel</td>
</tr>
</tbody>
</table>

1.3.2.1.3 Biological Treatment. GCWs are available that incorporate a bioreactor in the GCW design, thereby achieving in-well treatment of contaminated groundwater through biodegradation (see Appendix). The reactor utilizes biofilm technology, and is available in either a spiral wound membrane or an activated carbon support medium configuration. The indigenous microorganisms within the aquifer are allowed to colonize the surface of the activated carbon as groundwater is circulated through the well. Once a sufficient population of these microorganisms develops, biodegradation can occur as the water passes through the reactor.
1.3.2.2 In Situ Processes.

1.3.2.2.1 Desorption and Transport. One of the overall objectives of GCW systems is to transport the contaminants from the formation to the well for treatment. The rate at which a contaminant can be transported to the well is dependent on its solubility and on the physical and chemical characteristics of the formation(s) through which the solubilized contaminant migrates on its way to the well. Typically, the more soluble a compound, the faster it can be transported to the well. Contaminant migration can be slowed in tight formations or when organic matter is present.

1.3.2.2.2 Biological Degradation. Another objective of GCW systems is to remediate contamination in the formation without transporting it to the well. The primary mechanism for achieving in-place treatment is biological degradation. Typically, water entering the GCW is anoxic. As the water is air lift pumped and aerated, the oxygen can achieve saturation levels (approximately 8 mg/L). The oxygenated water is circulated back into the formation where the oxygen can support aerobic biodegradation of contaminants. Unfortunately, delivering 8 mg of oxygen per liter of water requires pumping a large volume of water to provide the oxygen required to support biodegradation of a given mass of contaminant. Recent evidence suggests that although the oxygen delivery capacity of some GCW configurations may be limited, the induced water circulation may be effective at enhancing anaerobic biodegradation. This phenomenon has not been documented.

1.3.2.2.3 In Situ Oxidation. One available GCW configuration combines ozone and air injection with a downflow system (see Appendix). The ozone and entrained air are forced into the formation where the ozone can attack the contaminant. The system includes an air sparging point below the well casing that aerates the water below the well and transports contaminants up into the ozonated region of the formation for treatment.

1.3.3 Common Methods for Treating System Off-gas. GCW systems that use air stripping to remove contaminants from groundwater produce vapor (off-gas) containing the transferred contaminants. The vapors can be biologically treated in situ through direct injection into the vadose zone, or ex situ by a number of treatment processes. The selection of vapor treatment is dependent on both contaminant type and contaminant concentration. The following sections contain descriptions of vapor treatment alternatives that can be used with GCW systems.

1.3.3.1 In Situ Biodegradation. In situ biodegradation of the GCW vapor emissions through direct injection of the off-gas into the vadose zone can be a cost-effective and environmentally sound treatment option provided that the compounds in the vapor are biodegradable under aerobic conditions. Compounds such as PCE that only degrade under anaerobic conditions will not be treated through direct injection of oxygen containing air. Compounds such as TCE that require a cosubstrate are also questionable. In effect, the GCW mimics bioventing, with the GCW serving as the vent well. This coupling can serve to remediate residual vadose zone contamination as well as the contaminant in the introduced vapor. Direct injection of off-gas can offer the advantages of low surface emissions and no point-source generation.

Direct injection is accomplished by designing the GCW system so that the vapor containing stripped contaminants passes from the well directly into the vadose zone soil without being pulled above-grade. To facilitate in situ biodegradation of the contaminants, the vapor must
contain sufficient residual oxygen to support aerobic biological activity. In situ respiration and soil-gas permeability data must be available for the site. These data indicate the expected biodegradation rate and radius of influence (ROI) that are required to determine the design capacity for the direct injection GCW system. The soil volume available must be sufficient to accept the off-gas airflow and allow biodegradation of the contaminant mass flow in the off-gas.

Direct injection GCW systems must be designed and located to ensure that the injection process is destroying the contaminants rather than increasing contaminant migration. After injection is established, surface emission testing can be performed to ensure that contaminants are not escaping at the site surface. Soil-gas monitoring must be performed to ensure that contaminant migration is not being increased. Monitoring of migration is particularly important at sites where air extraction may be necessary to prevent migration into nearby buildings.

1.3.3.2 Ex Situ Processes. In instances where in situ processes are not feasible, several methods are available for the aboveground treatment of contaminated off-gas. These methods include adsorption, catalytic oxidation, thermal oxidation, and biofiltration. Before the appropriate ex situ process can be selected, permitting requirements and regulations governing discharge limits must be investigated. The following sections provide an overview of the regulations and of the commercially available applications of each of these technologies.

1.3.3.2.1 Regulations. The U.S. Environmental Protection Agency (EPA) reported that the results of a state-by-state telephone survey conducted in July and August 1989 revealed that nearly half (24 of 51) of the states had no statewide air discharge standards for SVE systems. These states relied on federal standards for such discharges (U.S. EPA, 1991, EPA/540/2-91/003). Many of the general emission-source laws were written primarily for large sources such as power plants. GCW systems (which are small sources by comparison) may not require off-gas treatment if only small quantities of VOCs are emitted. The 1989 survey illustrated how widely states vary in their air emission regulations, from little or no formal regulation to detailed regulation of specific chemical contaminant releases.

In 1990, the Clean Air Act was amended, resulting in tighter controls of air discharges; however, the amendment did not mandate that states change their permitting requirements for off-gas from remediation systems. Some states continue to base their standards on the concentration at the nearest receptor, whereas others treat each site on a case-by-case basis. While the details of VOC discharge regulation have changed since 1989, the general trends of local control and widely varying regulatory approaches and discharge limits are still observed. Permitting requirements are site specific and it is necessary to apply for discharge permits on a case-by-case basis.

1.3.3.2.2 Adsorption. Adsorption refers to the process by which molecules collect on and adhere to the surface of an adsorbent solid (U.S. EPA, 1988, EPA/530/UST-88/001). This adsorption is due to chemical and/or physical forces (see Section 1.3.2.1.2). Surface area is the critical factor in the adsorption process, because the adsorption capacity is proportional to the surface area. Commercially available adsorbents include activated carbon and synthetic resins.

GAC is the most commonly used vapor-phase treatment method. Activated carbon adsorbents provide a high surface area in a low-unit-cost material, due to the carbon's complex internal pore structure. Commercially available GAC typically has a surface area of 1,000 to 1,400 m²/gram. As a rule of thumb, the adsorptive capacity of activated carbon for most hydrocarbons in the
vapor stream is about 1 lb hydrocarbon: 10 lb activated carbon. The cost of activated carbon is about $3/lb (all costs included, not just carbon purchase), so the cost of activated carbon treatment can be estimated roughly as being about $30/lb of hydrocarbon to be treated. Estimated costs for vapor treatment with GAC are given in Table 3.

GAC is a cost-effective organic vapor treatment method for a wide range of applications due to its relative ease of implementation and operation, its established performance history in commercial applications, and its applicability to a wide range of contaminants at a wide range of flowrates. Many vendors sell or lease prefabricated, skid-mounted units that can be put into operation with a few days' notice. However, carbon adsorption is economical only for lower mass removal rates. When the vapor concentration is high, carbon replacement requirements may be prohibitively expensive.

Table 3. Estimated Costs for Off-Gas Treatment with Granular Activated Carbon

<table>
<thead>
<tr>
<th>Cost Item</th>
<th>Cost with Inlet Concentration of 1 ppmv</th>
<th>Cost with Inlet Concentration of 3,500 ppmv</th>
<th>Cost with Inlet Concentration of 14,000 ppmv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital cost ($)</td>
<td>0.00</td>
<td>0.00</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Monthly operating cost ($/month)</td>
<td>$32.30</td>
<td>$113,000.00</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Total cost for 6-month operation ($)</td>
<td>$193.80</td>
<td>$678,000.00</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Note: Figures are based on an off-gas flow rate of 65 scfm.

The adsorption capacity of the carbon depends on several factors, including influent vapor temperature, relative humidity, and most importantly, the influent VOC types and concentrations. Isotherms, which show the mass of contaminants that can be adsorbed per unit mass of carbon, often are available from carbon manufacturers to predict the contaminant-specific adsorption capacity for a specific type of carbon. GAC generally has a high affinity for volatile organic molecules, such as hydrocarbons or chlorinated compounds. These volatile organics are the types of compounds typically removed by airflow through organic-contaminated soil; however, some hydrocarbons such as isopentane are adsorbed poorly.

Although GAC has a very high surface area for adsorption of contaminants, the mass of contaminants removed may exceed the carbon's capacity. At sites requiring high organic-contaminant mass removal rates due to high concentration, high flowrate, or both, the adsorption capacity of the carbon may be quickly exhausted. Replacement and disposal of spent carbon can become expensive. The disposal of spent carbon will be particularly costly if hazardous solvents sorbed on the spent carbon result in the entire spent carbon volume being identified as a Resource Conservation and Recovery Act (RCRA)-listed or RCRA-characteristic waste.

High relative humidity in the incoming vapor stream limits the effectiveness of and increases the cost of vapor treatment with GAC. Water vapor preferentially occupies adsorption sites, thereby decreasing the capacity of the carbon to remove contaminants from the air stream. If necessary, entrained water must be removed from the incoming vapor stream by an air/water separator.
Vendors typically recommend that the relative humidity of the off-gas stream should be below 50% prior to entering the GAC adsorber. Reduction of relative humidity usually is achieved by pre-warming the air. However, preheating to reduce the effect of water vapor also reduces the effective capacity of the carbon, so a trade-off is involved in selecting the preheat temperature.

Specialized resin adsorbents have been developed and are now entering commercial application for treatment of organic vapors in off-gas streams. These synthetic resin adsorbents have a high tolerance to water vapor. Air streams with a relative humidity greater than 90% can be processed with little reduction in the adsorption efficiency for organic contaminants. The resin-adsorbents are amenable to regeneration on site. Skid-mounted modules are available consisting of two resin adsorbent beds. The design allows one bed to be on-line treating off-gas while the other bed is being regenerated. During desorption, all of the organic contaminants trapped on the resin are removed, condensed, and transferred to a storage tank.

1.3.3.2.3 Biofiltration. Vapor-phase bioreactors are an effective method for treating a variety of gas-phase organic contaminants and have been successfully employed to treat off-gas from remediation processes, including soil vapor extraction, bioslurping, and GCW systems (Connolly et al., 1995). The effective treatment of influent vapor concentrations ranging from 50 to 5,000 ppmv by bioreactors has been reported in the literature (U.S. EPA, 1994, EPA/542-R-94-003). Because GCW system off-gas contains high percentages of oxygen, vapor-phase bioreactors are more suited for contaminants that are readily biodegraded under aerobic conditions. SBP Technologies, Inc. is participating in an EPA Superfund Innovative Technology Evaluation (SITE) Program demonstration of a GCW system with a vapor-phase bioreactor off-gas treatment system at a site in Sweden, New York. The site is contaminated with trichloroethylene (TCE), acetone, perchloroethylene (PCE), dichloroethylene (DCE), and toluene. Because PCE is not a candidate for aerobic degradation, and the off-gas from the reactor may contain levels of non-degraded contaminants, the vapor-phase bioreactor is followed by activated carbon treatment to remove any residual compounds prior to air discharge. Because biofiltration is an innovative technology, insufficient data precluded a detailed cost or performance comparison with the more conventional off-gas treatment technologies.

1.3.3.2.4 Thermal Oxidation. Thermal oxidation units use high temperatures to drive the oxidation of organic contaminants in an off-gas stream. Three commercially available thermal oxidation designs include open flame, flameless, and internal combustion engine systems. These systems are appropriate for hydrocarbon contaminants and should not be considered for use when chlorinate compounds are present. Open flame oxidation converts hydrocarbon compounds to carbon dioxide and water by direct thermal oxidation. Complete destruction of contaminants requires high temperatures, typically 1,200 to 1,600°F, and/or long residence times. The flameless oxidation process converts hydrocarbon compounds to carbon dioxide and water by passing an off-gas stream through a heated ceramic matrix. The matrix geometry and uniform high temperature of the matrix are reported to give good destruction efficiency for organic vapors in air, without using an open flame. Internal combustion engine treatment accomplishes destruction of organic contaminants by oxidation in an ordinary industrial or automotive engine with its carburetor modified to accept vapors rather than liquid fuel. A catalytic converter is an integral component of the system, providing an important polishing step to reach the low discharge levels required by many regulatory agencies. Thermal oxidation becomes cost competitive when the inlet vapor concentration approaches 25% of the lower exposure limit (LEL). For more information on thermal oxidation processes, system design and costs, see Battelle, 1997.
1.3.3.2.5 Catalytic Oxidation. Catalytic oxidation is a thermal treatment process that uses a catalyst to increase the oxidation rate of organic contaminants in an off-gas stream, allowing acceptable destruction efficiency at a lower temperature than thermal oxidation. In catalytic oxidation, the off-gas is heated and passed through a combustion unit where the gas stream contacts the catalyst. Without undergoing a chemical change itself, the catalyst increases the oxidation reaction rate by adsorbing the contaminant molecules on the catalyst surface. Sorption phenomena serve to increase the local concentration of organic contaminants at the catalyst surface and, for some organic contaminants, reduce the activation energy of the oxidation reaction. Increased concentration and reduced activation energy increase the rate of oxidation of the organics (Kiang, 1988).

Treating off-gas containing halogenated compounds, sulfur-containing compounds, or nitrogen-containing compounds will deactivate a conventional catalyst. Deactivation results from chemical interactions between the catalyst metal with halogens or strong sorption of SO_x and NO_x onto the catalyst. Catalysts specially designed for treatment of chlorinated compounds by catalytic oxidation are available on the market but are more expensive than catalysts for treating petroleum hydrocarbons. When treating halogenated compounds, the oxidation unit typically will require scrubbing to remove acid formed from the treated vapors (Buck and Hauck, 1992).

1.4 Factors that Affect the Applicability of the Groundwater Circulation Well Technology

1.4.1 Nature of Contaminant. Important factors affecting the feasibility and selection of GCW processes include the type contaminant being remediated, its chemical characteristics, physical distribution in the environment, and ability to be treated chemically or biologically. Specifically, the mass transfer and destruction mechanisms of the specific GCW configuration must be capable of moving the contaminant to the well for treatment or removal and/or of supporting biodegradation of the contaminant in situ. It should be noted that for less mobile contaminants, in situ biodegradation could account for the majority of treatment within the zone of influence of GCWs. The majority of removal for more mobile contaminants is accomplished by moving the contaminant from various reservoirs in the zone of influence to the treatment unit within the well. Contaminant characteristics will impact the effectiveness of both the transport of the contaminant to the GCW, and the removal efficiency of the treatment unit inside the GCW.

1.4.1.1 Contaminant Type(s). The class of chemical to which the contaminant compound belongs is an important factor affecting the remediation technology selection process. Classes of compounds commonly share important characteristics; that is, they often have similar solubilities, vapor pressures, and reactivities. Table 4 lists several classes of contaminants and some characteristic properties of each class.

<table>
<thead>
<tr>
<th>Contaminant Type</th>
<th>Example</th>
<th>Common Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy Metals</td>
<td>Lead</td>
<td>Toxicity</td>
</tr>
<tr>
<td>Chlorinated Solvents</td>
<td>TCE</td>
<td>DNAPL</td>
</tr>
<tr>
<td>Radionuclides</td>
<td>Radium</td>
<td>Radioactive</td>
</tr>
<tr>
<td>PAHs</td>
<td>Naphthalene</td>
<td>Lower Solubility</td>
</tr>
<tr>
<td>Petroleum Hydrocarbons</td>
<td>JP-4</td>
<td>Biodegradable LNAPLs</td>
</tr>
</tbody>
</table>
Remediation systems are often designed to remove a class of chemical compounds. For example, a particular GCW design may be targeted to remove heavy molecular weight petroleum hydrocarbons, and would therefore be a candidate technology for the removal of diesel fuel, heavy jet fuel (JP-5), and heavier utility fuels like bunker fuel. The GCW design that is appropriate for removing heavy hydrocarbons may not be appropriate for removing a contaminant that belongs to another class of compounds, because GCW designs often exploit physical/chemical properties common to a specific classification to effect their removal. It is important to review contaminants' physical/chemical properties prior to selecting and designing a GCW system so that opportunities for contaminant property exploitation can be identified.

To design a remediation system for contaminant removal, it is essential to consider the physical and chemical properties, and the biodegradability of the contaminant(s). For example, a contaminant that is not easily volatilized from the aqueous phase should not be considered for removal with a technology that includes air stripping as a primary treatment process. If the contaminant is soluble and can be transported to the well, in-well carbon absorption or biodegradation may be more appropriate. Table 5 lists several contaminant properties that must be considered during the GCW technology selection and system design process.

<table>
<thead>
<tr>
<th>Property</th>
<th>Units</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solubility</td>
<td>g/L</td>
<td>Aqueous mass transfer and transport to the well</td>
</tr>
<tr>
<td>Volatility (vapor pressure)</td>
<td>atm</td>
<td>Gaseous mass transfer and effectiveness of air stripping</td>
</tr>
<tr>
<td>Octanol/Water Partitioning</td>
<td>mL water/mL octanol</td>
<td>Affinity for organic material transport to the well</td>
</tr>
<tr>
<td>Coefficient (K_{ow})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henry’s Constant</td>
<td>atm m^3/mol</td>
<td>Vapor-phase concentration air stripping efficiency</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>g/mol</td>
<td>Stoichiometry</td>
</tr>
<tr>
<td>Density</td>
<td>g/cm^3</td>
<td>Environmental distribution</td>
</tr>
<tr>
<td>Biodegradability</td>
<td>y/n aerobic/anaerobic</td>
<td>Technology selection</td>
</tr>
<tr>
<td>Bioaccumulated</td>
<td>y/n</td>
<td>Risk assessment</td>
</tr>
<tr>
<td>Toxicity</td>
<td>LD_{50} or PEL</td>
<td>Health and safety</td>
</tr>
</tbody>
</table>

y/n = yes or no; LD_{50} = lethal dose or concentration causing 50% kill; PEL = permissible exposure limit

The solubility, K_{ow}, Henry’s constant, and/or the biodegradability of the contaminant will influence the treatment process selection for contaminant removal. More volatile compounds, such as BTEX, can be easily air stripped from the circulated groundwater. Compounds such as PAHs, phenolic compounds, or heavy metals are less volatile and air stripping would not be the best process for removal of these classes of contaminants.

A contaminant with a relatively high K_{ow} value will have difficulty being mobilized in groundwater and transported to the GCW. This is especially true in aquifers with higher organic
content, and, for these contaminants the majority of treatment may consist of in situ biodegradation. Whether the compound can be biodegraded aerobically or anaerobically will determine whether air-saturated water or organic nutrients should be added to the circulation water, respectively. BTEX compounds, for example, are easily aerobically biodegraded while PCE can only be anaerobically biodegraded. TCE can be aerobically biodegraded, but only cometabolically, which requires the addition of a cosubstrate such as methane, phenol, or toluene. The metabolic pathways to be exploited for contaminant biodegradation must be well understood before selecting and/or designing a GCW system. Biological degradation processes for some common halogenated and nonhalogenated contaminants are shown in Table 6, as is a list of the types of metabolism for some important environmental contaminants.

1.4.1.2 Contaminant Phase/Distribution. Contaminants released into the environment may be present in any or all of four phases in the geologic media as follows (Battelle, 1995):

- sorbed to the soils in the vadose or saturated zones
- in the vapor phase in the vadose zone
- in free-phase form either floating on the water table as LNAPL, as residual saturation in the vadose zone, or submerged within or at the bottom of the aquifer as DNAPL
- in the aqueous phase dissolved in pore water in the vadose zone or dissolved in the groundwater.

Depending on the specific GCW configuration, dissolved and sorbed contaminants in both the saturated and vadose zones can be targeted for remediation. Free-phase LNAPLs (including fuel hydrocarbons) whose densities are less than water generally float at the top of the water table. They act as reservoirs for groundwater contamination and must be removed before using GCWs to prevent the risk of spreading the contaminants throughout the GCW treatment volume. Smearing free-phase LNAPLs would result in a more difficult problem to remediate. Free-phase LNAPLs are more easily removed by bioslurping or skimming techniques, while in contrast, DNAPLs (including most chlorinated solvents) have densities greater than water and do not float at the top of the water table and are consequently much more difficult to remove than LNAPLs. The presence of DNAPLs will prolong the time required to remediate a site, because they will greatly increase the overall mass of contaminants that must be removed and, like LNAPLs, they will act as sources for groundwater-dissolved contamination. While it may not be possible or cost-effective to remove free-phase DNAPLs before remediating the site, every effort must be made to prevent the spreading of DNAPLs during operation of any remediation system.

In the saturated zone, contaminants generally either partition (i.e., adsorb) to the solid phase or remain in the aqueous phase. Their solubilities determine their maximum concentrations in the aqueous phase, while their actual concentrations over time depend on the extent of adsorption onto the aquifer solid phase. The adsorption potential is a function of the chemical characteristics of the contaminant and the physical properties of the soil.

Because of their nonpolar (i.e., hydrophobic) nature, sorption of fuel or chlorinated hydrocarbons usually occurs via hydrophobic bonding to organic matter (Battelle, 1995). In general, the degree of sorption is empirically related to the organic content of the soil and the octanol-water partition coefficient (K_{OW}), which is a measure of the hydrophobic characteristics of the
Table 6. Metabolic Pathways for Degradation of Environmental Contaminants

<table>
<thead>
<tr>
<th>Compound</th>
<th>Aerobic Growth Substrate</th>
<th>Aerobic Cometabolism</th>
<th>Anaerobic Dechlorination</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCE</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TCE</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>c-DCE</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>1,1-DCE</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Vinyl Chloride (VC)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane (TCA)</td>
<td>✓</td>
<td>✓</td>
<td>✓ (a)</td>
</tr>
<tr>
<td>1,1,2-TCA</td>
<td>✓</td>
<td>✓</td>
<td>✓ (a)</td>
</tr>
<tr>
<td>1,1-Dichloroethane (DCA)</td>
<td>✓</td>
<td>✓</td>
<td>✓ (a)</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene (DCB)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>1,3-DCB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>1,4-DCB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Chloroform</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene (TMB)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-TMB</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>✓</td>
<td></td>
<td>✓ (b)</td>
</tr>
<tr>
<td>Benzene</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylenes, Total</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl Ethyl Ketone (MEK)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl Isobutyl Ketone (MIBK)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) May be transformed abiotically under anaerobic conditions.
(b) May be degraded directly under anaerobic conditions.

contaminant. The K_{OW} is the ratio of equilibrium concentrations of a contaminant in octanol and water. Higher soil organic content and/or higher K_{OW} values result in increased adsorption that retards the mobility of the contaminants in the groundwater. GCWs designed to mobilize the contaminants from the aquifer to the GCW require the contaminants to be in the dissolved phase, and adsorbed contaminants will have to desorb into the groundwater before they can be transported to the GCW.

Solubilities of some common environmental contaminants and their K_{OW} values are shown in Table 7, along with their Henry's constants. Contaminants such as n-hexane and naphthalene are expected to be relatively immobile in the environment due to their relatively low solubilities and high K_{OW} values. Thus, GCWs should not be expected to mobilize those contaminants via groundwater recirculation. In contrast, compounds such as benzene, TCE, and TCA have higher
aqueous solubilities and lower K_{ow} values, and they should be more readily transported to the GCW.

Table 7. Solubilities, Henry’s Constant, and K_{ow} Values for Some Common Organic Contaminants.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Solubility (g/L)</th>
<th>H (atm m3/mol)</th>
<th>K_{ow} (mL water/mL octanol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichloroethylene</td>
<td>1.10</td>
<td>9.10E-03</td>
<td>195</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>0.15</td>
<td>2.59E-02</td>
<td>398</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>4.40</td>
<td>4.92E-03</td>
<td>309</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>4.50</td>
<td>1.17E-03</td>
<td>295</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.77</td>
<td>5.40E-03</td>
<td>135</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.53</td>
<td>6.37E-03</td>
<td>537</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.16</td>
<td>8.39E-03</td>
<td>1,413</td>
</tr>
<tr>
<td>Xylenes</td>
<td>.16-.18</td>
<td>7.04E-03</td>
<td>1,318-1,585</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>.011</td>
<td></td>
<td>10,000</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>0.00003</td>
<td>4.84E-4</td>
<td>2,239</td>
</tr>
</tbody>
</table>

1.4.2 Site Hydrogeology. The hydrogeology of both vadose zone and saturated zone are important factors that govern the implementation of the GCW technology. The occurrence and movement of groundwater is a function of the characteristics of the geologic formation that hosts the aquifer. These characteristics often vary over short distances both vertically and horizontally. The geologic variables that have the most influence on the hydraulic properties of an aquifer include the rock or sediment type, facies changes, stratigraphy, type and degree of mineralization, structural features, and weathering. The geology of the vadose zone is especially important for GCW applications employing SVE, vadose zone treatment of off-gas, or infiltration galleries for recharge of treated water. The main variables affecting these configurations include soil-gas permeability, biodegradation capacity, soil moisture, and saturated hydraulic conductivity.

A preliminary characterization of the site geology is necessary to identify formation characteristics that may affect groundwater flow. A search for background geologic information must be completed as part of this characterization. This could include a literature search and a review of maps and aerial photographs. The U.S. Geological Survey (USGS), state geological surveys, geological societies, agricultural organizations (such as the US Department of Agriculture), environmental protection agencies, and local universities are likely sources of both regional and local geological information. The property owner, state highway departments, regional or local development authorities, and commercial aerial photography, surveying and mapping services should be contacted for aerial photographs of the site. These photographs can be used to evaluate surface water features, man-made drainage networks, irrigation systems, and structural features that may affect groundwater movement. Water well construction and abandonment records, oil and gas well records, surface mining permits, and geotechnical borings should be identified and reviewed. These records may be available from state geological surveys and local or county health departments. Geotechnical records and well logs may be available from the property owner for on-site construction, and production or monitoring wells.
A site walkover should also be completed. At this time, surface features identified in the geological information, maps, and photographs can be verified. Existing wells and structures can be identified and potential locations for the circulating well(s) and monitoring wells can be evaluated. Areas of exposed geologic strata at and adjacent to the site should be inspected, if accessible.

The geological background and site information should be assembled and a conceptual model of the subsurface constructed. The model can be used as a basis for further exploration and development of the vadose and saturated zones.

Monitoring wells, soil borings, and production well borings can be installed at the site to characterize the saturated zone. Intact formation samples (cores, split-spoons, thin-walled tubes) must be collected to provide a field description of the geological conditions and to identify or estimate hydrogeological properties of the aquifer. Samples can be collected to chemically characterize the saturated soils and to measure the physical and geochemical properties of the aquifer. Groundwater samples can be collected to characterize the nature and extent of contamination and general groundwater quality.

1.4.2.1 Saturated Zone

The physical characteristics of an aquifer and its ability to transmit water will control the ability of a GCW to collect and disburse groundwater. Well yield and efficiency can be enhanced through proper design and construction. Ultimately however, well production is dependent on physical properties of the aquifer and its host formation. Both conceptual and mathematical hydrogeologic models, which can be used to design and locate groundwater wells, assume an aquifer of uniform properties and infinite lateral extent. In nature, these conditions never occur. The following discussion identifies some of the variable characteristics of geologic formations and aquifers that exercise the most control over groundwater flow and which are considered in selection and design of GCWs.

1.4.2.1.1 Porosity

Porosity is defined as the ratio of the void spaces in a unit of soil or rock to the total volume of that unit. Porosity is usually expressed either as a percent or in decimal fraction (Freeze and Cherry, 1979). Table 8 lists representative ranges of porosity.

<table>
<thead>
<tr>
<th>Material</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconsolidated deposits</td>
<td></td>
</tr>
<tr>
<td>Gravel</td>
<td>25-40</td>
</tr>
<tr>
<td>Sand</td>
<td>25-50</td>
</tr>
<tr>
<td>Silt</td>
<td>35-50</td>
</tr>
<tr>
<td>Clay</td>
<td>40-70</td>
</tr>
<tr>
<td>Rocks</td>
<td></td>
</tr>
<tr>
<td>Fractured basalt</td>
<td>5-50</td>
</tr>
<tr>
<td>Karst limestone</td>
<td>5-50</td>
</tr>
<tr>
<td>Sandstone</td>
<td>5-30</td>
</tr>
<tr>
<td>Limestone, dolomite</td>
<td>0-20</td>
</tr>
<tr>
<td>Shale</td>
<td>0-10</td>
</tr>
<tr>
<td>Fractured crystalline rock</td>
<td>0-10</td>
</tr>
<tr>
<td>Dense crystalline rock</td>
<td>0-5</td>
</tr>
</tbody>
</table>
The porosity of a sample of lithified aquifer material can be determined relatively easily in the laboratory. This is done by drying the sample to remove any moisture clinging to the surfaces in the sample, except for water, which is hydrated as a part of certain minerals. The dried sample is then submerged in a known volume of water and allowed to remain in a sealed chamber until it is saturated. The volume of voids is equal to the original water volume less the volume in the chamber after the saturated sample is removed. This method excludes pores not large enough to contain water molecules and those that are not interconnected.

The total porosity can be estimated from Equation 2.

\[n = 100 \left[1 - \left(\frac{P_b}{P_d} \right) \right] \]

(2)

where:
\(n \) = the porosity (percentage)
\(P_b \) = the bulk density of the aquifer material (g/cm\(^3\))
\(P_d \) = the particle density of the aquifer material (g/cm\(^3\))

The bulk density of the aquifer material is the mass of the sample after drying divided by the original sample volume. The particle density is the oven-dried mass divided by the volume of the mineral matter in the sample as determined by the water-displacement test (Fetter, 1994).

Determination of the porosity of aquifer sediments is not as straightforward because the porosity is dependent not only on the gain-size distribution, but the packing, or arrangement of the sediment particles relative to one another.

1.4.2.1.2 Stratigraphy. Stratigraphic layers have a distinctive aspect or appearance as a result of being deposited or formed under particular conditions (Sanders, 1981). Facies changes refer to both gradual and abrupt transitions of matrix within a sedimentary or unconsolidated formation and between formations. These transitions are related to the original depositional environment of the formation(s) and result in contrasting zones of hydraulic properties in both horizontal and vertical directions. Facies changes can occur at a relatively small scale, within the length of a well screen, and within the ROI of a well.

Stratigraphic variations conventionally refer to transitions in the vertical direction. Stratigraphy must be considered in the design and installation of GCWs to prevent cross contamination within or across the screened zones of two hydraulically distinct water bearing zones.

1.4.2.1.3 Hydraulic Conductivity. The hydraulic conductivity of an aquifer is a measure of its ability to accommodate water flow and is expressed as the rate at which water can move through a permeable medium. Conceptually, the hydraulic conductivity of an aquifer is the volumetric flowrate which the aquifer will permit through a unit surface area and motivated by a unit hydraulic gradient. The units used to describe hydraulic gradient are derived from units of volumetric flowrate normalized to surface area, or \((L^3/t)/L^2\), which reduces to \(L/t\). Common specific units for hydraulic conductivity are cm/s and ft/d.

Darcy's law concisely describes the that a defined surface area of aquifer will accommodate under a specific hydraulic gradient, and can be expressed using Equation 3 as follows:
where:

\[Q = KA \frac{dh}{dl} \]

\(Q \) = volumetric flowrate, cm\(^3\)/s
\(K \) = hydraulic conductivity, cm/s
\(\frac{dh}{dl} \) = hydraulic gradient, unitless
\(A \) = cross-sectional area of flow, cm\(^2\).

Hydraulic conductivity is perhaps the most important aquifer parameter governing fluid flow in the subsurface. The velocity of groundwater movement and dissolved contaminant migration are directly related to the hydraulic conductivity in the saturated zone. The removal efficiency of GCWs is dependent on both of these factors. In addition, subsurface variations in hydraulic conductivity directly influence contaminant fate and transport by providing preferential pathways for contaminant migration.

Because GCWs incorporate a horizontal and vertical flow component, both the horizontal and vertical hydraulic conductivities affect the system performance. While estimates of hydraulic conductivity are commonly used to determine likely flow velocities and travel times for contaminants and groundwater, estimates are not sufficient for designing GCW systems. Both of these parameters must be known with some precision to effectively model and design a GCW system.

The most common methods used to quantify hydraulic conductivity are single- and multiple-well pumping tests and slug tests. Both of these test methods have the common disadvantage that the resulting hydraulic conductivity values represent the “average” hydraulic conductivity over the length of the well screen in the test well(s) used to perform the tests. However, there are no feasible field tests currently available that do not share that disadvantage. One test that is more appropriate for GCW applications is the dipole test described in Section II.

Laboratory tests on core samples provide information on the hydraulic conductivity of various layers along the screen length. Unfortunately, these analyses have three distinct disadvantages. First, cores are a very small sample and may not adequately represent the aquifer layer. A second disadvantage is that cores are disturbed and often compacted upon sample collection. Finally, it is difficult to properly scale the laboratory test to dimensions that will accurately reflect the conditions of the actual well and aquifer interactions.

1.5. Design Constraints of Groundwater Circulating Wells

1.5.1 Area of Influence. The area of influence of a GCW can be defined as the horizontal distance from the well to the farthest point at which circulation flow is still significant (Herrling et al., 1991). The area of influence is dependent on the geology/hydrogeology of the site as well as the design of the GCW itself.

Herrling et al (1991) reported that in an absence of natural groundwater flow, the sphere of influence (R) of a GCW is dependent on the:
- anisotropy (horizontal over vertical hydraulic conductivity: K_h/K_v)
- thickness of the aquifer
- length of the screen sections at the top and bottom of the aquifer.

In addition, the separation distance between the screen sections will affect the area of influence. Typically, a greater the distance between the two screens will result in a larger area of influence. In the presence of natural groundwater flow, the sphere of influence is defined by a stagnation point that occurs between the circulation well-induced flow and the ambient groundwater flow.

The vertical depth of influence of a GCW is dependent on the construction of the well, on the penetration of the well (partially or fully penetrating relative to the aquifer thickness), on the natural groundwater flow velocities, and on the anisotropy of the aquifer materials.

The area of influence is best assessed prior to installation with the application of a three-dimensional groundwater flow model that incorporates as much site-specific information as possible. The aquifer thickness and hydraulic conductivity (both K_h and K_v), the ambient groundwater flow velocity and direction, and the well configuration, including well screen lengths, placement, and pumping rates, must all be accounted for in the modeling effort.

Previous investigations pertaining to the understanding and prediction of hydraulic heads and groundwater flow near a GCW have primarily focused on the assessment of GCWs in confined aquifer settings. However, most GCW installations have been performed in aquifers under unconfined conditions. Herrling et al., (1991), reported the results of a three-dimensional groundwater flow modeling effort that investigated both fully (perfectly) and partially (imperfectly) penetrating wells, both under confined conditions. Philip and Walter (1992) described a semi-analytical technique for predicting the steady-state hydraulic head and flow fields caused by the operation of multiple vertical circulation wells in a confined aquifer with a regional gradient. Stallard et al. (1996) reported results of laboratory-scale model aquifers and two-dimensional numerical modeling of GCW systems for partially-penetrating wells under unconfined conditions. This investigation used tracer studies with a laboratory-scale tank and constructed a two-dimensional flow and transport model. The numerical models were determined to be effective in estimating the plume shapes and capture efficiencies in the investigated two-dimensional case.

The area of influence of a GCW plays a crucial role in the determination of well placement and the design of a treatment system or network of GCWs. Groundwater modeling must be performed to estimate the area of influence prior to installation of a GCW. Following installation, determination of the actual area of influence can be made in the field through the use of monitoring wells/piezometers, water-level measurements, down hole or in situ flow meters, and tracer tests. It is recommended that a GCW network be initiated with one well that can be monitored to validate the model and verify the area of influence. Once the model calculations are validated, installation of the remaining wells in the network can proceed. Validating the design specifications with a single well will ensure that the network design and well spacing are adequate to meet the remediation objectives.

1.5.2 Treatment Limitations

As with any technology, GCW systems have treatment limitations that restrict their use for groundwater remediation. GCWs are designed to circulate water within an aquifer. The circulated water is expected to transport the contaminants from the aquifer to the GCW for
treatment in the GCW unit, and/or to transport dissolved oxygen (DO) or nutrients to the aquifer to promote in situ contaminant degradation. The ability to transport the contaminants to the GCW, or to transport DO or nutrients to the area of contamination depends on the following factors:

- the amount of water that is circulated (i.e., pumped) by the GCW
- the subsurface hydrogeology
- the nature and extent of contamination
- the physical/chemical characteristics of the contaminant.

1.5.2.1 Groundwater Pumping Rates, and Subsurface Geology and Hydrogeology. The transport of contaminants from the aquifer to the GCW, and the transport of nutrients into the aquifer, will depend on the amount of and rate at which water can be circulated by the GCW, and on the physical characteristics of the aquifer (i.e., permeability, hydraulic conductivity, and heterogeneity). The GCW pumping rate will determine the groundwater recirculation rate, and thereby the rate of mass transfer to and from the GCW. The hydrogeologic characteristics will determine the ROI of the GCW and the groundwater recirculation flow characteristics, or flow lines. It is important to recognize the treatment limitations that physical and hydrogeological conditions can impose on GCWs, including the following:

- hydraulic conductivity determined in both the horizontal \((K_h) \) and vertical \((K_v) \) directions
 - impermeable soils will result in slow, restricted groundwater recirculation, while highly permeable soils may result in short circuiting
 - anisotropic soils where \(K_h > K_v \) are desirable to promote horizontal groundwater flow
 - impermeable layers (aquitards) between the upper and lower well screens could hinder or prevent the flow of groundwater between the upper and lower wells

- the depth to water table (i.e., the vadose zone depth)
 - determine whether the vadose zone can be used for GCW off-gas remediation
 - off-gas remediation in the vadose zone requires a sufficient residence time; deeper vadose zones will result in longer residence times of the GCW off-gas for biological degradation of off-gas contaminants

- the submersion (the ratio of the well depth below the water table to the total depth below the ground surface) must meet the minimum requirements to ensure adequate groundwater circulation

- GCW groundwater recirculation flow rates must overcome regional groundwater flows.

Each of these parameters, the horizontal and vertical hydraulic conductivities, the vadose zone depth, the submersion, and the GCW pump rate will influence the transmissive capacity of the aquifer, and the quantity of water that can be moved through the aquifer using a GCW. Thus, they must be determined on a site-by-site, case-by-case basis using data from site specific tests, not estimated values. A more detailed description of these and other parameters that can limit the applicability of GCWs is presented in Section 3.
1.5.2.2 Soil Geochemistry. Soil geochemistry will affect the long-term operation and success of GCWs, depending on the physical, chemical, or biological processes being employed. The water entering a GCW usually will contain very little oxygen. However, air lift pumping and/or air stripping will result in the introduction of DO in the water. Iron and manganese in the groundwater may react with oxygen to form iron or manganese oxides. Thus, the iron and manganese may exert an oxygen demand, rendering less oxygen available for microbial growth. In addition, these oxides could precipitate and clog the well screens, the surrounding soils, or the treatment processes within a GCW.

In anaerobic systems, these metals generally are more stable in their soluble forms and do not risk precipitating. If the GCW is designed to promote biological degradation of the contaminants, the engineer must ensure that the pH is close to neutral and that there is sufficient buffering capacity (carbonate alkalinity) to maintain neutral pH during biodegradation of the contaminants.

1.5.2.3 GCW Process Limitations. GCW treatment processes include in-well air stripping, in-well activated carbon treatment, or in situ and in-well biological treatment. Each treatment process has certain advantages and limitations. In-well air stripping has the advantage of being employable with a variety of well sizes. Thus, relatively small, inexpensive GCWs can be used. However, in-well air stripping effectiveness is limited by the volatility of the contaminants and the air/water contact within the GCW. Air stripping is most efficient when fine bubbles are used, while air lift pumping is most efficient when larger diameter bubbles are used. The use of larger air bubbles to meet the need of the air lift pump reduces the air stripping capacity, and a larger well size may be required to meet the air stripping requirements. In addition, the contaminated air stream must be treated with GAC or alternative methods, or be injected into the vadose zone where the contaminants can be biologically degraded before being released into the atmosphere. GAC treatment of the off-gas usually is conducted aboveground and adds to the capital and operating costs of the GCW process. In situ treatment in the vadose zone requires (1) that the contaminant be aerobically biodegradable and (2) that there is sufficient depth in the vadose zone to provide the required residence time.

In-well GAC treatment generally requires large GCW well diameters to meet the GAC requirements of the contaminated groundwater. The GAC must be able to be easily removed and replaced. GAC disposal and replacement will add to the long-term operating costs of a GCW. Aboveground GAC treatment is possible and permits the use of a smaller GCW diameter. However, aboveground treatment implies that the extracted groundwater will breach the ground surface, and will be reinjected after treatment, which may result in more stringent regulatory requirements than in-well treatment options.

For in situ aerobic biological treatment, the contaminants must be able to be degraded aerobically and the GCW must meet the oxygen demand of the contaminants in the aquifer. Table 9 shows the theoretical oxygen demand for one pound each of benzene, toluene, ethylbenzene, xylenes, or hexane. The liquid volume required to degrade 1 lb hydrocarbon assumes that the water is saturated at 8 mg/L DO. The theoretical remediated soil volume assumes that the groundwater is saturated with each contaminant and that there are no physical or chemical oxygen demands exerted by the soil, such as for iron or manganese oxidation, nitrate oxidation, or sulfate oxidation. The actual oxygen demand will depend on the geochemistry of the aquifer, and the contaminant.
Table 9 Theoretical Oxygen Pumping Requirements for Biodegradation of Some Hydrocarbon Contaminants.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Oxygen Demand lbs (kg)</th>
<th>Liquid Volume to Degrade 1 lb Hydrocarbon(a)</th>
<th>Theoretical Remediated Soil Volume, Assuming Contaminant-Saturated Conditions(b) (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>1.4 (3.08)</td>
<td>46,100 gal (174,600 L)</td>
<td>30</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.4 (3.13)</td>
<td>47,000 gal (177,700 L)</td>
<td>100</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>1.4 (3.17)</td>
<td>47,500 gal (180,000 L)</td>
<td>334</td>
</tr>
<tr>
<td>Xylenes</td>
<td>1.4 (3.17)</td>
<td>47,500 gal (180,000 L)</td>
<td>334</td>
</tr>
<tr>
<td>Hexane</td>
<td>1.6 (3.53)</td>
<td>53,000 gal (200,600 L)</td>
<td>485</td>
</tr>
</tbody>
</table>

(a) Assumes air-saturated H₂O; 8 mg/L dissolved oxygen (DO)
(b) Assumes the aqueous-phase is saturated with the organic contaminant, assumes 30% porosity, assumes that there are no additional chemical oxygen demands in the groundwater.

1.5.3 Air lift Capacity vs. In-Well Air Stripping. In GCW designs that use airlift to pump water and air stripping as the primary treatment technology, it is necessary to optimize the interaction of these two mechanisms to achieve the system's objectives. The optimum air injection rate for airlift pumping is unlikely to be the optimum rate for air stripping. Air stripping efficiency is maximized with air and water interactions requiring high specific surface areas (surface area per unit volume) as described by the dual film theory (Bird et al., 1960). Airlift pumping efficiency is affected more by the submergence depth of the air injection point. While the efficiencies of both processes are dependent on the air-to-water flow rate ratio (Qₐ/Qₖ), different mechanisms occurring at the air-water interface impact each process. Inertial interactions between the two fluids drive airlift pumping, whereas diffusive mass transfer interactions control air stripping. It must be noted that diffusive mass transfer occurs at different rates with different contaminants, while airlift pumping only weakly depends on contaminant type.

It is the responsibility of the GCW system designers to ensure that the system is constructed so as to make efficient use of energy for both air stripping and airlift pumping in coupled systems. An engineering decision may be made to divide pumping and treatment processes if the respective process optima require widely different designs or air injection rates. For example, at very deep sites the air injection rate required for pumping may be many times greater than the rate required for efficient stripping. In such a case, it may be beneficial to use a mechanical pump to lift the water to a smaller, in-well air stripping system. Vendor-supplied systems currently exist for such applications (see Appendix).

1.5.4 Short-Circuiting of Groundwater Flow. The potential for the short-circuiting of groundwater flow, or direct flow from the portion of the GCW with relatively higher hydraulic head to the portion of the GCW with relatively lower hydraulic head without flowing radially away from the well, is a potential physical constraint of GCW design. Short-circuiting can occur within an improperly grouted or packed borehole or in the immediate vicinity of the well.
Well construction and adequate grouting in the borehole are essential to the physical and hydraulic separation of the injection and withdrawal portions of the well. A continuous sand pack in the borehole would provide no physical or hydraulic separation between these two areas, allowing water to be transmitted within the borehole without traveling through the aquifer matrix. Short-circuiting may also occur due to isotropic conditions in the aquifer, in which the vertical permeability of the aquifer materials is the same as the horizontal permeability. In this situation, the driving force for horizontal flow away from the GCW is limited and flow is likely to proceed directly from the area, or screen, of injection to the area, or screen, of withdrawal.

In a study at Tyndall AFB designed to evaluate the feasibility of coupling the GCW technology with bioventing, Battelle (1995) reported a communication time of less than 2 minutes between the upper and lower screens in a system with 5 ft separation between the upper and lower screens.

Monitoring wells, soil borings, and production well borings can be installed at the site to characterize the saturated zone. Intact formation samples (cores, split-spoons, thin-walled tubes) should be collected to provide a field description of the geological conditions and to identify or estimate hydrogeological properties of the aquifer. Samples can be collected to chemically characterize the saturated soils and to measure the physical and geochemical properties of the aquifer. Groundwater samples can be collected to characterize the nature and extent of contamination and general groundwater quality.

2.0 Technology Assessment and Maturity

GCWs have been employed at numerous sites in the U.S. and Europe, and the GCW vendors have provided case history information on some of these installations (see Appendix). Because it was not possible to obtain all of the data generated on these efforts and make independent evaluations, six Department of Defense (DoD) installations were evaluated and the results and lessons learned are summarized in the following sections. These case histories should be reviewed to get a better idea of the current status of the GCW technology.

2.1 Current Status of the Technology

At its current level of development, the GCW technology can be classified as innovative. Although the technology has been applied at numerous sites, it has not benefited from a DoD-funded initiative as the bioventing, bioslurping and natural attenuation technologies did during their developmental phases. This is because GCWs are a vendor-based technology involving a number of patents. As a result, the technology needs further development and refinement before it can be classified as mature.

Because of the motivation of private industry to sell their technology, data on failures or lessons learned are not forthcoming. Too often GCW systems have been promoted as a “silver bullet” solution when in actuality other technologies may have been more appropriate. Therefore it is strongly recommended that prior to selection of the GCW technology this guidance document be carefully read, and detailed consideration be given to the applicability of the technology to the specific site. If, for any reason, the user is not comfortable with the selection of GCW
technology for their site, they should seek independent consultation on the technology's applicability and give serious consideration to alternative remedial technologies.

Following the summaries of these demonstrations, a technology assessment is provided to summarize the results and lessons learned. Additional case history information has been provided by the GCW vendors and is presented in the Appendix. This information has been provided on a voluntary basis and its accuracy has not been verified.

2.2 DoD Experience with the GCW Technology

At the time this protocol was written, the DoD had sponsored or hosted several demonstrations of the GCW technology. Performance data for six of these demonstrations was reviewed and a summary of each demonstration is provided in the following sections.

2.2.1 Port Hueneme Naval Exchange Site. In January 1995, the Strategic Environmental Research and Development Program (SERDP) supported a joint effort between the U.S. Naval Research Laboratory (NRL), the U.S. Environmental Protection Agency (EPA), Texas A&M University, SBP Technologies, Inc., IEG Technologies, Inc., and Beazer East, Inc. The objective of the effort was to determine the catabolic activity of indigenous soil microflora on the constituents of interest. The GCW technology was selected as the strategy to achieve the project objective. The following is a brief description of the GCW installation at Port Hueneme Naval Exchange site (NEX) and the findings that were relevant to implementing the GCW technology. More detailed information can be found in Spargo, 1996.

The site was contaminated with approximately 11,000 gallons of gasoline that leaked from two delivery lines between September 1984 and March 1985. The soils within 10 m of the surface at the site consist of three units: (1) fine-grained silty sand to 1.7 m below ground surface (bgs), (2) fine- to coarse-grained sand to approximately 6.2 m bgs, and (3) sandy-to-silty clay unit encountered between 6.2 and 8 m bgs. There are five aquifers beneath the site; however, the contamination was confined to the upper perched aquifer and the research focused on this formation.

The depth to groundwater was between 1 and 3.7 m bgs. The hydraulic gradient at the site was 0.001 ft/ft to the southwest and groundwater flowed in this direction as a velocity of 231–548 m/yr. The horizontal hydraulic conductivity was measured at 3.84 x 10-2 cm/s and the vertical hydraulic conductivity was estimated at 3.84 x 10-3 cm/s.

The GCW system consisted of four GCW wells. One GCW-400 system was installed in a 400-mm ID. well casing (GCW-400) placed near the source. Three GCW-200 systems were installed in 200 mm ID. well casings (GCW-200) downgradient of the main spill. These wells were placed to provide plume containment.

The upper screen of the GCW-400 extended from 2.4 to 4.8 m bgs to facilitate discharge of the treated groundwater and to maximize the SVE/bioventing in the vadose zone. The lower screen extended between 6.64 and 8.01 m bgs. The well was equipped with a single three-phase, 208 volt, 5-hp blower and a single three-phase, 110-volt, 0.5-hp submersible pump. Four sets of three monitoring wells (12 total) were installed around the GCW-400. The wells were installed to provide shallow (3.2 to 3.7 m bgs) and deep (7 to 7.2 m bgs) samples. A vadose zone sampling port was included at 2.3 to 2.5 m bgs.
The three GCW-200 wells were installed with overlapping ROIs to form a "biocurtain" to prevent the off-site migration of contaminant. The upper and lower screens were placed between 2.2 and 5 m bgs and 7 and 8.7 m bgs, respectively. Based on a calculated stagnation point distance of 18.91 m and a modeled width of the circulation cell of 38.91 m, the wells were placed 40.02 m apart. A total of eight monitoring wells were placed around the biocurtain. The eight monitoring wells were configured the same as the wells around the GCW-400 system.

An intensive monitoring schedule was followed to assess the performance of the GCW systems and monitor the biodegradation of the contamination. Weekly, duplicate groundwater samples were collected from selected well and analyzed for pH, dissolved oxygen (DO), inorganic nutrients (N,P, chemical oxygen demand (COD)), and temperature. Duplicate soil-gas samples were collected from each of the 20 monitoring wells on a regular basis and analyzed for oxygen, carbon dioxide, and methane concentrations and stable isotope ratio. In addition to the more routine sampling above, eight quarterly sampling events were conducted rigorous detailed analysis of system performance (see Spargo, 1996). Dye tracer tests were conducted to verify groundwater circulation.

The data showed that within 8 months of operation, BTEX concentrations in the shallow monitoring wells closest to the GCW-400 system were reduced by 52% decreasing from 4.66 mg/L to 2.88 mg/L. It was concluded that free product in the vicinity of the GCW-400 system was responsible for the low removal performance. Data from the biocurtain wells showed the BTEX concentrations in the shallow well in the center of the biocurtain were reduced by 97% over the first three months of operation decreasing from 77 mg/L to < 26 mg/L. After 6 months, BTEX concentrations in samples from these wells were below 0.002 mg/L which was in compliance with the California groundwater drinking criteria. BTEX concentrations in groundwater from the deep wells were reduced from 118 mg/L to under 0.001 mg/L after 6 months of system operation. Based on these results, it was concluded that the biocurtain was effective in providing in situ containment.

Although the results presented in the above referenced report appear promising, too little data were presented in the report to make any conclusions about the design and operational performance of the GCW at Port Hueneme. The final monitoring data analyses along with the results from the tracer studies will be presented in a forthcoming report. It is strongly recommended that the reader review these additional results before making any conclusions on the performance of the GCW systems at Port Hueneme.

2.2.2 Hill Air Force Base. In 1996, the Air Force sponsored a 44-week technology demonstration of the Unterdruck-Verdampfer-Brunnen (Vacuum vaporizer well) (UVB) GCW technology at Operable Unit (OU) 6 at Hill AFB, Utah beginning in January and ending in November. The primary contaminant at the site was TCE. The objectives included (1) determine the ability of the UVB technology to reduce TCE concentrations in the aquifer to 5 \(\mu \)g/L; (2) to determine what parameters are most useful for monitoring the system; and (3) to evaluate the feasibility of going full-scale with the technology at the demonstration site. The following sections provide a summary of the test and results. More detailed information can be found in the report Technology Performance and Application Analysis of UVB Groundwater Circulating Well Technology, Operable Unit 6, Hill AFB, Utah (Radian, 1996) and ATTACHMENT to the Technology Performance and Analysis of UVB Groundwater Circulating Well Technology, Operable Unit 6, Hill AFB, Utah (Radian, 1997).
OU 6 is located in the northern part of Hill AFB in an area that was used for, or in support of, maintenance and testing operations. It is believed that operations-related solvent use began around 1960. TCE is the primary contaminant of concern at OU 6 although other contaminants have been detected at below their respective maximum contaminant levels (MCLs). It is believed that these contaminants have been introduced into the environment through leaking underground storage tanks and possibly surface spills. The resulting plume was approximately 500 x 3,000 ft with a maximum detected TCE concentration of 440 µg/L. The average peak concentration in the center of the plume was typically between 200 and 300 µg/L.

The geology at the site consists of fluvial-deltaic deposits. There are three aquifers underlying OU 6 with the contamination confined in the upper aquifer, which is between approximately 105 and 135 feet bgs. The aquifer is predominantly fine-grained sand with some variability in grain size and density distribution. A fairly continuous, 0.1- to 3.0-ft-thick clayey silt layer exists at approximately 110 feet bgs. The hydraulic gradient was 0.02 ft/ft with groundwater flow to the north at approximately 0.53 to 1.8 ft/day.

A constant-rate aquifer pump test was conducted to characterize the aquifer in the test area. Three horizons were monitored during this test. The results showed that the aquifer response was similar among the horizons, indicating that there was communication between the three horizons. The horizontal hydraulic conductivity ranged between 2.6 x 10^-3 and 9.6 x 10^-3. The storativity ranged between 0.0004 and 0.029.

The test system at OU 6 consisted on one UVB 200 system, three 2-inch-diameter annulus wells, and ten monitoring well clusters. The UVB system consisted of an 8-inch-diameter steel casing with an 8-ft upper screen section that straddled the water table, and a 4-ft screened section that was placed between 127 and 131 ft bgs. The system was designed to provide an air-to-water ratio of 50:1, a stripping efficiency of 90 to 99%, an airflow rate of 60 scfm, and a groundwater throughput of 8.8 gpm. Based on modeling by the vendor, the theoretical capture zone width of the top and bottom of the zone was expected to be 16 and 175 ft, respectively. Nine of the ten monitoring well clusters were placed within this zone of influence. Each monitoring well cluster consisted of three monitor wells containing 5-ft-long screened sections placed at three depths to cover the thickness of the aquifer. The screened sections were isolated from each other by a bentonite seal. The annulus wells installed in the borehole for the UVB system contained 5-ft screened sections placed adjacent to the UVB well screens. Two annulus wells were placed adjacent to the upper screen and one adjacent to the lower screen. These wells were used to monitor the influent and effluent from the UVB system.

The UVB system was started in January 1996 and operated for 44 weeks. During this time, TCE concentrations were measured in the aquifer and around the well. Bromide tracer tests were conducted to determine the groundwater throughput in the well. This entailed injecting a known concentration of tracer at a known flowrate into the influent section of the well and monitoring the dilution of the tracer at the effluent section of the well. A divergent tracer test was conducted using fluorescein dye to determine the ROI of the well. This entailed injecting the dye into the air intake line and monitoring for the appearance of the dye in the monitoring wells surrounding the UVB well. A converging tracer test was conducted using sulfur hexafluoride (SF6) to determine if groundwater from a distinct point within the design ROI would be captured by the UVB well. This test entailed injecting SF6 into one of the mid-level monitoring wells and monitoring for its appearance at the UVB well.
Based on observations made in the field, four major system configuration changes were made during the 44-week operation period. The first modification was the installation of a canister-type stripper above the upper screen. This change was made necessary by a rise in the static water level. The second modification was replacing the inflatable packer with a fixed packer. This was necessary because excessive leakage across the inflatable packer prevented groundwater circulation. Leakage was confirmed by the first throughput tracer test. The third modification was a reduction in the pumping rate from 17.6 gpm to the design flow of 8.8 gpm. This was done because the vendor believed that the pumping and discharge rates were more than the aquifer could handle. The final modification entailed raising the canister stripper an additional 2 feet to accommodate the water level, which had risen to the point that it was interfering with airflow and treatment at the well.

The results from both the TCE analysis and the tracer tests showed that the UVB system did not operate according to design. As mentioned above, the first throughput tracer test indicated that the flow through the well was much lower than the 17.6 gpm rate that the submersible pump was pumping, indicating that significant leakage across the packer was occurring. Upon replacing the packer, a second tracer test indicated that there was no net movement of water through the well. The results from the TCE analysis, pressure transducer readings within the ROI, and the other two tracer tests confirmed this observation.

Prior to changing the packer, there was an estimated 1 gpm throughput in the well. Although this was far below the 8.8 gpm design flow, pressure transducers in two shallow monitoring wells as far away as 30 feet showed some response to UVB operation, indicating that the ROI at the top of the aquifer extended at least this far from the well. Based on the system throughput and an estimated groundwater specific discharge, the maximum width of the capture zone was 21 ft, approximately 20% of the average design distance. Unfortunately, the TCE concentration in the UVB influent rapidly decreased from 45 µg/L to non-detect levels and the effluent TCE concentrations remained at non-detect levels during the test period. This indicated that there was serious short circuiting in the immediate vicinity of the well and that no significant level of treatment was occurring at any appreciable distance from the well. This was confirmed by the lack of decrease in TCE concentrations in any of the monitoring wells.

After the packer was changed, there was no response registered by the pressure transducers when the UVB was operated and there was no decrease in TCE concentrations in any of the monitoring wells over the duration of the test period. Other water quality parameters measured during the test also showed no indication that groundwater was being circulated. The data from the divergent tracer test showed a much higher concentration of tracer at the influent screen and a much lower than expected concentration at the effluent screen. This strongly suggested that short circuiting was occurring within the well. The results from the convergent tracer test showed that there was no communication with the mid-level monitoring well located approximately 25 ft cross gradient to the UVB well, but there was communication in a well located approximately 30 feet downgradient from the UVB well. This revealed that water was moving past the UVB well but not being circulated by the UVB well.

Additional aquifer tests were conducted to explain the lack of groundwater circulation. Falling-head permeameter tests revealed that the vertical hydraulic conductivity varied by more than three orders of magnitude in a core taken 30 ft from the UVB well. The data showed that the hydraulic conductivity at the UVB discharge zone was lower than the hydraulic conductivity at the UVB intake zone.
Mass balance analyses showed that the UVB system removed on average 96% of the TCE that entered the well. This was within the design stripping efficiency of 90 to 99% removal, indicating that the air stripping component of the UVB well performed as expected. The total mass of TCE removed over the 44-week period was estimated at 0.04 lbs. Based on the mass balance analysis, the TCE concentration in the off-gas should have been approximately 13 ppbv; however, TCE was only detected in one off-gas sample at a concentration of 2.2 ppbv. This indicated that the throughput in the well was even less than the estimated 1 gpm.

A cost analysis was performed for implementing and evaluating the UVB technology based on contractor estimates and actual costs from the demonstration at OU 6. The cost breakdown was as follows.

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well Components</td>
<td>$61,860</td>
</tr>
<tr>
<td>Well Installation</td>
<td>$38,185</td>
</tr>
<tr>
<td>Energy (1 yr)</td>
<td>$2,439</td>
</tr>
<tr>
<td>Tracer Testing</td>
<td>$30,725</td>
</tr>
<tr>
<td>Total</td>
<td>$133,209</td>
</tr>
</tbody>
</table>

The above analysis gives an approximation of the costs for implementing and evaluating a UVB system similar to the one at OU 6. There are, however, additional costs, such as those associated with planning, connection to power, additional construction and site work, instrumentation, sampling and analysis, and reporting. One of the advantages that may be realized with groundwater circulating wells is a cost savings because of a smaller energy requirement without having to pump groundwater to the surface. A cost analysis of the energy costs for 1-year operation of the UVB, of a pump-and-treat system, and of in situ air sparging technologies showed the energy costs were $2,439, $686, and $6,859 for these technologies, respectively. This indicated that the energy savings would not be realized at the OU 6 site.

The primary conclusion from this technology demonstration was that the technology did not provide a barrier to TCE migration at OU 6. Although the system did appear to circulate groundwater and did reduce TCE concentrations across the well before the packer was replaced, the system operated far below the design specifications. After the packer was replaced, the system simply did not work. This fact, as well as the data from the tracer tests and subsequent aquifer tests, points out several problems with this specific installation.

First, the hydrogeologic investigation and the data set used in designing the well were insufficient. Although the data from conventional aquifer testing indicated ideal conditions for conventional groundwater pumping, data was not collected to adequately characterize the aquifer and properly design a GCW system. Effective GCW operation relies on a vertical component of groundwater flow to drive circulation in the aquifer formation. At a minimum, it is necessary to know the vertical hydraulic conductivity to effectively predict aquifer response to GCW operation. This parameter was not determined prior to design and installation of the UVB system at OU 6. Tests conducted subsequent to UVB installation showed significant horizontal stratification with highly variable vertical hydraulic conductivity. Had these data been collected prior to design, the outcome from this demonstration may have been predicted. The net result illustrates the importance for conducting aquifer tests specifically designed for GCW
implementation. One such test is the dipole test described later in this protocol in Section 4.1.3.2.

The other major problem that was apparent from this demonstration is the failure of equipment. GCW systems are more complex than conventional pump-and-treat systems, and the integrity of all in-well components is essential for proper operation. Although the submersible pump and in-well air stripper functioned according to design, the packers leaked, resulting in poor groundwater circulation. The results from the tracer tests indicated that the packers used in this system were either not properly designed or that they were faulty. The head loss across the packers was apparently less than the head loss in the aquifer, causing the water to short circuit within the well. The second packer failed more than the first packer, suggesting that more consideration needs to be given to the pressure ratings of the packers during the design phase. Because the system at OU 6 was a deep system, changing the packers required heavy equipment to pull the system components from the well and the process was slow and expensive. This demonstrated the importance of getting the design and installation of a GCW system right the first time so as to avoid the need for pulling well components for replacement and/or repair. The results from this demonstration show how important it is for the vendors to be held responsible for costs of correcting improper design or repairs due to predictable component failures.

2.2.3 Tyndall Air Force Base. The Air Force conducted a GCW demonstration at Tyndall AFB, Florida between July 1994 and July 1995. The objective of this demonstration was to determine if the GCW technology could be coupled with bioventing to simultaneously treat contamination in both the saturated and unsaturated zones. The demonstration did not include extensive GCW design nor GCW system optimization. The targeted contaminantst were hydrocarbons that resulted from leaking underground storage tanks (USTs) holding JP-4 and diesel. Details about this demonstration can be found in Armstrong Laboratory Report AL/EQ-TR 1995-0039 (1995).

Two GCW designs were included in this demonstration. The first one, identified as a modified bioventing well (MBW) system, consisted of a simple air lift pump installed in a 4-inch bioventing well that was modified to extend into the groundwater. The casing contained two screened sections, one extending between 11 and 15 ft bgs, and the other straddling the water table at between 2 and 6 ft bgs. The second well, identified as the mKGB system, was a modification of the KGB design offered by IEG Technologies, Inc. This system was installed in an 8-inch well casing that was screened the same as the other design. The monitoring system included:

- 5 piezometers with 1-ft-long screens placed at the middle of the upper screen of each GCW
- 1 piezometer of similar design with the screen placed at the middle of the lower screen of each GCW
- 8 tri-level groundwater-monitoring points placed varying distances from the wells with the probes located at 9, 12, and 15 ft bgs.

The wells were equipped with sampling ports at the upper and lower screens of each well and a sampling port for collecting samples of the system off-gas.

The bioventing component of the system consisted of 8 dual-level soil gas monitoring points placed at the same locations as the groundwater sampling points. The probes were set at 2 and 4
ft bgs. The off-gas from the GCWs was directly injected into the vadose zone to provide aeration.

The demonstration lasted for 12 months. The MBV system was operated for the first 3 months and the mKGB system was operated for the remaining 9 months. Each system was operated at an airflow rate of 1 scfm, the maximum rate that did not result in excessive discharge of contaminant vapor from the ground surface. Monitoring included the following:

- collection of initial soil and groundwater samples, and analyses for hydrocarbons and dissolved oxygen (DO) in the groundwater samples
- a bromide tracer test to determine the radius of influence (ROI) in the aquifer
- extensive sampling of GCW influent and effluent with analyses for hydrocarbons, and of off-gas with analyses for hydrocarbons, oxygen, and carbon dioxide
- sampling and analysis of soil gas for hydrocarbons
- 5 respiration tests in the vadose zone to monitor biological activity
- surface emission testing and analyses for hydrocarbons.

The overall conclusions from this demonstration were that these two technologies could be effectively coupled to treat hydrocarbon contamination at this site and that the coupled technologies had potential for application at other sites. In addition, several observations were made about the performance characteristics of the GCWs in general. First, Based on the results of the bromide tracer test, it was determined that the wells did achieve the 25-foot ROI; however, there was rapid communication between the two screens (2 minutes), whereas it took much longer (up to 3 months) for water to circulate throughout the circulation cell. This resulted in a high rate of circulation and a rapid decrease in the hydrocarbon concentration in the influent to the wells, which meant that a significant portion of the energy was going to circulating clean water close to the well.

A second observation was that the air lift pump was effective at stripping contaminants from the aqueous phase and at oxygenating the water as it moved through the well. The influent DO was consistently below 1 mg/L, while the effluent DO was consistently greater than 5 mg/L. Although this aeration efficiency was promising, the oxygen demand in the aquifer rapidly depleted the oxygen and no increased DO was observed in any of the monitoring points, even at only five feet from the wells. Because greater than 19% of the oxygen remained in the system off-gas, and the rate of mass delivery was low, the GCW in this application was not an efficient method for supporting aerobic biodegradation in the aquifer.

An attempt was made to determine the groundwater pumping rate by conducting a mass balance on total petroleum hydrocarbon (TPH) and 11 molecular weight ranges of the contaminant entering and leaving the well. The following relationships were used.

\[
\begin{align*}
TPH \text{ Flux}_{\text{inf}} &= TPH \text{ Flux}_{\text{eff}} + TPH \text{ Flux}_{\text{off-gas}} \\
TPH \text{ Flux}_{\text{inf}} &= \text{Water Flow Rate} \times \text{Conc}_{\text{inf}} \\
TPH \text{ Flux}_{\text{eff}} &= \text{Water Flow Rate} \times \text{Conc}_{\text{eff}} \\
TPH \text{ Flux}_{\text{off-gas}} &= \text{Air Flow Rate} \times (\text{Conc}_{\text{off-gas}} \times \text{CF})
\end{align*}
\]

where:

- TPH Flux_{\text{inf}} = mass of TPH entering the well in the aqueous phase per unit time
- TPH Flux_{\text{eff}} = mass of TPH exiting the well in the aqueous phase per unit time

32
TPH Flux_{off-gas} = mass of TPH exiting the well in the vapor phase per unit time
Water Flowrate = volume of water entering or leaving the well per unit time
Air Flowrate = volume of air injected into the well per unit time
Conc_{inf} = mass of contaminant per unit volume of influent water
Conc_{eff} = mass of contaminant per unit volume of effluent water
Conc_{off-gas} = mass of contaminant in system off-gas on a ppm basis
CF = conversion factor to convert ppmv to mass per unit volume

Hydrocarbon concentrations were measured in influent, effluent, and off-gas samples. The airflow rate was set at 1 scfm. The only unknown was the water flowrate. The results from this exercise calculated an average flowrate of 4.53 L/min with a coefficient of variance (C.V.) of 69 percent. The large variability may have been the result of sampling from a single sampling probe located at the influent screen of the GCW. This may not have provided a representative sample of the water entering the well. If this method is to be used to determine pumping rates, the samples must be collected from within the well after mixing of the influent water, but before any air stripping or other treatment occurs. The variability in the results using a single sampling probe outside the influent screen showed that this method was not accurate enough to use for monitoring pumping rates of GCWs.

2.2.4 March Air Force Base. In 1993 through 1994, a demonstration of the UVB technology was conducted at March Air Force Base in Riverside, California. The EPA SITE Program evaluated the performance of the system over the first 12 months of the demonstration. The system was operated for an additional 6 months for further evaluation. The participating vendors included IEG Technologies Corporation, Roy F. Weston, Inc., and Black & Veatch Waste Science, Inc. The primary objective was to evaluate the feasibility of using the UVB technology for removing chlorinated VOCs, primarily TCE, from the groundwater at March AFB, and to evaluate the cost effectiveness of the technology. The information presented below, as well as more information describing this demonstration, can be found in EPA SITE Programs report EPA/540/R-95/500a and Bannon et al, 1995.

The demonstration was carried out at Site 31, an unclassified solvent disposal site that is within OU 1 at March AFB. In general, the geology at the site is alluvial and fluvial deposits consisting of laterally discontinuous units of fine-grained sediment dominated by fine-grained sand and silt. The depth to groundwater was approximately 40 feet and groundwater flow direction was toward the south with an average gradient of 0.007. The average hydraulic conductivity was calculated at 90.5 gpd/ft², the effective porosity at 27.2%, and the transport velocity at 0.31 ft/day.

An initial site characterization that consisted of collecting on continuous core to a depth of 118.5 feet and analyzing the core for geochemical, chemical, microbiological, and lithological parameters was performed. The results of the lithologic analysis showed that there was a zone of low permeability at approximately 85 feet bgs, so the well was designed and installed above this depth.

The system included one 16-inch-diameter UVB well installed to 87.5 feet bgs with a 26-inch bucket auger. The well was operated in an upflow mode and contained a submersible pump and an air stripping chamber. The well was equipped with three 2-inch PVC monitoring wells placed in the annulus of the well borehole; one well was screened across the influent section and the two other wells were screened across the effluent section of the UVB. These wells monitored influent and effluent volatile organic compound (VOC) concentrations. A total of 13...
groundwater-monitoring wells were sampled: 9 within the expected zone of influence, 3 below the zone of influence, and one outside the zone of influence. Off-gas was treated aboveground using activated carbon. Off-gas samples were collected from sampling ports placed before the aboveground treatment system.

Performance monitoring included sampling and analysis of the influent to and effluent from the UVB well, of the groundwater from the 13 monitoring wells, and of the system off-gas. Approximately 165 sets of influent and effluent water samples were collected and analyzed for VOCs, metals, minerals, and other water quality parameters. Groundwater samples were collected monthly for the first 6 months, then bimonthly for the remainder of the demonstration. These samples were monitored for VOC concentrations, DO, temperature, specific conductance, and pH. System off-gas was monitored for VOC concentrations, linear flow velocity, vacuum/pressure, relative humidity, and temperature.

The results from the groundwater sampling and analysis indicated that the TCE concentrations in the wells within the predicted capture zone decreased approximately 52% after 12 months and 62% after 18 months of operation. Over the 18 months, TCE concentrations decreased from an initial range between 160 and 1,000 µg/L to a range between 45 and 270 µg/L. TCE concentrations in monitoring wells screened below the capture zone all showed an increase. The TCE concentration in the one well outside of the capture zone did not change significantly during the 18-month operational period. The trends in TCE reductions in the 6 monitoring wells sampled over the 18-month duration showed a greater impact in wells closer to the UVB well. Results from O\textsubscript{2} and CO\textsubscript{2} monitoring suggested no enhancement of aerobic biological activity with the operation of the UVB.

The data trends in the TCE concentrations over time and with increasing distances from the UVB well suggest that the UVB was effective at reducing TCE concentrations and that the wells were within the circulation cell. The furthest well was located 90 feet from the UVB. The design circulation cell was 110 feet. The closest well outside of the design circulation cell was approximately 240 feet from the UVB well and showed no response to the operation of the UVB. Because there was a definite effect at 90 feet, it was assumed with some confidence that the actual diameter of the circulation cell was at least 90 feet. The SITE program evaluation did not support the use of variations of target concentrations in the monitoring wells for determining the ROI due to variables that were independent of the UVB system. Their evaluation did suggest that the data trends showed homogenization of the contaminant in the groundwater.

Several methods were used to determine the radius of the circulation cell. Groundwater modeling results indicated an 83-ft ROI, which is close to the observed radius based on the TCE concentration trends. A dye tracer test resulted in recovery of dye 40 ft from the well in the downgradient direction, but no recovery was achieved at 40 ft in either the upgradient or cross gradient directions. These results indicate that the actual ROI may have been significantly less than was indicated by the trends in contaminant reductions or the modeling effort.

The SITE Program evaluation of the well performance showed that the well achieved greater than 94% average removal efficiency for TCE during the first 12 months of operation. During this period, the influent concentrations ranged between 14 and 220 µg/L, with an arithmetic mean of 56 µg/L. The mean TCE concentration in the effluent over the 12 months was 3 µg/L. The 95% upper confidence limit concentration was 6 µg/L, which translates into an 89% removal efficiency.
An attempt was made to estimate the mass of TCE removed by the UVB system. Calculations were made based on the water and on the gas-phase concentrations. A TCE mass removal rate of 10 grams per day was calculated based on the difference between the influent and effluent concentration and using a pumping rate based on pump performance. The mass removal rate calculated based on the off-gas TCE concentrations and flowrate was 0.1 grams per day.

The large discrepancy between the TCE mass removal rates calculated on the aqueous and gaseous-phase concentrations reveals two problems with the approach. First, taking one influent sample from one side of the GCW does not provide a representative sample of the water entering the well. Contaminant is never evenly distributed around a GCW. This combined with the heterogeneity within the zone of influence results in varying contributions in terms of flow and concentration to the GCW in three dimensions. The collection of unrepresentative samples will lead to error in mass removal and stripping efficiency calculations. Multiple samples from a location after mixing has occurred, must be taken to accurately estimate either of these parameters.

Another concern raised by discrepancy in the TCE mass removal rates is the need to accurately determine groundwater-pumping rates. Inaccurate estimation of pumping rates would affect the calculation of mass removal rates. One of the advantages of GCW configurations that use mechanical pumps is that pump performance curves provide a viable method for determining pumping rate. To do this requires accurate measurements of pressures or head loss. Although these parameters were monitored during this demonstration, sufficient detail was not available to evaluate this method. The real challenge is to determine pumping rates in air lift GCW systems, where surging and mixed fluids make traditional flowrate measurements difficult or even impossible.

System costs were estimated by the SITE program as follows:

- Capital costs for single treatment unit $180,000
- Operation and maintenance (1st year) $ 72,000
- Operation and Maintenance (subsequent years) $ 42,000

Based on these estimates, the costs for 1, 3, 5 and 10 years of operation were calculated to be $260,000, $340,000, $440,000, and $710,000, respectively. The costs for treating 1,000 gallons of water, the amount of groundwater pumped through the system, were estimated at $260, $110, $88, and $71 for 1, 3, 5, and 10 years, respectively. When evaluating these costs, it should be noted that between 60 to 90% of the water pumped through a GCW system is circulated water.

2.2.5 Keesler Air Force Base. The U.S. Air Force Center for Environmental Excellence (AFCEE) sponsored a demonstration of the Density Driven Convection (DDC) technology at Keesler AFB in Biloxi, Mississippi. The purpose of this demonstration was to evaluate the effectiveness of the DDC system for reducing TPH in both groundwater and soil. Wasatch Engineering, Inc., the owner of the DDC technology, was responsible for pilot testing, scale-up, installation, operation, monitoring and evaluating their system. The information summarized below was taken from the draft Final Report titled “DDC In-Well Aeration Technology Demonstration, Keesler Air Force Base, Biloxi, Mississippi.”
The demonstration site was a gasoline station where USTs that held diesel fuel and gasoline had leaked, resulting in soil and groundwater contamination. The soil at the site consisted of silty sand to approximately 3 to 4 feet bgs, fine- to medium-grained sands to approximately 22 feet bgs, then clay below 22 feet bgs. The depth to groundwater was approximately 7 to 8 feet bgs. The hydraulic gradient was 0.004 to 0.005 ft/ft to the east/northeast. The horizontal and vertical hydraulic conductivities were measured at 32 and 9.5 ft/day, respectively.

Soils in the immediate vicinity of the USTs had TPH concentrations as high as 21,000 ppm. TPH concentrations in the groundwater immediately below the UST location were as high as 9,900 ppm. It was estimated that up to 45,000 pounds of petroleum hydrocarbons were in the subsurface. The lateral extent of the contamination was approximately 150 feet by 225 feet in the soil and 275 feet by 600 feet in the groundwater. The plume had migrated to the east-northeast of the UST location.

A pilot test was conducted in late 1995 to collect required scale-up data. One DDC well and one SVE well were installed. The DDC well was operated for a period of 19 days; the SVE well was only operated for the first 10 days. During operation, tests were conducted to determine the radius of influence from the SVE well, the radius of the circulation cell, the groundwater pumping rate, and the stripping efficiency in the DDC well. The resulting values were 60 feet, 20 feet, 4 gpm, and >90% for each of these variables, respectively.

The large-scale system was designed based on the pilot test data. The scaled-up system included 6 SVE wells and 32 DDC wells placed in an L-shaped pattern in the source zone area along the eastside and southeast corner of Building 1504. The SVE wells were constructed out of 4-inch PVC, and they were screened between 2 and 7 feet bgs. The DDC wells also were constructed of 4-inch PVC and were screened from 4 to 14 feet bgs and 16.5 to 21.5 feet bgs. Each DDC well had a piezometer installed at the upper and lower screened interval. The monitoring system included the piezometers installed in conjunction with the DDC wells, other piezometers installed during the pilot-scale test, and several monitoring wells installed prior to DDC testing.

The system was started up in May 1996 and operated for approximately 18 months. During this time, eight monitoring events were conducted, during which the following were monitored: water table elevations, groundwater contaminant and DO concentrations, influent and effluent contaminant and DO concentrations, the SVE off-gas flowrate, TPH, O2, and CO2 concentrations. The data were used to assess the performance of both the SVE and DDC components of the system.

Water table elevation measurements in the piezometers can be used to indicate groundwater circulation; however, data from only one piezometer pair was discussed in the technical report. The water levels in this piezometer showed the expected pattern for downward circulation with an increase in the head in the upper flow zone and a decrease in the head in the lower flow zone. The magnitude of the head developed by DDC operation at this location averaged between 2 and 3 feet. The water table elevations in the other piezometers and monitoring wells showed no significant impact. While these data would support the conclusion that the DDC system did not support circulation of groundwater at this site, the time series of elevation measurements showed significant variability. It may be possible that a more sensitive method for measuring water table elevations may have been able to detect small head responses that resulted from DDC operation. One way or another, the data illustrated the need for accurate monitoring if water table elevations are to be used to monitor groundwater circulation.
D.O. data indicated that the wells were effective at oxygenating the water as it passed through the well, with influent DO values in the range between 0.12 and 7.6 mg/L, and the effluent DO ranging between 6.8 to 9.7 mg/L. The groundwater D.O. data indicated that even though oxygenated water was discharged from the DDC wells, the system was not effective at oxygenating the groundwater. The average DO in the well influent was 7.6 mg/L, suggesting that the well had significantly cleaned the aquifer close to the well. The report suggests that the DO in the aquifer increased during operation of the DDC wells. Unfortunately, the DO in the deep piezometers seemed to increase more than the DO in the shallow piezometers. This did not make sense since the oxygenated water discharged from the DDC wells should have impacted the DO concentrations in the shallow piezometers more than the deep ones. The graphical representation of the average DO concentrations showed significant variations, especially for the deep piezometers. Unfortunately, the graph did not include error bars, so it was not possible to determine if the difference in DO levels was significant.

The removal of TPH was evaluated in both the soil and in the groundwater. The soil removal was based on changes in TPH and benzene, toluene, ethylbenzene, xylenes, and naphthalene (BTEXN) concentrations in soil samples taken from three boreholes. The three boreholes were located in close proximity to three different DDC wells and samples were pulled from 5, 7, 9-10, 11-15, and 19 feet bgs. The samples were collected during installation, then at 12 and 18 months during system operation.

The data showed that the average TPH concentrations in the soil samples decreased over the first 12 months of operation. Between month 12 and month 18, the concentrations at the 7-foot depth continued to decrease while the concentrations at the 9-10, 11-15, and 19-foot depths increased. The TPH concentration at 5 feet bgs remained unchanged during the 18 months of operation.

Reductions in TPH concentrations in the groundwater were assessed based on measurements in samples collected from one on-site piezometer, one on-site well, and two off-site wells. During the 18 months of operation, the average TPH and BTEXN concentrations in the off-site wells was shown to fluctuate between approximately 5 and 35 ppm and 1 and 17 ppm, respectively. The average TPH concentrations in the on-site samples decrease from approximately 52 to 7 ppm. The BTEXN concentrations increased from approximately 4.8 ppm to near 20 ppm over the first 200 days of operation, then decreased to below 0.5 ppm by the end of the demonstration. While these changes in concentrations were promising, it was unfortunate that the average TPH and BTEXN concentrations were calculated from samples from only two wells, not a sufficient number to characterize the groundwater in the area influenced by the DDC system. In addition, there were no error bars included on the charts showing the TPH and BTEXN concentrations over time and no statistics were presented showing if the observed decreases were significant.

An attempt was made to calculate the mass of hydrocarbon removed over the 18 months that the DDC system was operated. The calculation was based on the following four assumptions.

1. The pumping rate in the pilot-scale DDC well was representative of all of the DDC wells.
2. The stripping efficiency of the pilot-scale DDC well was representative of all of the DDC wells.
3. The average influent and effluent D.O. concentrations in the pilot-scale DDC well was representative of all of the DDC wells.
4. The average influent concentration of dissolved hydrocarbons in all DDC wells was equal to the average TPH concentration in samples collected from 3 on-site monitoring locations.

Based on these assumptions, the estimated removal rates were 2.4 pounds of hydrocarbon contamination per well per day, for a total removal of 15,767 pounds of hydrocarbon over the 18-month demonstration. Unfortunately, the assumptions used to make these calculations are invalid. The data presented in the report show large spatial and temporal variability in the contaminant concentrations and to assume that three locations represented the influent concentrations to all 32 DDC wells was not valid. The contaminant concentrations in the influent to each well should have been measured and the validity of this assumption should have been validated. In addition, assuming that the stripping efficiency was the same in each well, and that it remained constant over time with changing concentrations and TPH composition was incorrect. The influent and effluent concentrations should have been periodically measured to more accurately calculate stripping efficiencies.

Overall, there is evidence that the DDC wells did remove hydrocarbon contamination from the soil and groundwater at the site at Keesler Air Force Base. Unfortunately, the system was either not monitored properly, or only selected data was presented in the report to produce optimum performance. Because there was no explanation provided on the reasoning for using limited data to make concentration and mass removal calculations, and because there were no error bars or statistics included, it was difficult to assess the significance of any reductions. Finally, the assumptions used in the mass removal calculations were not valid and the estimate of removal could not be accepted as accurate. This short fallings strongly illustrate the importance of proper system monitoring and contaminant data collection for effective and accurate system performance evaluation.

2.2.6 Edwards Air Force Base. In 1995, the Department of Energy (DOE) sponsored a demonstration of the NoVOCs system at Edwards AFB, California. The primary objective of this demonstration was to determine the systems effectiveness in removing VOCs from groundwater. Secondary objectives included optimizing system operation, determining the radius of influence, identifying system effects on the subsurface, determining the achievable level of cleanup, comparing the NoVOCs to pump and treat, and determining the cost to operate. The demonstration was originally planned for DOE’s Hanford site in Washington, but due to budgetary constraints, it was moved to Edwards AFB. More detailed information on this demonstration can be found in Gilmore et al., 1996 and White and Gilmore, 1996.

The demonstration was conducted at Operable Unit 1, Site 19. Historic activities at the site, including cleaning of experimental aircraft, had resulted in VOC contamination, primarily TCE, in the groundwater. Site 19 was selected based on available contamination and site hydrogeologic data. The VOC contamination at the site, and the good hydraulic conductivity and low hydraulic gradient suggested that Site 19 would serve for a demonstration site. Prior to proceeding with the demonstration, a more detailed chemical and hydrogeologic investigation was conducted to verify the presence of VOCs, identify low-permeability zones, and to more accurately determine the vertical and horizontal hydraulic conductivities. The demonstration was conducted as an interim cleanup action as part of the CERCLA process at the site.

The soils at the site included approximately 50 feet of alluvial and lacustrine deposits that consisted of sand with gravel and smaller fractions of caliche, silt, and clay. The stratigraphy within these deposits was discontinuous. Highly fractured bedrock was encountered at 50 feet.
Groundwater was encountered at 25 feet bgs. The aquifer was approximately 25 feet thick with porosity ranging between 0.155 and 0.313. The vertical and horizontal hydraulic conductivities were 1 ft/d and 10 ft/day, respectively. The horizontal and vertical gradients were 0.005 and 0.1, respectively. The average linear velocity of the groundwater was 0.2 ft/d. TCE concentrations at the site averaged 300 µg/L, with a high concentration of 502 µg/L. The higher TCE concentrations occurred near the base of the alluvium.

The demonstration system consisted of two GCWs, five monitoring wells, three piezometers, five flow sensors, two characterization wells, and two existing CERCLA monitoring wells. The GCW was placed in the center and the other monitoring network components were placed in various directions and distances from the well. Although two GCWs were installed, only one (D2) was used to treat groundwater, the other (D1) was used for monitoring. The original design of D2 included a 6-inch casing installed to 50 feet bgs with a screened interval between 40 and 50 feet bgs. A 10-inch casing was placed over the 6-inch casing to a depth of 20 feet bgs with a screened interval between 3 and 18 feet bgs. The result was a 22-foot spacing between the upper and lower screened intervals. A 2-inch access tube was installed to between 45 and 50 feet bgs to monitor the intake zone of D2. The well was modified to include a 4-inch eductor pipe that was installed through the center of the 6-inch casing. The 6-inch casing was cut off just above the lower end of the 10-inch casing and a packer was installed between the 6-inch casing and the 4-inch eductor pipe.

The five monitoring wells, identified as M1 through M5, were designed and installed to sample groundwater and to make pressure-head measurements. Each monitoring well consisted of 2, 2-inch stainless steel casing strings with the deep casing screened between 45 and 50 feet bgs and the shallow casing screened between 30 and 35 feet bgs. Bentonite seals were used to isolate the two screened intervals from each other. The wells were placed 50 feet upgradient and downgradient, and 10, 30, and 50 feet crossgradient from the GCW.

The piezometers were used to monitor changes in the water table elevation around the GCW during operation. They consisted of heavy-gauge, 1-inch diameter steel tube that was pushed to 28 feet bgs. The end of the tube contained a 1-foot long screen. Two piezometers were placed 5 feet crossgradient, and one well was placed 10 feet upgradient, from the GCW.

The five flow sensors, designed to give both the direction and magnitude of groundwater flow, were installed in three boreholes. Flow sensors were placed at 32.5 and 47.5 feet bgs in two of the boreholes and at 47.5 feet bgs in the other borehole. The boreholes were located between 17.5 and 50 feet from the GCW.

The two characterization wells were installed during site characterization activities. Each well consisted of a 4-inch casing string with two screened intervals, 30 to 35 and 45 to 50 feet bgs. The CERCLA monitoring wells were constructed of 4-inch-diameter PVC casing with stainless steel screens. One well was screened from 19.5 to 39.5 feet bgs. The other well was screened in the bedrock from 60 to 70 feet bgs.

The system was operated for 191 days between January 16 and July 25, 1996. During operation, system monitoring included several methods for measuring pumping rate, off-gas monitoring, groundwater velocity measurements, and groundwater sampling and analysis. Groundwater sampling and analysis continued for an additional two months.
Several methods were investigated for their ability to measure the pumping rate of the GCW. These included a downhole weir, and orifice plate device, use of empirical operating curves, and measuring the recharge rate. Of these methods, it was determined that the recharge rate provided the most accurate measurement of flow through the system. The downhole weir and the empirical equations were calibrated and developed in the laboratory, respectively, using a full-scale model of the well. Unfortunately, the laboratory flowrates were higher than the flowrate observed in the field and neither of these methods had the required resolution. The orifice plate suffered because of the surging action of air lift pumping and did not provide an accurate flow measurement. While the recharge rate method was believed to be the best of the four methods, the flowrate measured with this method was conservative because the downward gradient was larger during system operation than the flow when the elevation curves were developed (see Gilmore et al., 1996).

The system off-gas was monitored for VOC and CO₂ concentrations using an infrared photoacoustic spectrophotometer. Groundwater velocity and direction were measured using the in situ flow sensors as previously described. Dissolved oxygen, pH, and temperature were measured using a H₂O₂ hydroprobe™. Groundwater samples were collected using a bailer technique for VOC analysis.

During operation, the reinfiltration rate decreased. This was attributed to clogging problems from fine particles and dispersive clays. This illustrates the necessity for thoroughly developing both the influent and recharge section of these wells prior to operation, and the importance that the water chemistry has on the potential operation of the system. The infiltration capacity was regained by and the well was redeveloped using a combination of physical and chemical techniques.

The concentration of TCE in the groundwater was significantly reduced over the 6 month operational period. TCE concentrations in the upper zone were reduced from between 160 μg/L to 34 μg/L to below the regulatory limit of 5 μg/L. The TCE removal rate was highest in the monitoring wells closest to the GCW. In the deep zone, TCE concentrations decreased in one of the monitoring wells from 290 to 173 μg/L. The trends in TCE reduction between monitoring wells indicated that the circulation cell was asymmetrical and that reinjected water short-circuited around the well. Post operational data showed the TCE concentrations to rebound in the monitoring wells with the fastest rebound occurring in the well that was furthest from the GCW in the upgradient direction.

The recharge rate method for determining the pumping rate resulted in a rate of 10 gpm. The flowrate was maintained between 7 and 8 gpm, and the stripping efficiency averaged approximately 90%, after the system was modified. A third blower was added and the air injection point was raised from 20 feet below the water table to 8.5 feet below the water table and the air to water ratio was increased from approximately 29:1 to 53:1. The data from the in situ flow sensors indicated a zone of influence as far as 35 to 50 feet crossgradient to the direction of groundwater flow. The sensors registered both a horizontal and vertical component of flow. The vertical component in the sensor located 50 feet from the GCW was observed after 90 days of system operation. The response in the flow sensors diminished with increased distance from the well. Based on the sensor data and a mass balance approach for calculating the percentage of recirculated water, the zone of recirculation was estimated at 30 feet.
The TCE concentrations in the shallow monitoring wells that were associated with the reinjection screen showed significant changes being reduced from between 34 and 156 µg/L to between 3 and 47 µg/L after 191 days of operation. TCE concentration reductions were not observed in the deep monitoring wells that were associated with the influent screen. The TCE concentrations in the shallow monitoring wells showed significant rebound after the system was turned off, while the TCE concentrations in the deep monitoring wells remained fairly constant. There were no estimates of the mass of TCE removed during the demonstration.

Overall, it was concluded that the system was successful at removing volatile organic contamination from the groundwater and that the system operated very efficiently. Although the flowrates in the aquifer were lower than the design flowrates for the in situ flow sensors, they did provide data that showed circulation. It was determined that a low permeable layer at 44 feet bgs appeared to limit circulation. In addition, numerous modifications were made to the system during testing. While this was a pilot demonstration, the problems encountered, the modifications made to the system, and the results from these modifications, highlight the importance of proper site characterization, pilot-scale testing, and proper design for full-scale application.

2.2.7 Massachusetts Military Reservation.

In 1996, the Air Force Center for Environmental Excellence (AFCEE) funded a GCW technology demonstration at the Massachusetts Military Reservation (MMR) on Cape Cod, Massachusetts. The demonstration included two GCW configurations, the UVB and NoVOCs. Jacobs Engineering Group served as AFCEE's remedial design contractor, managed the demonstration effort. AFCEE contracted Parsons Engineering Science, Inc., to provide an independent expert panel review of the data generated during this effort. The following is a summary of the demonstration and the results and the conclusions reached by the expert panel. More detailed information can be found in Jacobs Engineering Group, Inc. 1996 and 1997, and Parsons Engineering Science, Inc. 1997a and b.

The demonstration was conducted at Chemical Spill No. 10 (CS-10). An additional UVB system was installed at Ashumet Valley, another site at MMR, but the contaminant concentrations were too low to allow an adequate evaluation of the technology at that site. For that reason, only the demonstration at CS-10 will be discussed in this document.

Between 1960 to 1973, the Air Force used CS-10 for maintenance of ground-to-air missiles. Since 1978, the site was used by the U.S. Army National Guard as a Unit Training Equipment Site for maintenance of armored and wheeled vehicles... as a result of these activities, the primary groundwater contaminant at CS-10 is TCE, with concentrations as high as 2,800 µg/l. Much lower concentrations of PCXE, 1,2-DCE and benzene were also detected at CS-10.

The stratigraphy at CS-10 consisted of fine- to coarse-grained sand to approximately 165 feet below sea level, then very fine sand, silt, and/or clay to approximately 180 feet below sea level at which depth bedrock was encountered. The depth to groundwater was approximately 30 feet and the aquifer was approximately 200 feet thick. The estimated horizontal hydraulic conductivity was 144 to 230 feet per day, the hydraulic gradient was 0.002 and the groundwater migration rate was 1.0 to 1.5 feet per day.
CS-10 was divided into two sections, CS-10 North and CS-10 South. The UVB system was installed and demonstrated at CS-10 North, the NoVOCs system was installed and demonstrated at CS-10 South. Each system included two recirculation wells. The UVB wells were modified to support 2 circulation cells by nesting an upflow system and a downflow system in the same well. The NoVOCs well was a modified upflow system that supported a single circulation cell.

The UVB system was designed, constructed, and operated by SBP Technologies, Inc. The system consisted of two circulating wells that were designed to induce two stratified circulation cells that covered the 120-foot thickness of the plume. The wells were XX inch diameter wells installed to a depth of 250 feet in a XX-inch diameter borehole. Each well was designed with four 10-foot long screens; two 0.015 slot screens for extraction and two 0.030 slot screens for reinjection. More detailed information on the design of the UVB system can be found in the Final CS-10 Recirculating well Pilot Test Execution Plan (AFCEE, 1996).

The NoVOCs system was designed, constructed, and operated by Metcalf & Eddy, Inc., under agreement with EG&G Environmental. The design included two dual-screen/dual-casing wells that each imparted a single circulation cell. The wells were installed to a depth of 225 feet and covered the 100 foot thickness of the plume. The extraction screens were located at the base of the plume. The extraction screen of the outer casing consisted of a 15-feet long 0.020-slot screen. The inner casing contained a 20-foot-long 0.210-slot screen. The reinjection screens were located at the top of the plume and consisted of a 15-foot long 0.020-slot screen in the outer casing only. The wells used air lift to facilitate groundwater pumping. More detailed design information can be found in the Final CS-10 Recirculating well Pilot Test Execution Plan (AFCEE, 1996).

A groundwater-monitoring network was designed with 8 multiple-depth well clusters and 3 piezometers placed in the upstream, downstream, and crossgradient directions. Three additional monitoring well clusters were installed at each site. Five rounds of samples were collected from the wells and/or piezometers over the first six months of operation. The systems were operated for several additional months and a subsequent round of samples was taken. Field measurements were made of the water level/piezometric head, pressure head, pH, temperature, conductivity, dissolved oxygen, and redox potential. Samples were sent for laboratory contaminant analysis. Overall, this was one of the most closely monitored GCW demonstrations to date. A complete list of the monitoring activities can be found in the Final CS-10 Recirculating well Pilot Test Execution Plan (AFCEE, 1996).

The operational parameters for the two systems were as follows.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>UVB (CS-10 North)</th>
<th>NoVOCs (CS-10 South)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumping Rate Well 1</td>
<td>40 gpm (12/21/96 – 2/5/97)</td>
<td>180 gpm</td>
</tr>
<tr>
<td></td>
<td>60 gpm (2/6/97 – 4/14/97)</td>
<td></td>
</tr>
<tr>
<td>Pumping Rate Well 2</td>
<td>40 gpm (12/21/96 – 2/5/97)</td>
<td>150 gpm</td>
</tr>
<tr>
<td></td>
<td>60 gpm (2/6/97 – 4/14/97)</td>
<td></td>
</tr>
<tr>
<td>Airflow Rate Well 1</td>
<td>850 – 1150 ft³/min</td>
<td>NA</td>
</tr>
<tr>
<td>Airflow Rate Well 2</td>
<td>830 – 1100 ft³/min</td>
<td>NA</td>
</tr>
<tr>
<td>Air to Water Ratio</td>
<td>135:1 (approximate)</td>
<td>20:1 (design)</td>
</tr>
<tr>
<td>Stripping Efficiencies:</td>
<td>UVB 1 – 82 to 97%</td>
<td>NoVOCs 1 – 85 to 94%</td>
</tr>
<tr>
<td></td>
<td>UVB 2 – 78 to 97%</td>
<td>NoVOCs 2 – 88 to 92%</td>
</tr>
</tbody>
</table>
The placement of the two GCW at both the CS-10 North and CS-10 South sites was designed to be perpendicular to the groundwater flow direction. During the early stages of the demonstration, the direction of groundwater flow was determined to be different than the anticipated direction. As a result, the circulation wells were not perpendicular to flow and the monitoring wells also were not perpendicular to the groundwater flow. This necessitated the installation of an additional 6 monitoring wells at each site. The improper placement of the GCW systems may have been avoided had the proper site characterization procedures been followed.

The systems were run for a total of 18 months. Groundwater samples were collected over the duration of the demonstration and analyzed for the suite of parameters described above. Jacobs Engineering Group, Inc., reviewed the data from both GCW systems and arrived at the following conclusions regarding the performance of the GCWs regarding mass removal.

UVB System
- Effluent concentrations did not reach the pilot test target of 1 μg/L.
- TCE concentrations in the upper zone associated with the reinjection of treated water were below 5 μg/L before system operation, and below quantification levels after an initial increase.
- In the middle zone associated with the extraction screens, the TCE concentration remained relatively constant at approximately 1,200 μg/L.
- TCE concentrations in the lower zone that were as high as 3,900 μg/L were reduced to between 45 and 440 μg/L.
- Stable TCE concentrations in wells monitoring the extraction zone of the upper well indicated that there was poor recirculation in the upper circulation cell.
- After 5 sampling rounds, TCE reductions in the lower cell ranged between 54 and 91 percent.
- PCE and DCE concentrations in the effluent were reduced to below detection levels. PCE and DCE concentrations in the monitoring wells were reduced by 32 and 46 percent, respectively.
- The data strongly suggested the assessment that contaminant reduction did occur downgradient from, and in between, the UVB wells.

NoVOCs System
- Effluent concentrations did not reach the target of 1 μg/L.
- TCE concentration in the upper zone remained at non-detect levels for the duration of the pilot test.
- TCE in the reinjection zone between the two circulating wells was reduced from 2,700 μg/L to approximately 100 μg/L.
- TCE concentrations in the extraction zone remained relatively stable at approximately 1,300 μg/L. This was determined to be consistent with recirculation and the concentration was representative of the influent concentration to the well.
- After 5 sampling events, TCE concentrations in monitoring wells reduced by between 42 and 97 percent.
- TCE concentrations in the lower zone increased by 241 percent which was determined to indicative of recirculation.
- PCE and DCE concentrations were reduced to below detection levels in the effluent from the NoVOCs wells. PCE and DCE concentrations in the monitoring wells were reduced by 68 and 80 percent, respectively.
The results strongly supported the assessment that contaminant reduction did occur downgradient and in between the two NoVOCs wells.

Because of differences in lithology, ambient TCE concentrations, and rates of contaminant reduction, Jacobs determined that it was not possible to make a "head-to-head" comparison between the two systems. As far as overall mass removal, the UVB system removed an estimated 40 pounds of TCE over 153 days at 97% operation. The NoVOCs system removed approximately 325 pounds of TCE over 157 days at 80% operation. It should be noted that the TCE concentrations at the NoVOCs site were significantly higher than at the UVB site and that the NoVOCs system employed a higher pumping rate when comparing the mass of TCE removed by each system.

Jacobs Engineering Group, Inc., came to the following conclusions regarding the development of a circulation cell.

- Modeling results indicated that lithologic zones with vertical hydraulic conductivities less than 1.5 ft/day did not allow for effective recirculation.
- Zones of vertical anisotropy greater than 10 resulted in ineffective upgradient capture for those portions above an extraction screen.
- Significant contaminant reductions in low hydraulic conductivity zones with high TCE concentrations were not observed. An extended monitoring period would be required to accurately assess any changes in these zones.
- Contaminant reduction data and modeling results indicate that both recirculating well configurations functioned effectively in terms of capture zone in the absence of low hydraulic conductivity layers. When such layers are present, care must be taken when placing screens so as not to attempt to induce vertical flow across them.

AFCEE's expert panel reviewed the operational and performance data from both systems and made the following conclusions.

- The energy savings that may be realized with GCW systems at some sites were not realized at MMR because the water was essentially lifted to the surface. Although this is not typical with most GCW configurations, it was deemed necessary at MMR to achieve the one-pass criteria. Because the systems did not achieve one-pass treatment, the expert panel believed that multiple passes would be required which further reduced any energy savings at MMR.
- The benefit of GCWs not requiring an injection permit was seen as a regulatory loophole. The expert panel believed that the number of wells and the scale of application negated any benefit from this benefit. They also believed that an ETR system could be installed without pumping water above the surface without impacting the water table.
- The panel suggested that while the claim of increased mass removal may be valid for a DNAPL source area, it was not apparent at MMR where the concentrations were much lower than in source areas. The panel reviewed the contamination distribution data at MMR and could not find any evidence of a source area where GCWs would realize the increased mass removal advantage.
- Overall, the panel did not feel that GCWs offered any advantage over ETR at MMR. Although the panel did not perform a formal cost estimate, they believed that the costs of GCW treatment would be more than that of ETR. They made the suggestion that a detailed cost comparison be made to verify their belief.
In addition to the above conclusions, the panel pointed out several disadvantages that are inherent with GCW systems. Many of these disadvantages have been discussed in this document. The disadvantages described by the panel included the following.

- The establishment of a circulation cell is dependent on the hydrogeology that is difficult to characterize for GCW design. Proving circulation is also difficult. The panel pointed out that ETR is more easily and reliably pilot tested, modeled, implemented, and monitored.
- Demonstrating and proving the geometry of the capture zone is difficult.
- In-well co-counter strippers are less efficient than counter-current strippers.
- Low efficiency stripping results in the need for more wells, more recycling, and reinjection of water above maximum contaminant levels.

The expert panel concluded that while GCWs may offer advantages over other pump-and-treat technologies at other sites, they afforded no advantage at MMR where they were designed to capture a dilute plume. The information in this guidance document indicates that the GCW technology is not appropriate for such situations.

2.3 Technology Assessment

Even though GCW systems have been installed at more than 100 sites throughout the United States and Europe, the technology is still in the maturation stage. The six demonstrations conducted at DoD installations described in the preceding sections have resulted in varying degrees of success, and the data illustrate some of the areas where further refinements are required before the technology can be either screened during technology selection or implemented reliably for site remediation. This section discusses the overall status of the technology, taking into account the lessons learned from these six demonstrations.

One of the most obvious requirements for proper implementation of the GCW technology is the need for a detailed hydrogeologic investigation that defines the conditions at the site in 3 dimensions. Many of the shortcomings of the demonstrations described above could have been avoided had there been more focus on the up-front effort. Conventional pump-and-treat technologies rely primarily on horizontal flow to the extraction wells or between extraction and injection wells. The effectiveness of GCW systems relies on the development of a circulation cell which relies on a vertical flow component. Thin layers of less permeable strata can interfere with circulation and significantly decrease the effectiveness of GCW systems. Conventional aquifer testing during site characterization may not reveal these strata. In addition, conventional pump tests are not designed to determine the vertical conductivity, a parameter that must be known for proper GCW design. It is imperative that both the vertical and horizontal hydraulic conductivity be determined both at the well and throughout the circulation cell. These data are needed for modeling the aquifer response to GCW operation to effectively place both the screen intervals and the multiple wells at any given site. There are no rules of thumb that can reliably design or place GCWs, and any attempt to do so must be rejected. Although the up-front site characterization will be more expensive than that required for other technologies, it is necessary for proper design and implementation.

Determining the direction of groundwater flow is necessary for the proper design of any remedial technology, but it is critical for the success of the GCW technology. This is especially true for cases where the GCW technology is to be used for plume capture. Contaminated groundwater will flow past the wells if they are not designed and properly oriented to groundwater flow. The direction and flow velocity skew the circulation cell and have a direct
influence on the capture efficiency. The problems encountered at both MMR and Port Hueneme illustrated the problems that will be encountered when systems are designed using the wrong flow direction.

It is apparent from the discrepancies in the results from the six demonstrations that the monitoring approaches for GCW performance need some further development. This includes methods for measuring the pumping rate, determining radius of circulation, measuring the treatment performance in the well, and measuring the treatment achieved in the groundwater.

Accurate measurement of the pumping rate is required for modeling groundwater circulation and for determining in-well treatment performance. While pump performance curves can be used to determine flowrates achieved by mechanical pumps, there is a challenge in measuring the flowrate with air lift systems. There are equations that can calculate the flow rate in conventional air lift pumping; however, their use for GCW air lift systems is limited because of the different configuration for discharge from these systems. Several methods were attempted during the Edwards AFB demonstration, but none provide an accurate measurement. The main problem is that the surging action of the air lift pumping makes measurement difficult. The vendors are working to develop methods to measure flowrates in air lift systems, but until a technique is developed, only rough estimates will be available.

There are three types of data that have been used to determine the radius of the circulation cell (or location of stagnation points) including head measurements, contaminant data, and tracer migration. Unfortunately, there is often disagreement in the results from these data. For example, at the March AFB demonstration, contaminant concentration suggested that water was being circulated to 90 feet in all directions around the well while the tracer data indicated that there was only flow in the downgradient direction. Head measurements, measured as water levels in piezometers or monitoring wells around the circulation cell, are difficult to use because the head changes induced by GCW operation diminish rapidly with increasing distance from the well. It becomes difficult to measure the small head changes because of interference by natural groundwater fluctuations.

Decreased contaminant concentrations throughout the circulation cell is a good indication of circulation; however, the data rarely shows an evenly distributed and uniform pattern of decreasing contaminant concentrations. GCWs are very effective at smearing contaminant and the concentrations at monitoring locations around the site tend to fluctuate up and down. Superimposing these changes onto the background fluctuations in contaminant concentrations can make it difficult to verify circulation.

Tracer tests provide the best evidence for groundwater circulation. The bromide tracer test at Tyndall AFB showed that circulation was occurring which concurred with the trends shown in the contaminant profiles. The tracer tests at Hill AFB showed that the GCW was not circulating groundwater. In both cases, tracer testing was effective at providing circulation data. In contrast, the results from the tracer test at March AFB conflicted with contaminant concentrations. Which method was more accurate was not clear, but it would be expected that if the changes in contaminant concentration were due to communication with the GCW that the tracer would have shown up at all locations. This was not the case. What this does suggest is the need for a more reliable tracer approach. Dr. Richard Johnson from the Oregon Graduate Research Institute developed the tracer test approach that was used at Hill AFB and that is
included in this document. The test includes dual tracers and both a convergent and divergent approach that provides the data needed to verify and measure groundwater circulation.

Currently, the GCW technology is being applied to clean up sites, and sites have achieved closure with this technology. However, the issues discussed above need to be addressed to further develop the technology for effective and reliable use. At its current level of development, the technology is more appropriate for use in treating source zone contamination, or areas of more concentrated contamination, at sites with relatively simple hydrogeology (i.e., porous uniform aquifers with low background groundwater velocities) where the risk for exposure to sensitive receptors is minimal. Reliable use of the technology at sites with more complicated hydrogeology, or for use for plume capture and/or control, will require a more thorough site characterization than is currently conducted, improved modeling and design procedures, and improved system operating and performance monitoring. Currently, the risks of implementing the GCW technology for plume capture must be given strong consideration before selecting the technology for this purpose. Detailed pilot-scale tests must be conducted to determine if the required level of control and treatment can be achieved.

SECTION 2: TECHNOLOGY IMPLEMENTATION GUIDANCE

3.0 GCW Technology Screening Procedure

The following sections are provided to guide protocol users through a decision process to determine if the GCW technology is appropriate for their site. The material is based on information that was available at the time this protocol was prepared. The technology is continuing to develop with an increasing number of field applications, and as it matures, its potential may expand to include some applications not covered by this protocol.

3.1 Decision Tree and Process Description

The process for screening the GCW technology is a logical sequence of steps during which site-specific data are reviewed to make decisions as to whether or not the technology is applicable for that site. Figure 4 illustrates this process. The decision tree was formulated to assist in screening the technology based on information that is likely to be available or is easily obtained. As the decision process advances to the higher levels, the data requirements for making decisions become more complex and may require some additional site investigation work.

The decision to proceed with the technology can only be made after the process is completed. The decision not to proceed with the GCW technology can be made at any step when the criteria along the central path of the process are not satisfied. Remember that the outcome of this process is a decision to further consider GCW for a site. Although the process will provide an indication of the potential for a successful application, further site-specific investigations such as are outlined in Volume II will be required to determine the actual potential of the technology at a site.

3.2 Decision Process

It is important for the protocol user to be aware of the technology’s level of maturity. The decision approach described in the following sections contains information on the level of maturity of the technology for specific contaminants and cross references to case history information that is found in the Appendix.
Table 10 indicates the applicability and status of the GCW technology for different scenarios and the current status of the technology. The applicability ratings should only be used as a guide to determining the potential for screening purposes. The actual potential for success is dependent on many site-specific conditions and all of these must be taken into consideration before making a decision to proceed with any remedial technology. The status of the technology indicates the level at which the vendors have claimed successful application of GCW systems. Summaries of these applications can be found in the Appendix. Proven means that the technology has been employed and achieved site closure. Demonstrated indicates the technology has been tested at either pilot- or full-scale, mass removal has been documented, but site closure is pending. Conceptual simply means that there is potential for success based on the physical/chemical properties of the contaminant. It is important to remember that even if the GCW technology has been proven successful at one site, the results from that installation cannot be directly translated into the successful potential for any other site. When considering using the GCW technology, one must carefully go through the decision process described below to determine if the GCW technology has potential for application at their specific site.

3.2.1 Contaminant Type. The first consideration in determining if GCW technology is suitable for remediating a site is whether or not the contaminant can be moved to the well for treatment or destroyed or degraded in the aquifer. Currently, the GCW technology is young. As the technology matures, it is likely that its applicability will broaden to include contaminants not on the list.

Section 3.0 describes a screening process that must be followed to determine if the GCW technology should be considered for any given site. Table 11 is a list of common environmental contaminants that are potential candidates for GCW treatment. The list was developed from the vendor-provided information for their configurations (see Appendix). The table includes an indication of the maturity of the GCW technology for treating each contaminant, and provides cross-references to case histories found in the Appendix that deal with that contaminant. The information in the table should be reviewed with the understanding that these are generalizations based on current information and that the application of GCWs is contaminant-, site-, and cleanup strategy-dependent. If the contaminant(s) from a given site are listed in Table 11, then the GCW technology may be applicable for that site and the decision process should progress to the next step.
Possible (unproven)

Can the contaminant be treated using the GCW technology?

Yes (proven)

Is the contaminant distribution amenable to treatment with GCW technologies?

No

Yes

GCW technology is not applicable to selected site

Does the GCW technology fit the site cleanup strategy?

No

Yes

Are the aquifer characteristics favorable for application of GCW systems?

No

Yes (optimal)

Site is candidate for GCW implementation

* Dashed lines indicate increased risk in treatment success.

Figure 4. Schematic of the Decision Process for Screening Sites for GCW Applicability.
Table 10. Applicability and Status of the Groundwater Circulating Well Technology.

<table>
<thead>
<tr>
<th>Contaminant Type</th>
<th>Applicability</th>
<th>Status of Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile organic compound (VOC)</td>
<td>☑ ☑ ☑</td>
<td>Proven</td>
</tr>
<tr>
<td>Semi-volatile organic compound (SVOC)</td>
<td>☑ ☑</td>
<td>Demonstrated</td>
</tr>
<tr>
<td>Metals</td>
<td>☑</td>
<td>Conceptual</td>
</tr>
<tr>
<td>Radionuclides</td>
<td>☑</td>
<td>Conceptual</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clean-up Strategy</th>
<th></th>
<th>Status of Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment</td>
<td>☑</td>
<td>N/A</td>
</tr>
<tr>
<td>Source treatment</td>
<td>☑ ☑</td>
<td>Proven</td>
</tr>
<tr>
<td>Plume reduction</td>
<td>☑ ☑</td>
<td>Proven</td>
</tr>
<tr>
<td>Plume interception</td>
<td>☑</td>
<td>Conceptual</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unsaturated Thickness</th>
<th></th>
<th>Status of Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5 ft</td>
<td>☑</td>
<td>Demonstrated</td>
</tr>
<tr>
<td>5 - 1,000 ft</td>
<td>☑ ☑</td>
<td>Proven</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Saturated Thickness</th>
<th></th>
<th>Status of Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5 feet</td>
<td>☑</td>
<td>Demonstrated</td>
</tr>
<tr>
<td>5 - 115 feet</td>
<td>☑ ☑</td>
<td>Proven</td>
</tr>
<tr>
<td>>115 feet</td>
<td>☑</td>
<td>Conceptual</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aquifer Characteristics</th>
<th></th>
<th>Status of Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porous media</td>
<td>☑ ☑</td>
<td>Proven</td>
</tr>
<tr>
<td>Fractured media</td>
<td>☑</td>
<td>Conceptual</td>
</tr>
<tr>
<td>Karst</td>
<td>☑</td>
<td>Proven</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Background Flow Velocity</th>
<th></th>
<th>Status of Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (e.g., >0.001 ft/d)</td>
<td>☑ ☑ ☑</td>
<td>Proven</td>
</tr>
<tr>
<td>Medium (e.g., 0.001-1 ft/d)</td>
<td>☑ ☑</td>
<td>Proven</td>
</tr>
<tr>
<td>High (e.g., >1 ft/d)</td>
<td>☑</td>
<td>Conceptual</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizontal Hydraulic Conductivity</th>
<th></th>
<th>Status of Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (e.g., < 0.03 ft/d)</td>
<td>☑</td>
<td>N/A</td>
</tr>
<tr>
<td>Moderate (e.g., 0.03 - 1 ft/d)</td>
<td>☑ ☑</td>
<td>Proven</td>
</tr>
<tr>
<td>High (e.g., >1 ft/d)</td>
<td>☑ ☑</td>
<td>Proven</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ratio of the Horizontal to Vertical</th>
<th></th>
<th>Status of Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotropic (H:V <3)</td>
<td>☑</td>
<td>N/A</td>
</tr>
<tr>
<td>Anisotropic (H:V 3 – 10)</td>
<td>☑ ☑</td>
<td>Proven</td>
</tr>
<tr>
<td>Highly Anisotropic (H:V >10)</td>
<td>☑</td>
<td>Conceptual</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aquifer chemistry</th>
<th></th>
<th>Status of Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>High iron in water</td>
<td>☑</td>
<td>Proven</td>
</tr>
<tr>
<td>High calcium in water</td>
<td>☑</td>
<td>Proven</td>
</tr>
<tr>
<td>High magnesium in water</td>
<td>☑</td>
<td>Conceptual</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil chemistry</th>
<th></th>
<th>Status of Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>High sodium absorption ratio (SAR)</td>
<td>☑</td>
<td>Proven</td>
</tr>
</tbody>
</table>

Key:
- ☑ ☑ ☑ Highest potential for success
- ☑ ☑ Good potential for success
- ☑ Potential for success based on special considerations
- ☑ Not applicable/Restricted Use
- N/A Not applicable

50
3.2.2 Contaminant Distribution. Subsurface contamination is found in any of four phases: dissolved phase, sorbed phase, vapor phase, and free phase. Typically, GCW systems are more appropriate for dissolved-phase contaminants, which are more readily transported to the well. Once a contaminant is moved to the well, it can be removed from the dissolved phase through any of several treatment processes.

As the contaminants become more hydrophobic, or in aquifers characterized with high organic matter concentrations, sorption onto aquifer solids increases and contaminant transport to the well can be retarded. When this is the case, a GCW system design that provides a larger percentage of the remediation within the aquifer outside the well is appropriate. Most often, GCW systems that incorporate in situ treatment exploit biodegradation as the primary mechanism of contaminant reduction. These systems need to be designed to optimize the delivery of nutrients and/or electron donors or acceptors via the circulated groundwater.

Residual contamination is often present in the vadose zone at sites with contaminated groundwater. GCW systems are available that simultaneously remediate this residual in the vicinity of the well. This is accomplished by pulling a vacuum on the head of the well or by coupling SVE or bioventing to the GCW system. Soil vapor extraction volatilizes sorbed-phase contaminants in the vadose zone and removes vapors for aboveground treatment. Bioventing enhances in situ biodegradation of vapor- and sorbed-phase contaminants and typically does not require aboveground vapor treatment. Both methods replenish soil-gas oxygen concentrations.

Free-phase contamination presents a challenge for GCW systems. GCW systems are not suitable for removing free-phase, LNAPLs. This is because LNAPLs tend to float at the water table interface, and unless the GCW system can remove 100 percent of the free-phase liquid on its first pass through the well, the circulation system will smear the contaminant throughout the treatment volume. This can produce a more difficult remediation challenge. It is recommended that another technology, such as bioslurping, be used to remove the LNAPL first, then a GCW system can be employed to address any residual dissolved- and/or sorbed-phase contaminant.
Free-phase, dense, nonaqueous-phase liquids (DNAPLs) are different than LNAPLs in that they do not float at the water-table interface, but tend to sink, forming ganglia or small pools of free-phase DNAPL within the aquifer. Formulating cleanup strategies for free-phase DNAPL is very difficult because of its irregular distribution. Regardless of the selected technology, methods that utilize groundwater movement to entrain and remove the free-phase DNAPL will result in some degree of smearing, and their successful application will depend on the solubility and mass transfer properties of the contaminant in the aquifer.

3.2.3 Cleanup Strategy. It is important to develop a comprehensive cleanup strategy before choosing any remediation technology. The primary objective should focus on the protection of

Table 11. List of Contaminants Amenable to Treatment with Groundwater Circulating Well Systems Along with Case History References.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Potential</th>
<th>Case Histories (See Section III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum Hydrocarbons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Petroleum Hydrocarbon (TPH)</td>
<td>Strong</td>
<td>1,6,24</td>
</tr>
<tr>
<td>Benzene, Toluene, Ethylbenzene and Xylenes (BTEX)</td>
<td>Strong</td>
<td>43,45</td>
</tr>
<tr>
<td>Benzene</td>
<td>Strong</td>
<td>2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,22,27,33,40</td>
</tr>
<tr>
<td>Toluene</td>
<td>Strong</td>
<td>2,3,4,8,11,12,13,16,17,19,27,33,40</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>Strong</td>
<td>2,3,4,8,11,12,13,15,16,17,19,22,24,27,33,40</td>
</tr>
<tr>
<td>Xylenes</td>
<td>Strong</td>
<td>2,3,4,8,11,12,13,15,16,17,19,24,27,33,40</td>
</tr>
<tr>
<td>Non-Petroleum Hydrocarbons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>Strong</td>
<td>18,</td>
</tr>
<tr>
<td>Isopropyl Ether</td>
<td>Strong</td>
<td>27,33</td>
</tr>
<tr>
<td>Polycyclic Aromatic Hydrocarbons (PAHs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naphthalene</td>
<td>Strong</td>
<td>2,3,4,7,8,11,13,14,15,16,17,33,44</td>
</tr>
<tr>
<td>2-ring PAH</td>
<td>Moderate</td>
<td>44</td>
</tr>
<tr>
<td>3-ring or greater PAH</td>
<td>Weak</td>
<td>44</td>
</tr>
<tr>
<td>Chlorinated Hydrocarbons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Chlorinated Hydrocarbon</td>
<td></td>
<td>29,30,31,32,34,35,36,37,38,39,41,42</td>
</tr>
<tr>
<td>Dichloroethene</td>
<td>Strong</td>
<td>1,22</td>
</tr>
<tr>
<td>1,1-dichloroethane</td>
<td>Strong</td>
<td>28</td>
</tr>
<tr>
<td>1,2-dichloroethane</td>
<td>Strong</td>
<td>28</td>
</tr>
<tr>
<td>1,1,1-trichloroethane</td>
<td>Strong</td>
<td>28</td>
</tr>
<tr>
<td>Perchloroethylene</td>
<td>Strong</td>
<td>25,26</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>Strong</td>
<td>28</td>
</tr>
<tr>
<td>21,23,28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
human health and the environment. Also fundamental to an effective cleanup is the removal of the hotspot or “source” of the contamination in the soil and/or groundwater near where the contaminant entered the ground. This is known as source term reduction. The residual contamination acts as a source that continues to disperse in the environment if left untreated. Removal of the source often provides the most protection to the environment and is the most effective use of cleanup dollars. Other strategies include plume interception, hydraulic containment, wellhead treatment, intrinsic remediation, or no-action. The particular cleanup strategy employed is site- and situation-specific and is generally based on protection of human health and the environment, effectiveness, and cost.

3.2.3.1 Contaminant Source Treatment. The characteristics of GCW systems make them best suited for source term reduction because of their 1) effectiveness in cleaning up relatively high concentrations of contaminant, 2) “flushing” created by inducing a vertical gradient across layers of lower permeability, thereby reducing residual contamination, and 3) relatively limited zone of influence.

Vapor stripping is a physical process that transfers dissolved VOCs from the aqueous phase to the vapor phase and is dependent on the initial aqueous concentration of the contaminant. The vapor stripping capacity or effectiveness can be assessed by measuring the percentage of contaminant converted into the vapor phase per pass through the well.

A primary advantage of GCW systems is that the circulation cell created in the subsurface establishes a vertical gradient that directs flow vertically across lower permeability zones that often contain a significant percentage of the contamination. In pump-and-treat systems, water is preferentially pulled in horizontally from the higher permeability zones and the contamination in the lower permeability layers is not substantially addressed. By not affecting the contamination in the lower permeability zones, the contaminant continues to diffuse out of these sediments over time, creating a diffusion-limited problem that can result in long cleanup times. Although not fully proven, it is likely that if flow flushes vertically through these lower permeability zones, the cleanup time could be significantly reduced.

3.2.3.2 Plume Reduction. GCW systems have been used successfully to remove contamination from dissolved plumes (see case histories in Appendix). In situations where the background groundwater velocities are slow, the systems must be designed so that the contaminant plume is completely covered by the GCW-induced circulation cells. At sites where the groundwater is moving slowly, GCW placement can exploit this movement to facilitate contaminant transport to the well.

3.2.3.3 Plume Interception. Recently GCW applications have expanded to include plume interception or capture. In plume capture scenarios, wells are placed in a line perpendicular to the path of the plume to both intercept and contain the movement of contamination. Depending on the width of the plume to be captured, and the level of treatment required, a relatively large number of GCWs may be needed to adequately capture the plume and the relative cost-effectiveness may be decreased. It should be noted that hydraulic control is much more difficult to predict and manage with GCW systems than with conventional pump-and-treat systems. Because of this, there is some inherent risks associated with using GCWs for plume capture or interception.
3.2.3.4 Hydraulic Containment. If hydraulic containment is required, a standard pump-and-treat system is generally more effective. A GCW will not provide good containment because a hydraulic "sink" is not created. All the water pumped from one zone is reinjected into an adjacent zone at the same location. There is no net extraction at the well for hydraulic containment. In practice, the system relies on the natural regional gradient to bring new contaminated water into the circulation cell and carry clean water downgradient.

3.2.4 Hydrogeologic Considerations. The most critical factor that influences the operation of a GCW system is the geological setting in which it is installed. The circulation cell that is driven by the GCW system is an in situ process, and the surrounding environment has the greatest influence over its development and flow characteristics. Therefore, to effectively design, install, and operate any GCW system, an adequate evaluation of the hydrogeologic environment must be conducted.

3.2.4.1 Vadose Zone (Unsaturated) Thickness. The thickness of the vadose zone has a direct impact on the selection and applicability of GCW systems. By definition, the unsaturated thickness is the distance between the ground surface and the water table. It can be determined by measuring the depth to groundwater in a monitoring well that is screened across the water table surface. The thickness of the vadose zone must be sufficient to a) permit the recharge of the circulated groundwater and b) to provide sufficient vapor residence times for systems that discharge the system off-gas for treatment in the vadose zone. The required thickness will vary depending on the specific GCW configuration, the permeability of the treatment zone, the groundwater pumping rate, and the air flowrate.

In general, the vadose zone should be at least 10 feet thick for most GCW applications; however, GCWs can be applied at sites with a thinner vadose zone provided that circulated groundwater can be recharged without mounding to the surface. There are system modifications that can be incorporated into certain GCW designs to allow application in shallow vadose zone settings. For example, an infiltration gallery or trench may be installed near the surface at sites with a shallow (e.g., 5-10 ft) vadose zone. These sites may not be amenable to vadose zone discharge of the vapor due to unacceptable emissions of vapor-phase contaminant from the ground surface to the atmosphere.

For GCW configurations that employ an infiltration gallery to reintroduce the treated water back into the aquifer, the achievable infiltration rate of the circulated groundwater through the unsaturated zone above the water table may be the governing factor controlling the pumping rate of the system. Because the pumping rate has a direct effect on the volume or zone of influence, the rate must be sufficient for the GCW system to be effective. The capacity of the unsaturated zone is a critical design parameter for GCW systems and must be calculated and field tested to determine a design groundwater-pumping rate.

GCW systems that discharge their off-gas into the vadose zone require sufficient vadose zone thickness to provide the residence time required for biodegradation of the vapor-phase contaminant. The thickness required will be dependent on the porosity, permeability, and biodegradative capacity of the soils within the zone of treatment. Field tests described in Section II can be conducted to determine each of these parameters.

Sites characterized with a 10- to 30-foot-thick vadose zone are better candidates for GCW implementation. These sites have sufficient thickness to allow for water circulation and for
effective design of vapor movement and/or SVE components of the GCW system. Systems that incorporate bioventing could be applicable at sites with 10- to 30-foot-thick vadose zones provided the vapor residence times in the vadose zone are sufficient to allow the necessary degree of biodegradation to occur. If residence times are too short, discharge limits may be exceeded and off-gas treatment may be required.

A vadose zone thickness of 30 feet or more is optimum for most GCW applications. This thickness allows for maximal circulation of groundwater as well as optimal design and operation of auxiliary systems, including either SVE or bioventing.

3.2.4.2 Saturated Thickness. The saturated zone thickness is the distance between the water-table surface and the bottom of an aquifer. It is usually determined during well installation or other drilling activities when the depth to the bottom of the aquifer can be measured. The saturated thickness must be sufficient to accommodate the physical dimensions of the GCW. In air stripping GCW systems, the contact time of the air with the water must be maximized to facilitate stripping. In some well designs, this requires the casing length to be long enough to allow volatile compounds to partition into the vapor phase. The depth to the aquifer is not as critical as the saturated thickness as far as the groundwater circulation is concerned. However, because GCWs don’t lift water to the surface for treatment, the relative energy savings of a vapor stripping system may actually increase with depth, compared to pump-and-treat systems.

3.2.4.3 Aquifer Characteristics. GCW systems are most effective for treatment of contamination in porous media, such as sands and gravels. In some cases, fractured rock can be treated if there is sufficient fracturing and the fracture sets are oriented to facilitate recirculation. Karst aquifers can also be treated. The effectiveness of fracture and karst treatment is a site-specific constraint.

3.2.4.4 Hydraulic Conductivities. The most important site geologic characteristics that will affect the operation of the GCW are the horizontal and vertical hydraulic conductivities. In general, GCW installations are most effective at sites with horizontal hydraulic conductivities greater than 10^{-3} cm/sec. Sites characterized with horizontal conductivities between 10^{-3} cm/sec and 10^{-5} cm/sec are potential candidates, and the decision process should proceed to the next step. For unconsolidated porous media, this range of conductivity would comprise silty sands or coarser sands and gravel. Consolidated media include sandstones, limestones, and fractured igneous and metamorphic rocks. Selection or rejection of the GCW technology at these sites may depend on other site characteristics. It should be kept in mind that a lower hydraulic conductivity will result in a smaller ROI and may require more wells. Application at sites with hydraulic conductivities less than 10^{-5} cm/sec is not recommended.

The ratio of the horizontal to vertical hydraulic conductivities ($K_H:K_V$) is a measure of the anisotropy of the site. Typically, the vertical hydraulic conductivity is lower than the horizontal hydraulic conductivity in stratified or layered formations. The primary cause of anisotropy on a small scale is the orientation of clay minerals in sediments and unconsolidated rocks (Freeze and Cherry, 1979). For the optimum application of a GCW system, an overall ratio of the horizontal to vertical hydraulic conductivity, or anisotropy, should be in the range of 3 to 10. Sites with lower ratios may be candidate sites but the dimensions of the circulation cell will tend to round and the ROI will approach the distance between the intake and reinjection screens. Sites characterized with ratios greater than 10 could run a risk of not circulating the water due to the increased resistance to vertical flow. The net result could be horizontal flow to the intake screen.
and horizontal flow from the reinjection screen. Sites with ratios approaching 100 or greater should be excluded from consideration.

3.2.4.5 Stratigraphy. Layering is beneficial in most cases because less permeable layers promote horizontal flow, thereby increasing the radial influence of the system. In the extreme cases, however, impermeable layers between the extraction and injection screens may prevent circulation back to the extraction screen, resulting in "infinite" horizontal flow of the re-injected water. These impermeable layers may be very thin (<6 inches) and for this reason it is suggested that at least one characterization well be cored and examined in detail to identify any zones that may prevent circulation. In the other extreme, if the anisotropy is less than 3, (i.e., the horizontal and vertical hydraulic conductivity are nearly the same) the volume of the circulation cell will be greatly decreased. The re-injected water will flow toward the extraction screen with very little lateral movement, rendering the technology inefficient due to the number of wells that would be required to cover the contaminated aquifer.

3.2.4.6 Background Groundwater Velocity. Background groundwater velocity refers to the natural speed that the groundwater is moving through an aquifer past a GCW (see Section II-2.2.1.6). Depending on the application, GCW systems can be employed over a range of background groundwater velocities.

At sites where groundwater is stagnant or moving very slowly, GCWs may prove effective for source reduction. Under this scenario, the system is designed so that the total zone of influence covers the zone requiring treatment. The circulation of the groundwater is the only mechanism for transporting the contaminant to the well, or for delivering oxygen, nutrients, or other compounds to the aquifer.

The maximum background flow velocity of the groundwater needs to be in the range of the system's ability to capture the contamination, and in most cases to allow multiple passes in the well before it moves downgradient. The ability of the GCW to capture the groundwater will be related to the pumping rate of the well. The minimum background flow velocity needs to be sufficient to prevent stagnation around the well. Enough water needs to be moving past and through the system to carry the clean water downgradient.

3.2.5 Decision Summary. The decision to proceed with GCW implementation can proceed once all of the items discussed in the preceding sections have been considered. If all of the criteria were met and there no concerns raised, the technology should be considered. If for any reason the technology did not meet any of the described criteria, it should be dropped from consideration and an alternative technology should be pursued. Otherwise, the risks associated with proceeding with the technology will be too high and the potential for a failed application too great. GCW systems are much more complex than conventional pump-and-treat systems, and although GCWs offer several distinct advantages, their installation and even pilot-scale testing can be expensive, so there must be a significant level of confidence that the technology will work at a given site for its application to be cost-effective.

4.0 Groundwater Circulating Well System Design Requirements

The design approach consists of a stepwise iteration in which more detail is added to the design as more information is collected. The approach is summarized in the outline below:
I. Preliminary Design

A. Conceptual model development: Assembly of all pertinent site- and contaminant-specific data into a coherent foundation on which to build design

B. Design estimates: Preliminary design calculations to estimate required pumping rates, number of wells, remediation time, and aquifer impacts

C. Model selection and construction: Fitting the type of information required and produced by a numerical model to the design information required, and the site information available

II. Pilot-Scale Testing: Installation and field testing a GCW

III. Full-Scale Design:

A. Model calibration and execution: Using field data to adjust model inputs and predict GCW performance

B. Well placement: Using model and field data to determine appropriate GCW locations

C. System component selection: Selecting parts for the design that achieve design goals

D. Monitoring network: Selecting the type and location of monitoring devices in the GCW and the soil formation.

This design process is dependent on engineering and cost constraints. For example, funding resources for a site needing only one GCW unit to effect treatment may preclude the use of both modeling and pilot-scale testing. The method that will produce the most design data should be selected.

The effectiveness of the GCW technology is dependent on the ability to move and circulate water in a natural flow system. The circulation pattern established around a GCW is dependent on the characteristics of the geologic materials, the characteristics of the ambient flow field, the design of the GCW system, and the hydraulic stresses that are imposed on the natural flow field. Because of this, it is essential to obtain and review site-specific geologic and hydrogeologic information. In addition, the operation of a GCW system will impart a complex hydraulic response in the aquifer that is best understood through monitoring and groundwater flow modeling. It is critical to the successful application of a GCW system that the aquifer characteristics and hydraulics are well characterized, monitored, and evaluated.

The objectives of the site characterization, system design, and groundwater flow modeling work associated with the installation of a GCW are as follows:

- to select, design, and apply a GCW system that is compatible with the site geology, hydrogeology, and contaminants of concern
• to optimize the system design and pumping rates to maximize the hydraulic zone of influence associated with the GCW installation
• to properly install and operate the system based on the site data, modeling results, and remediation needs.
An approach to achieving these objectives can be summarized by the following steps:

- review the available site characterization data and fill in any gaps with information obtained from coring and analysis, aquifer testing, and determining site background conditions
- perform a pilot-scale field test and conduct aquifer testing
- select a general GCW configuration based on the site geology, hydrogeology, and type and distribution of contaminant(s)
- construct and apply a groundwater flow model to evaluate the proposed GCW design and operation
- implement any necessary changes in the configuration/design based on the field test results and flow modeling
- install the GCW system and monitoring equipment
- perform a system shakedown to ensure proper operation.

4.1 Required Site Data
Typically, some level of site characterization data exists for any site for which a GCW application is being considered. However, intricate site-specific data are required to determine the suitability of the GCW technology and for designing a system for that site. Most often, these data are not available. For this reason, it is necessary to conduct a thorough site investigation to collect the data needed to screen the technology. This includes installation of a minimum of 3 multi-level, multi-purpose wells. More of these wells will be required at sites requiring multiple GCW installations. The wells are designed for use as both characterization and system monitoring wells.

4.1.1 Site Characterization Requirements. The following is the approach and rationale for conducting a site characterization for GCW implementation. First, core a well at the proposed remediation location. Evaluate the core for any sedimentary layers that could restrict circulation. Sections of the core are then selected for laboratory analysis to obtain both hydraulic and chemical data required for the system design. Following the core analysis, a suite of aquifer tests must be conducted to obtain the following parameters: horizontal and vertical hydraulic conductivity, and sustainable pumping and injection rates. Aquifer testing should include a circulating test (dipole test) that is conducted in a single well to simulate GCW system operation. The decision to continue with the design of the GCW system or consider alternative treatment options is based on the site-specific data. If the decision is made to continue, the characterization wells are then monitored to establish background conditions at the site, and the wells are used with the full-scale system to monitor system performance during operation.

4.1.2 Soil Core Requirements and Analysis. Characterization data from the wells must include a detailed examination of the sediment types and stratigraphy. Low permeability layers must be particularly noted and tested in the laboratory. In some cases, even very thin (e.g., <6") layers can be sufficient to prevent circulation or significantly alter the flow paths. Subcores selected for testing must be representative of each layer, and laboratory testing must be designed to obtain the hydraulic conductivity of each layer. Laboratory testing may include falling head tests (Klute, 1965), unsaturated flow analysis (UFA) (Wright and Conca, 1994), or grain-size analysis to determine hydraulic conductivity (Koltermann and Gorelick, 1995).

In addition to the hydraulic testing, chemical analysis must be performed to determine the concentration and distribution of the contaminants and general groundwater and soil chemistry.
Samples are collected across the anticipated circulation zone and include both sediment and water samples. The sediment samples can be collected from the core, and water samples can be collected during and/or after drilling. The samples must be analyzed for contaminants and general chemistry (e.g., anions, cations, cation exchange capacity, and total organic carbon). It is important to know the pre-treatment concentrations and distributions in order to interpret how the operation of the treatment system affects the subsurface environment. For example, the chemistry results could provide information on potential plugging problems that could result from high concentrations of carbonates or metals (e.g., iron) in the water.

4.1.3 Aquifer Testing Requirements and Procedures. A series of aquifer tests must be conducted to provide at least the following parameters: horizontal hydraulic conductivity, vertical hydraulic conductivity, and sustainable pumping and injection rates. Good testing and analyses are critical to the design process. Results will provide the most important parameters (horizontal and vertical conductivity) used to design the GCW system. A relatively small investment in characterization up front can save significant remediation dollars later.

4.1.3.1 Pumping Tests. Single-well pumping tests involve pumping water from a test well and measuring both the discharge from and the drawdown in the well over time. In multiple-well pumping tests, the drawdown in other monitoring wells and/or piezometers at known distances from the pumping well can also be monitored and included in the test. Discharge and drawdown measurements are then substituted into appropriate well-flow equations to determine the aquifer hydraulic conductivity.

Well-hydraulics equations that model the response of specific aquifer types (confined, leaky confined, or unconfined), can be used to describe the flow characteristics of the aquifer. The well-flow equation used must match the aquifer type found at the contaminated site at which the GCW remediation system is proposed. It is also important to note the assumptions and boundary conditions upon which the well-flow equation is based. These assumptions may include the following:

- aquifer type
- penetration depth of the pumping test well into the aquifer (most equations assume full penetration to the bottom of the aquifer)
- homogeneous aquifer material
- isotropic aquifer
- well-bore storage volume (usually assumed to be negligible)
- presence of recharge or impermeable boundaries.

Information gathered during the site characterization will be needed to properly interpret the results of the pumping test. Subsurface geological features, the aquifer type, the three-dimensional extent of the aquifer (especially confining and recharge boundaries), historical water-table levels, the regional hydraulic gradient, and the existence of nearby production or injection wells are all topics that must be reviewed in the site characterization.

Information regarding the well construction is also essential to the test. The well diameter, while it is important that it be defined, is not a critical parameter of the well construction. Well yield only increases by about 10% with a doubling of the well diameter. For newly installed wells, the well diameter should be designed to accommodate the pump planned for use during the pumping test. The screen slots themselves should not cover over 40 percent of the well.
circumference. This ensures that water enters the well with a low velocity and makes frictional head losses minimal. When feasible, the screened section of the well used for the pumping test and the analytical methods used to interpret results should be compatible with the GCW design intended for the treatment system. For example, if the proposed GCW design penetrates 20% of the total aquifer thickness, a well of similar dimensions should be used to pump water, and a well-hydraulics equation that incorporates the assumption of a partially-penetrating well should be used to analyze the test data.

The pumping test involves pumping water from a test well while carefully monitoring both the discharge rate and the water level in the test well. Pressure transducers in piezometers can facilitate frequent and reliable water level readings. The quantity and quality of information provided by the test can be greatly increased if nearby observation wells, monitoring wells, or piezometers can be utilized during the test. If nearby wells are available, the water level in these wells must be recorded during the test.

The frequency with which discharge rate and water level data are measured and recorded decreases as the test progresses. Initially, water level measurements are made every 10 seconds. After 2 minutes, measurements can be taken every 30 seconds, and so on. After five hours of pumping, water level measurements only need to be recorded every hour. While the discharge rate is being measured and recorded, the goal is to keep the discharge rate constant throughout the duration of the pumping test. Pumping tests are conducted for 72 hours in unconfined aquifers. Shorter tests may be applicable when testing in a confined or leaky confined aquifer.

The interpretation of pumping test results is typically accomplished by graphical analysis of the drawdown versus time plots of the test data. The data are typically plotted as log drawdown versus log time, and curve-fitting techniques are commonly used to characterize the data. Interpretation of the characteristic curves fit to the data varies by method, but usually involves the comparison of data curves to template curves that represent various aquifer parameter values. The information typically produced by these analysis methods includes aquifer hydraulic conductivity, transmissivity (product of hydraulic conductivity and saturated thickness), and storativity. Some methods yield both the horizontal and vertical hydraulic conductivity of the aquifer. A complete description of the theory and application of pumping tests can be found in Domenico and Schwartz (1990) and Fetter (1994). A complete description of pumping tests and the various methods that can be used in the analysis of data collected during a pumping test is provided in Kruseman and de Ridder (1991). A guide is available to aid in the selection of the proper aquifer test techniques for a given aquifer type (ASTM D 4043-91).

While pumping tests generally give reliable information on hydraulic conductivity, they may be difficult to conduct in contaminated areas because the water produced during the test generally must be contained and treated as investigation-derived waste (IDW). In addition, a minimum 4-inch-diameter well is generally required to conduct pumping tests in highly transmissive aquifers because the 2-inch submersible pumps currently available are not capable of producing flow rates adequate to induce significant drawdown. In areas with fairly uniform, or homogeneous aquifer materials, pumping tests may be conducted in uncontaminated areas, and the results can be used to estimate hydraulic conductivity in the contaminated area.
It is important that pumping tests be conducted in wells that are capable of yielding the volume of water being pumped during the tests and do not constrict flow into the well. If this occurs, the pumping test is not testing the ability of the aquifer to transmit water to the well, but rather the transmissive capacity of the well screen in the test well.

4.1.3.2 Dipole Testing. The dipole test was developed to provide information on the local vertical distribution of horizontal and vertical hydraulic conductivities and the vertical distribution of the specific storativity (Kabala, 1993). Although the test was developed for confined or leaky confined aquifers, the small amount of drawdown makes it appropriate for unconfined aquifers as well.

For GCW design, the test is superior to conventional pump test methods because groundwater is circulated in the formation much like during GCW operation. Another advantage of the dipole test is that water is not withdrawn from the ground, eliminating disposal requirements. It is strongly recommended that dipole testing be conducted when designing GCW systems because the data gathered is essential for proper design, and the test simulates GCW operating conditions. The following is a brief discussion of the basics of the dipole test, a more detailed description of the test and data analysis procedures can be found in Kabala 1993.

The dipole test is conducted in a single well. At sites where multiple wells are required, or where the ROI is expected to be large, tests in multiple wells may be necessary. The tests include isolating a vertical section with two inflatable packers. The isolated section is divided into two chambers with a third inflatable packer modified to allow water to be pumped from one chamber to the other. It is critical that this packer is installed properly to provide a tight seal between the two chambers. A bentonite seal is required in the annulus of the well adjacent to the middle packet to prevent interference from the “skin” effect. A submersible pump is placed in one of the chambers. Pressure transducers are placed in each chamber to measure the pressure developed during pumping and above and below the two outside packers to monitor for leaks.

During the test, groundwater is pumped between the two chambers at a constant rate. This causes groundwater to enter the first chamber, then leave the well through the second chamber. The net result is circulation of the water in the formation just outside the well. During pumping, pressure readings from the four pressure transducers are recorded. Data loggers are used to rapidly collect the data through the transient and up to steady state conditions.

The data from the test is used to calculate the horizontal and vertical hydraulic conductivities, and the storativity. The pressure (drawdown) data are graphed against time. Three points are selected from different phases of the drawdown curve to define a system of three nonlinear equations. The three equations are solved through application of the Newton-Raphson algorithm for three unknowns. If any of the parameters are known from previous aquifer tests, a simpler computational method based on the Newton-Raphson iterative algorithm for one or two unknowns can be applied to find the remaining parameters.

4.1.3.3 Slug Tests. Slug withdrawal or injection tests are commonly used as alternatives to pumping tests and determine the hydraulic conductivity of an aquifer in the region around a well. Advantages of slug tests include the relatively short duration of the test, lasting only minutes to at most a few hours. In addition, no pumping is required, minimizing the volume of IDW generated by the aquifer investigation. Wells operating near a site where a pump test
would normally be performed can interfere with pump test results. However, since slug tests indicate aquifer conditions in the immediate vicinity of the test well, the interference of nearby operating wells is also minimized.

The fact that slug test results reflect only the conditions in the aquifer in the immediate vicinity of the test well may be a disadvantage in heterogeneous aquifers. The information related by a slug test may not be representative of the general aquifer conditions. Pump tests involve a larger volume of aquifer, and therefore they provide a more representative picture of regional aquifer conditions. In addition, the soils immediately surrounding a well may have been disturbed during drilling, and therefore not be very representative of the undisturbed aquifer sediments.

A slug test is performed by adding or removing a "slug" of known volume to (or from) a well and monitoring the water level in the well as it falls (or rises) back to the equilibrium water level. The slug may consist either of water or a solid object (usually a cylinder) of known volume. If a water slug is removed, the test is sometimes referred to as a "bail test." In any case, the displaced water imposes a temporary hydraulic gradient around the well, which motivates water flow in the direction that will result in the restoration of the equilibrium water-table level.

As with pumping tests, slug test data must be interpreted using appropriate equations that take into consideration reasonable assumptions and boundary conditions. The assumptions and conditions must be matched as closely as possible to the actual aquifer, well, and test conditions during the slug test. Because slug tests are, in effect, sampling a small portion of the aquifer, more restrictions are imposed on the equations that describe the well response. Conditions that must be matched among the well, aquifer, and equation include the following:

- aquifer type (confined, unconfined, leaky confined)
- aquifer aerial extent (commonly assumed to be infinite)
- aquifer heterogeneity (common assumption: aquifer is homogeneous)
- aquifer thickness uniformity
- aquifer isotropicity
- head in well changed instantaneously at \(t = 0 \)
- well penetration into aquifer (complete or partial)
- state of flow to (or from) the well (steady or unsteady state)
- wall and inertia effects in the well
- hydraulic gradient in test well region
- well storage (may not be neglected as in pumping test).

An alternative type of slug test is the oscillation test in which an imposed pressure is used to lower the water level in the well. The pressure is rapidly released and the water level in the well is carefully monitored as it rises and falls in a damped oscillation. The water movement in this test is more rapid and should be monitored with automated devices to ensure good data capture. The oscillation test does not neglect the inertial forces affecting the water level in the well, but includes many of the other assumptions and conditions of the other slug tests (Kruseman and de Ridder, 1991).

Slug tests may be used as a preliminary test to estimate aquifer conditions, or as a replacement to pumping tests if the volume of IDW or the presence of interfering wells is a problem. Either
pumping tests or slug tests can be used to estimate the contaminated aquifer's hydraulic conductivity, which is an important parameter in GCW design and application.

4.1.4 Background Monitoring Requirements. Following testing and prior to startup of the GCW system, background conditions for the site must be determined by continued monitoring of the groundwater chemistry and hydraulic head in the site characterization wells. These background data will be important for interpreting the changes in groundwater chemistry and hydrodynamics during the operation of the GCW system and for interpreting the system's effectiveness in removing contamination from the subsurface. The characterization wells should then be used as monitoring locations to measure pressure heads (water levels) and sample for groundwater chemistry during and after the operation of the treatment system.

4.2 System Design Requirements
GCW design must be based on the site-specific geologic and hydrogeologic conditions, on the results of the field-testing, and on the well configuration selected. Design parameters that must be taken into consideration include the following:

- general GCW configuration
- operable pumping rates
- well screen lengths and placement
- well diameter (based on the necessary diameter required for specific pump size, eductor pipe, and/or in-well treatment unit)
- treatment approach.

Detailed GCW design is performed by the vendor of the specific configuration chosen. Design and installation of an independent GCW system must take patent restrictions into consideration.

4.2.1 Preliminary Design. The first step in implementing any remedial system is to develop a preliminary design. The following sections describe the process for developing a preliminary design for a GCW system.

4.2.1.1 Conceptual Model Development. The first step in any modeling effort is the development of a conceptual model. The conceptual model is a three-dimensional representation of the groundwater flow and transport system based on all available geologic, hydrogeologic, and geochemical data for a specific site. A complete conceptual model will include geologic and topographic maps of the site, cross sections depicting the site geology/hydrogeology, a description of the physical and chemical parameters associated with the aquifer(s), and contaminant concentration and distribution maps. The purpose of the conceptual model is the integration of the available data into a coherent representation of the flow system to be modeled. The conceptual model is used to aid in model selection, model construction, and interpretation of model results.

4.2.1.2 Design Estimates. The required number of wells and pumping rates depends on the objectives of the GCW installation, the effective zone of influence for each well, and the distribution of the contamination requiring treatment. For source treatment and/or plume reduction, it is important that a sufficient number of wells be included in the design of the GCW system to cover the zone of contamination. If the objective of the GCW system is to intercept a migrating plume, a sufficient number of wells will be needed to effectively capture and treat the
entire width, and potentially the length, of the contaminant plume as it passes through the GCW system.

Several analytical and semi-analytical approaches are available for estimating the number of wells and pumping rates for a GCW application. One such approach is the dimensionless capture area and flux method described by Philip and Walter (1992). These approaches are sufficient for preliminary design and for cost estimating purposes but must be reinforced with an evaluation of the system design using a numerical flow model. Numerical flow model and particle tracking techniques are used to ensure that the zones of influence overlap slightly, and to ensure that the objectives of the GCW system are achieved. Numerical models provide the most complete analysis and design of a GCW system and allow for investigations into different system configurations.

4.2.1.3 GCW Configuration Selection. There are numerous GCW configurations commercially available (see Appendix). When selecting a GCW configuration for a specific remediation effort, the type and distribution of the contaminant to be treated, as well as the hydrogeologic properties of the aquifer and vadose zone must be considered. Selection of the proper configuration is important to prevent smearing and redistribution of the contaminant(s), resulting in a contamination problem that is much worse than the original problem and dramatically increasing clean up costs. The vendors listed in the appendix should be contacted to inquire about their specific GCW configurations and applications.

Contaminant type and distribution dictates the appropriate operational mode for the GCW. Typically, dissolved LNAPL contamination is distributed toward the top of an aquifer. If the thickness of the contamination is such that the lower screen of the GCW extends below the contamination, a downflow mode is required to prevent injecting contaminants into clean zones of the aquifer. To meet regulatory requirements, the GCW may need to effect one pass treatment. Operating the GCW in a downflow mode draws the LNAPL contaminant into the upper section of the well. The water is treated in the well, then discharged to the aquifer through the lower section. If the lower screen lies within the contamination, either an upflow or downflow mode may be acceptable. As previously mentioned, use of GCWs is not appropriate when LNAPL free product is present. It is desirable to remove the product using a technology such as bioslurping prior to implementation of GCWs.

Conversely, DNAPL contamination tends to sink in an aquifer, resulting in dissolved DNAPL, unevenly distributed ganglia, and/or pools on low-permeability strata. Most often, GCW systems are operated in an upflow mode when treating DNAPL contamination. It is highly unusual to operate a GCW at a DNAPL site in a downflow mode because of the risk of smearing and/or spreading the contaminant.

The properties of the aquifer, including the horizontal and vertical hydraulic conductivity, the stratigraphy of the aquifer materials, and the sustainable pumping/ recirculation rates, are important factors that will govern the flow field resulting from the operation of the GCW system. To obtain the necessary flowrates and velocities needed to assure circulation, the well must be configured with proper well screens and have a diameter large enough to enable the placement of an adequate pump or drop tube for air lift pumping.

The permeability, thickness, and biological properties of the vadose zone are important characteristics that affect the selection of the appropriate GCW configuration. Systems that
utilize the vadose zone for treatment of their off-gas require a sufficiently long vapor residence
time in the vadose zone to achieve the desired level of contaminant destruction. The rate of
biodegradation in the vadose zone must exceed, or at least equal, the mass input from off-gas in
order to avoid exceeding atmospheric emission regulations. Systems that bring off-gas vapors
aboveground for treatment can be applied at sites independent of the vadose zone thickness or
biodegradation capacity. Specific well configurations are available from the various vendors.

4.2.1.4 Pumping Methods and Rates. GCW systems utilize two different methods for
moving groundwater: mechanical pumping and air-lift pumping. The operating mode (upflow or
downflow) is dependent on the water pumping mechanism, which is often configuration specific.
Mechanical pumping can be incorporated into GCW systems and enable the operation of the
GCW to be in either an upflow or downflow mode. Most air lift systems operate in an upflow
mode.

The pumping rate achievable by any GCW system is dependent on the site. The rate at which
water is pumped by the GCW will have a direct impact on the hydraulic residence time in the
well, the dimensions of the circulation cell, and the local groundwater velocities. Pumping rates
must be optimized to meet the system's treatment objectives.

4.2.1.5 Well Screen Selection and Placement. Well screens should be selected to
accommodate adequate volumetric flowrates. It is also important to select screens made of a
material that is compatible with the contaminant(s) and aquifer geochemical characteristics.
GCW vendors should be responsible for selecting the proper well screens.

The placement of the upper and lower screens in a GCW are determined based on the following:

- the GCW configuration selected and the type of circulation needed (i.e., circulation
 through the vadose zone or circulation within the saturated zone)
- the distribution and depth of contamination
- the mode of operation (i.e., upflow, standard circulation mode or downflow, reverse
 circulation mode)
- characteristics of the aquifer, including the stratigraphy, horizontal hydraulic
 conductivities, vertical hydraulic conductivities, and anisotropy of the aquifer materials.

4.2.1.6 Circulation Cell. The circulation cell is the volume of aquifer within the effective
treatment radius of the GCW. The effective treatment radius is the furthest distance at which
groundwater is circulated within an acceptable time period as defined by project goals. The
circulation cell can be determined through field measurements of hydraulic head, the application
of in situ flow meters, and the application of a three-dimensional groundwater flow model that
incorporates the site geology, hydrogeology, and design parameters associated with the GCW
system.

4.2.1.7 Model Selection and Construction. Mathematical models should be used in the
design process of a GCW. Mathematical models simulate groundwater flow indirectly by means
of a governing flow equation that represents the physical processes that occur in a natural
system, along with equations that represent hydraulic heads or flows along the boundaries of the
model area (Anderson and Woessner, 1992).
Mathematical groundwater modeling is a necessary step in the design and evaluation of large (multi-well) GCW systems because of the complex nature of the flow field that results from their operation. As a predictive tool, a groundwater model of a site can be used to estimate a priori the response of a natural flow system to the installation and operation of a GCW. As an interpretive tool, a well-constrained and calibrated groundwater model can be used to evaluate the performance of an existing system.

For the purposes of this protocol, and for the evaluation of GCW designs, it is recommended that a three-dimensional groundwater flow model be used to simulate the flow system of a site being evaluated for a GCW installation. Using a three-dimensional modeling approach, the area of influence of a GCW well may be examined in the upgradient and downgradient directions relative to the GCW as well as in the cross-gradient or lateral direction. Vertical flow velocities and travel times will also be of significance in the design phase of a GCW system.

Many existing groundwater flow-modeling codes are currently available on the market. Table 12 contains a list of some of the three-dimensional (3-D) models commonly used for aquifer simulations. The intention of this protocol is not to endorse a specific code, but to suggest a non-proprietary code (that may also be provided privately) that will serve as an example of the type of modeling code that should be used.

Perhaps the most widely used and accepted groundwater modeling code is that of the U.S. Geological Survey (USGS), a modular, three-dimensional, finite-difference, groundwater flow model, commonly referred to as MODFLOW (McDonald and Harbaugh, 1988). MODFLOW simulates two-dimensional and quasi- or fully-three-dimensional, transient groundwater flow in anisotropic, heterogeneous, layered aquifer systems. MODFLOW calculates piezometric head distributions, flow rates, and water balances and includes modules for flow toward wells, through riverbeds, and into drains. Other modules handle evapotranspiration and recharge. Various textual and graphical pre- and post-processors are available on the market. Additional simulation modules are available through the authors and by third parties.

The results from MODFLOW can be used in particle tracking codes, such as MODPATH (Pollock, 1989) and PATH3D (Zheng, 1989), to calculate groundwater paths and travel times. MODPATH is a post-processing package to compute three-dimensional groundwater path lines based on the output from steady-state simulations obtained with the MODFLOW modeling code. MODPATH uses a semi-analytical, particle-tracking scheme, based on the assumption that each directional velocity component varies linearly within a grid cell in its own coordinate direction. PATH3D is a general particle-tracking program for calculating groundwater paths and travel times in transient three-dimensional flow fields. The program includes two major segments: a velocity interpolator, which converts hydraulic heads as generated by MODFLOW into a velocity field; and a fourth-order Runge-Kutta numerical solver with automatic time-step size adjustment for tracking the movement of fluid particles (U.S. EPA, 1993).

In addition to these codes, many groundwater flow modeling and contaminant transport codes are available. A comprehensive description of non-proprietary and proprietary flow and transport modeling codes can be found in the U.S. Environmental Protection Agency document entitled Compilation of Ground-Water Models (U.S. EPA, 1993). Depending on the project
Table 12. Selected, Readily Available Three-Dimensional Groundwater Flow, Particle Tracking, and Contaminant Transport Codes.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Authors and/or Vendors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater Flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODFLOW</td>
<td>3-D finite-difference groundwater flow model; steady-state or transient.</td>
<td>McDonald and Harbaugh (1988) (public domain & multivendor availability)</td>
</tr>
<tr>
<td>U.S. Geological Survey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particle Tracking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODPATH</td>
<td>Particle tracking program for computing 3-D path lines using steady-state output from MODFLOW.</td>
<td>Pollock (1989) (public domain & multivendor availability)</td>
</tr>
<tr>
<td>PATH3D</td>
<td>Particle tracking program for calculating groundwater paths and travel times in steady-state or transient, 2- or 3-D flow fields.</td>
<td>Zheng (1989) S.S. Papadopulos & Associate</td>
</tr>
<tr>
<td>Contaminant Transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT3D</td>
<td>3-D solute transport model based on the method of characteristics (MOC) and modified method of characteristics (MMOC) technique. Can be used in conjunction with any block-centered finite-difference flow model such as MODFLOW</td>
<td>Zheng (1990) S.S. Papadopulos & Associates</td>
</tr>
<tr>
<td>Coupled Flow & Transport</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 12. Selected, Readily Available Three-Dimensional Groundwater Flow, Particle Tracking, and Contaminant Transport Codes.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>3DFEMFAT</td>
<td>3-D finite-element model of flow and transport through saturated-unsaturated media.</td>
<td>Scientific Software Group</td>
</tr>
<tr>
<td>Waterloo Transport Code</td>
<td>3-D finite-element groundwater flow and mass transport model</td>
<td>Waterloo Hydrogeologic Inc.</td>
</tr>
</tbody>
</table>

Multiphase Transport

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOMP - Subsurface Transport Over Multiple Phases</td>
<td>3-D finite-difference unsaturated, saturated flow and multiple-phase transport model</td>
<td>White and Oostrom (1996)</td>
</tr>
</tbody>
</table>

Modeling Environments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater Modeling System (GMS)</td>
<td>Modeling environment incorporating MODFLOW, MODPATH, MT3D, and FEMWATER.</td>
<td>U.S. Department of Defense</td>
</tr>
<tr>
<td>ModelCad386</td>
<td>Pre- and post-processing environment for MODFLOW, MODPATH, MT3D, and MOC.</td>
<td>Geraghty & Miller, Inc.</td>
</tr>
<tr>
<td>Groundwater Vistas</td>
<td>Modeling environment incorporating MODFLOW and MODPATH.</td>
<td>Waterloo Hydrogeologic Inc.</td>
</tr>
<tr>
<td>Visual MODFLOW</td>
<td>Pre- and post-processing environment for MODFLOW, MT3D, PATH3D, MODPATH, etc.</td>
<td>Environmental Simulations Inc.</td>
</tr>
</tbody>
</table>

needs, the designer of a GCW system may want to apply a contaminant transport code that can utilize the calculated hydraulic head distribution and flow field from the flow modeling effort. If flow and transport in the vadose zone is of concern, use of a coupled or uncoupled, unsaturated/saturated flow and transport model should be considered.

Model construction consists primarily of converting the conceptual model into the input files for the numerical model. The hydrostratigraphic units defined in the conceptual model can be used to define the physical framework or grid mesh of the numerical model. In both finite-difference (such as MODFLOW) and finite-element models, a model grid is constructed to discretize the lateral and vertical space that the model is to represent. Stratigraphic units are represented in the model by layers that are defined by an array of grid cells. Each grid cell is defined by hydraulic parameters (hydraulic conductivity, storativity, cell thickness (cell top and bottom), etc., that control the flow of water through the cells.

Boundaries are simulated in the model by specifying boundary conditions that define the head or flux of water that occurs at the model grid boundaries or edges. Boundary conditions describe the interaction between the system being modeled and its surroundings. Boundary conditions are
used to include the effects of the hydrogeologic system outside the area being modeled, while at the same time allowing the isolation of the desired model domain from the larger hydrogeologic system. Three types of boundary conditions generally are utilized to describe groundwater flow: specified-head (Dirichlet), specified-flux (Neumann), and head-dependent flux (Cauchy) (Anderson and Woessner, 1992). Internal boundaries or hydrologic stresses such as wells, rivers, drains, and recharge may also be simulated using these conditions.

4.2.2 Pilot-Scale Testing

It may be necessary to conduct a pilot test to verify the output from the hydraulic modeling exercise described above and to finalize the design of the GCW system. Pilot testing may not be required for situations where only one or two shallow GCWs are to be installed. For GCW systems that include two deeper wells or more than two shallow wells, pilot testing is recommended. The objective of the pilot tests is to eliminate uncertainties and avoid costly redesign.

For most engineering applications, pilot tests are often conducted at a reduced or pilot-scale. Tests are conducted to collect scale-up data for designing full-scale systems. Similar to designing GCW systems, pilot testing is conducted to collect data to validate and calibrate the model used in the preliminary design. The design of the full-scale GCW system is finalized using the calibrated model.

GCW pilot testing differs from most other engineering pilot testing in that a full-scale GCW is used, not a scaled down version. The test is termed “pilot” relative to the total number of GCWs in the final system design. Full-size GCWs must be used because the hydraulics of the well, the aquifer response, and the interactions of both, are dependent on the specifics of the well design (i.e., screen length, placement across stratigraphic layers, pumping rates, etc.). Pilot testing GCW systems includes installation of one or two GCWs and testing the aquifer response to pumping these wells.

A recent development for pilot testing GCWs is the dipole test (see Section 4.1.3.2). Dipole aquifer testing is a method that uses recirculation to obtain aquifer properties, (Kabala, 1993). The results give estimates on the vertical and horizontal hydraulic conductivities, sustainable pumping rates, infiltration rates, and zone of influence. Although this test is relatively new and its application is not well documented, it provides useful information for the design and operation of the GCW system.

Other aquifer testing methods that can be used for pilot-scale testing include constant rate discharge tests and/or slug testing (see Sections 4.1.3.1 and 4.1.3.3, respectively). These tests utilize characterization wells, not a GCW. The characterization wells must be completed in both the anticipated extraction and injection zones, and each of these zones in both wells should then be tested independently using the other zones as observation points. The additional observation points are important because some of the more accurate test analyses require at least one observation point.

4.2.3 Full-Scale Design

4.2.3.1 Model Calibration and Execution

Calibration of a groundwater flow model refers to the demonstration that the model is capable of producing field-measured heads and flows that are used as the calibration values or targets. Calibration is accomplished by finding a set of hydraulic parameters, boundary conditions, and stresses that when used in the model produce
simulated heads and fluxes that match field-measured values within an acceptable range of error (Anderson and Woessner, 1992). Model calibration can be evaluated through the statistical comparison of field-measured and simulated conditions.

Often, model calibration is difficult because values for aquifer parameters and hydrologic stresses are typically known in relatively few locations, and their estimates are influenced by uncertainty. The uncertainty in a calibrated model and its input parameters can be evaluated through the performance of a sensitivity analysis in which the aquifer parameters, stresses, and boundary conditions are varied within an established range. The impact of these changes on the model output (or hydraulic heads) provides a measure of the uncertainty associated with the model parameters, stresses, and boundary conditions. It is important to calibrate with values that are consistent with the field-measured heads and hydraulic parameters to ensure a reasonable representation of the natural system. Calibration techniques and the uncertainty involved in model calibration are described in detail in Anderson and Woessner (1992).

After a model has been calibrated to observed conditions, it can be used for interpretive or predictive simulations. In a predictive simulation the parameters determined during calibration are used to predict the response of the flow system to future events, such as the operation of a GCW system. The predictive requirements of the model will determine the need for either a steady-state simulation or a transient simulation that would enable changing conditions and stresses over time. Model output (i.e., hydraulic heads) can be interpreted through the use of a contouring package, and can also be applied to particle tracking simulations to calculate groundwater pathways and travel times.

4.2.3.2 Well Placement. Completion of quality site characterization and preliminary design work enables goal-specific and precise GCW placement. After thoroughly characterizing plume dimensions, site hydrogeology, and contamination during the site characterization phase, the preliminary design work provides data about the size of each well’s circulation cell, its expected treatment effectiveness, and expected well interactions. For sites that require source treatment and/or plume reduction, it is important that a sufficient number of wells be included in the system design to cover the zone of contamination. Circles delineating each well’s circulation cell drawn directly over a plume on a topographic map illustrate this coverage. Well interaction data gathered during preliminary design work should help optimize well spacing. If the objective of the GCW system is to intercept a migrating plume, a sufficient number of wells will be needed to effectively capture and treat the entire width, and potentially the length of the plume as it passes through the GCW system. A thorough evaluation of any proposed well placement must be performed with the numerical flow model constructed during the preliminary design phase.

4.2.3.3 System Component Selection. It is the responsibility of the contracted GCW vendor to correctly select the appropriate components for the GCW system that will be implemented at any site. Selection and sizing of system components is GCW configuration specific. The components must be sized properly to operate the system according to the design specifications obtained from the modeling exercises described above.

Care must be taken to select well materials that resist physical and chemical deterioration. This is particularly true with the installation of a GCW because many groundwater contaminants accelerate degradation of well components. Well screens and casings must remain undamaged to accomplish the following:
• successfully restrict the passage of formation material into the well
• be structurally rigid enough to prevent collapse throughout the well’s lifetime
• prevent clogging of the screen caused by corrosion and/or polymeric swelling.

Well screens and casings are available in a variety of materials, many of which are susceptible to specific groundwater contaminants and conditions. For instance, steel decays in corrosive environments; polyethylene is susceptible to aromatic and halogenated hydrocarbons; polyvinyl chloride (PVC) deteriorates in the presence of ketones, esters, and aromatic hydrocarbons; and polypropylene is subject to attack by aliphatic and aromatic hydrocarbons, and oxidizing acids (U.S. EPA, 1986b). Information on specific materials can be found in chemical resistance or compatibility tables. Vendors frequently make these tables available to prospective consumers by putting them in appendices of catalogues.

Composite wells contain combinations of materials that require special consideration when they consist of dissimilar metals. Dissimilar metals in direct contact with the soil are subject to accelerated corrosion due to a difference in potential between the metals (U.S. EPA, 1986b). Using a dielectric coupling to connect dissimilar sections will electrically isolate the metals and prevent this type of deterioration.

4.2.3.4 Monitoring Network Design. The three objectives of a GCW monitoring system are as follows:

• monitor contaminant concentrations
 • across the well to assess in-well treatment effectiveness
 • in the circulation cell to evaluate in situ treatment effectiveness
 • outside the plume to monitor plume migration (point-of-compliance)
 • in the vadose zone to track fate and transport of vapors
• monitor hydraulic head
 • at the influent and effluent regions of the GCW to monitor head developed by the well
 • in the aquifer to monitor groundwater circulation
• monitor biodegradation in the aquifer and vadose zone.

A number of monitoring devices can be used to meet the above objectives. Proper selection and placement of monitoring system components is important for evaluating GCW performance and is dependent on site- and application-specific requirements.

The installation of the following items is suggested to provide adequate data for evaluating the performance of a GCW system:

• sample access at influent and effluent of GCW
• in-well flowrate measurement device
• discrete-depth monitoring wells for gradient measurements (at least 3)
• discrete-depth groundwater monitoring points or wells for sampling
• point-of-compliance well downgradient from plume
• off-gas sampling access (if applicable)
• off-gas flow meter (if applicable)
• discrete-depth soil-gas monitoring points (if applicable)
• in situ flow meters (suggested if cost permits).

The above list should be considered minimum requirements, and if process-specific instrumentation is appropriate, it should also be installed.

A monitoring network that allows for groundwater monitoring within the zone of influence must be included in the design of a GCW system. The monitoring network should include nested monitoring wells that are designed with short (1-foot length) screened sections to allow collection of discrete samples. Piezometers can be installed to measure water levels around the treatment zone. Other in situ sensors are available that can measure in situ temperature or pressure and could be incorporated into the design of the GCW monitoring system. Use of specialized equipment, such as down-well flow meters, may require specific sized wells or other arrangements. Water sampling and level monitoring capabilities must be included in the GCW design to allow for sampling and monitoring immediately adjacent to the well.

GCW configurations that either incorporate SVE or vadose zone off-gas treatment should include a monitoring network for soil gas in the vadose zone. The network can consist of soil-gas probes from which whole soil-gas samples can be collected for analysis. Optional capabilities for monitoring temperature, pressure, and oxygen concentrations may be desired and can be included in the design. Thermocouples have been used successfully to monitor temperatures and the data can be collected using an automatic data logger or recorded using a Fluke™ meter. Typically, Type J or Type K thermocouples are used with the selection depending on the temperature range. System pressures can be monitored using pressure transducers that have a sensitivity of 0.01 inch of water. The data from these sensors also can be recorded using automatic data loggers or hand-held meters. In situ oxygen sensors are available and can be included in the design. These sensors are used to monitor oxygen concentrations in the vadose zone on a semi-continuous basis. The data from these sensors can be recorded with a data logger and downloaded onto a portable computer. The oxygen data can be used as an indicator of biological activity.

There are several considerations for placement of monitoring equipment. Monitoring system components should be placed both inside and outside the expected treatment zone. For plume interception, the most important placement is downgradient of the treatment system. This placement acts as the “point-of-compliance” location that monitors the contaminant concentration in the groundwater after it leaves the treatment zone. It will also be important to monitor in the upgradient direction. This will provide a baseline for the monitoring in order to remove the regional or natural effects on the hydrogeologic system, such as seasonal water-table fluctuations. Plume concentrations can also fluctuate because of an uneven distribution of contamination in the plume, and the concentrations entering the treatment zone will therefore need to be known. Additional positions can be placed cross-gradient, and within the treatment zone between the up- and downgradient positions. This should provide coverage for contaminant trends and pressure gradients around the treatment zone. At each well location around the treatment system, monitoring points should be positioned vertically in at least the extraction zone, and near the top of the water table. If there is a large separation of the extraction and injection screens, additional monitoring positions vertically may be advantageous.
5.0 GCW Installation Procedures

The effectiveness of GCWs, like other in situ remediation systems, is directly dependent on the quality of the installation procedures followed. System installation is planned and supervised by vendor personnel and documented with field logs, lithologic logs, well construction diagrams, and as-built diagrams for any treatment units. Meticulous documentation of well design and construction will provide an excellent resource in the event a problem is encountered. Problems that can be avoided by ensuring correct installation include, but are not limited to (1) leaking bentonite and/or grout seals, (2) plugged well screens, (3) leaking in-well packers, and (4) smeared borehole walls (reduced local conductivity). The selection of an appropriate drilling method and materials followed by careful well development and shakedown will help maximize GCW treatment effectiveness and prevent costly, time-consuming problems. The installation process must be supervised by experienced field engineers to ensure the GCW system components are fully functional, and that the installation component depths and observations are fully documented for later review.

5.1 Drilling and Well Completion

Boreholes for GCW placement should be drilled and completed according to vendor specifications to ensure adequate depth and diameter. The method of drilling will depend on the soil and formation characteristics, depth of installation, and vendor requirements. Some common drilling techniques used to install environmental remediation system wells include mud rotary, hollow-stem auger, and drive casing.

It is critical that the well be completed correctly to ensure proper GCW operation. Completion entails the placement of packing and sealant materials in the annulus of the borehole and concrete at the surface for structural support. The GCW vendor must provide qualified field personnel capable of properly installing the system. A detailed well construction diagram illustrating the depth and dimensions of the well, as well as the depths of all screen and sealant material added to the well annulus, must be completed during well installation. Careful and detailed field notes can be of immeasurable importance in later phases of the project.

5.1.1 Drilling Methods. Boreholes for GCW placement should be drilled according to vendor specifications to ensure adequate depth and diameter. The method of drilling will depend on the site-specific geological conditions, depth of installation, and vendor requirements. Some common drilling techniques used to install wells are outlined in the following subsections.

5.1.1.1 Hollow-Stem Continuous-Flight Auger. Generally considered mobile, fast, and relatively inexpensive, the hollow-stem, continuous-flight auger is the most commonly employed drilling method in unconsolidated materials (U.S. EPA, 1986b). This method uses no drilling fluids, thus reducing the likelihood of decreased local hydraulic conductivity around the borehole. This method is not recommended for well depths exceeding 150 feet (U.S. EPA, 1986b).

5.1.1.2 Solid-Stem Continuous-Flight Auger. Unlike the hollow-stem auger, the solid-stem auger must be withdrawn from the borehole to insert well screens and casings. This restricts the usage of this technique to consolidated sediments or stable, fine-grained unconsolidated materials that are less prone to caving. In addition, this method cannot be used effectively in the saturated zone, thereby making it not feasible for the installation of a GCW.
5.1.1.3 Drive Casing. Used predominately in soft unconsolidated formations, drive casing drilling is simply the mechanical hammering of hardened metal casing into the formation. Materials inside the driven casing are removed. Because the borehole advances with the casing, no potential for caving exists even in the most unstable of formations; however, heaving sands can present difficulties with the clean-out of the driven casing. When site conditions are favorable this is an effective drilling method for advancing large-diameter boreholes.

5.1.1.4 Rotary Drilling. Rotary drilling bores a shaft with a rotating bit while the cuttings are continuously removed by circulation of air, water, or mud. The selection of the drilling fluid hinges on site-specific conditions. While air is well suited for use in hard-rock formations, it requires special consideration when volatile soil and groundwater contaminants are present to prevent exposing on-site workers. Using water may reduce the risk to on-site workers, but it hinders the recognition of water-bearing zones and can destabilize borehole walls leading to collapse. In contrast, muds composed of bentonite, barium sulfate, organic polymers, or polyacrylamides help solidify borehole walls and prevent caving. Unfortunately this solidification contributes to reduction of local hydraulic conductivity that must be restored by proper well development. In addition to reducing hydraulic conductivity, organic muds tend to stimulate microbial growth. This growth may either aid or hinder remediation efforts depending on the type of system installed and the nature of the contaminants.

5.1.1.5 Cable-Tool Drilling. Cable-tool drilling advances a borehole by repetitively lifting and dropping a heavy string of drilling tools (Johnson Division, 1975). This action, combined with the addition of water to the borehole, serves to crush the formation into a slurry so it can be pumped to the surface. Although comparatively slow, this method does offer some advantages in relatively shallow formations. For instance, it allows for the collection of excellent formation samples and detection of even relatively fine-grained permeable zones (U.S. EPA, 1986b). Use of this method has declined in recent years, making it difficult to find drillers that use it in some regions of the country.

5.1.2 Packing and Sealant. Once the desired well depth has been attained, and well screens and casings have been inserted down hole, fill materials must be added to the annular space between the borehole wall and well screens and casings. These materials may be poured down the borehole or, if a hollow-stem auger has been used, the materials are added between the casing and the inside of the auger stem as the auger is withdrawn. This process is sometimes referred to as well completion.

All screened intervals of the well must be surrounded by a chemically inert well-rounded material, such as quartz sand or gravel, to promote fluid flow to or from the well. This packing material is known collectively as the filter pack. Fabric filters are not recommended for use as packing material (U.S. EPA, 1986b).

The annulus between the screened sections must be packed with a sealant material, such as bentonite or grout, to avoid short-circuiting between the two screen sections. The sealant should have a permeability at least one or two orders of magnitude less than the surrounding formation (U.S. EPA, 1986b) and should prevent the formation of preferential paths to the surface or to another screened interval. Typically, a concrete well apron seals the uppermost section of the well and protects it from heaving above the frost line. Poor seals will allow fluid communication within the well borehole itself, greatly reducing the effect of the well on the surrounding soils. All materials should be added according to vendor specifications.
5.2 Well Development
Well developing is the process of removing fine-grained particles surrounding screened intervals by aggressively pumping the well with flow reversals and/or surges. For most GCW applications, it is extremely important that the wells be developed prior to long-term operation to prevent fines from being pumped into the well and plugging up the system. This is especially true for air lift systems that create a surging action during groundwater pumping. Flow reversals and surges induced by pumps, bailers, or surge blocks flush particles smaller than the well screen openings from the formation. Development must be more complete than is typical for monitoring wells; i.e., over pump until turbidity is low and the groundwater parameters are stable.

5.3 Monitoring System Installation
Monitoring devices must be installed so that high quality data can be collected over the life of the project. Monitoring system components are installed at depths that will provide sampling opportunities in 3 dimensions, so the circulation cell can be characterized. In addition to the drilling methods above, push techniques can be used to install monitoring equipment. Push installations do not require drilling and do not produce any cutting that may require treatment or disposal; however, pushing results in compaction of the adjacent soil, which could interfere with measurements. Either a hydraulic or pneumatic push technique can be used to install monitoring equipment. Pneumatic techniques utilize a hammering action, so equipment sensitive to shock or vibration should be installed with the hydraulic push technique.

In situ oxygen sensors (for vadose zone monitoring only), flow meters, and thermocouples should be installed according to manufacturer's specifications. Typically, accurate monitoring with these units requires surrounding material to emulate local sediments. Some sensor types can be installed in the same borehole as monitoring points to save costs. Some more specialized devices require separate installation so that there is no interference from other sensing devices. Typically, hydraulic push drilling methods are inappropriate for installing sensitive electrical or electrochemical sensors.

5.4 System Shakedown
After the installation of all GCW system components is completed, the system should be operated vigorously to challenge system components and reveal weaknesses or failures. This shakedown procedure should last long enough to ensure that the system integrity will allow long-term operation with minimal downtime. During shakedown, pumps, blowers, and/or compressors should be run at maximum required pressures and flowrates. System components and machinery should be carefully inspected for leaks; loose fittings; unusual vibration, noise, or movement; excessive temperatures; and other failures. All monitoring system components should be checked to make sure that they operate properly. Any defects should be fixed and their repair should be recorded. Beyond system repair, the cause of any failure should be investigated to ensure that proper preventive measures have been performed to avert future failures. Once the shakedown procedure is completed, the system is readied for long-term operation.
6.0 GCW Performance Monitoring Requirements

Monitoring is required to optimize the operation of the equipment and to verify GCW system performance. In-well, aquifer, and vadose zone monitoring must be conducted to collect the data required to determine any needed system adjustments, and to assess the effectiveness of the GCW for removing the desired contaminants. The information required to evaluate and optimize a GCW system includes the following:

- the amount of contaminant mass removed or destroyed
- the zone of influence around the well
- the amount of groundwater circulated
- the potential secondary effects of operating the wells.

Performance monitoring is the periodic collection of data that provides information necessary to evaluate the status of the operating GCW system and the surrounding aquifer. Monitoring is essential to optimize GCW system performance, detect impending failures and unwanted effects, and to demonstrate removal of contaminants from the site. Without monitoring, a GCW system could continually function significantly below its potential removal and economic efficiencies, wasting both time and money. While there are significant costs associated with performance monitoring, those costs are easily recovered by optimizing energy and removal efficiencies, and reliably documenting cumulative contaminant mass removal.

This section describes methods and technologies used to monitor the performance of GCW systems. Monitoring not only optimizes GCW operation, but also verifies system contaminant removal performance. Monitoring will be used to determine the following:

- general status of the system processes
- amount of contaminant mass removed or destroyed in the GCW
- reductions in aquifer contaminant concentrations
- zone of influence around the well
- amount of groundwater circulated
- potential secondary effects of operating the wells.

The specific parameters measured, however, will be determined in part by the treatment process (chemical, physical, biological) of the selected GCW design. For example, if a bioprocess is being considered, respiration gases must be monitored to provide evidence for treatment process effectiveness. Conversely, monitoring respiration gases in a GCW system using air-stripping and an aboveground carbon adsorption unit to treat the off-gas would not prove useful.
6.1 In-Well Monitoring Requirements
The monitoring of processes that occur within the GCW is important for determining the system’s effectiveness, adjusting operating parameters, and predicting the size of the circulation cell and required treatment time. In-well monitoring parameters include water flowrates (groundwater pumping rates), hydraulic head measurements, vapor flowrates, contaminant concentrations in the influent and effluent waters, and biological parameters. These measurements are required for mass removal calculations and can also be compared to the predicted values generated during the modeling and design phases of the project as a system performance check.

For any GCW configuration, the in-well flowrates must be known to perform mass removal calculations and are important for process and operational performance monitoring. The groundwater-pumping rate refers to the volume of water passing through the well in a unit of time. Hydraulic heads are measured at the well to determine the gradient imposed on the aquifer by the GCW. The vapor flowrate is important for systems that utilize air lift, air stripping, and/or SVE. The flowrates are needed to perform mass balances on contaminants.

The performance of the in-well treatment process is monitored to evaluate the system’s performance, and predict the time that will be required to achieve the remediation goals. Treatment efficiency is determined by comparison of influent and effluent contaminant concentrations.

It is important to monitor parameters that affect biological activity in systems that incorporate in-well biological treatment or that are designed to deliver compounds to support in situ biodegradation.

6.2 Aquifer Monitoring Requirements
Aquifer monitoring is conducted to evaluate groundwater circulation imposed by the GCW, to assess the mass of contaminant removed, and to evaluate biological processes occurring in the aquifer. Hydraulic head measurements at locations around the GCW are used to evaluate the movement of groundwater. Analyzing groundwater samples provides data on contaminant removal, migration, and/or biological processes.

6.2.1 Groundwater Sampling and Analysis. Groundwater samples can be collected from monitoring wells, remediation/recovery wells, or production wells. Monitoring wells, which are specifically designed and controlled for purposes of sampling, yield the most reliable and representative groundwater samples. The groundwater analyses are necessary to define or estimate the nature and extent of groundwater contamination. Determining the plume configuration will help to optimize recovery well placement.

The groundwater wells, depending on the screened interval, can be used to determine whether more than one phase of fluid is present in the aquifer. Light, nonaqueous-phase liquids (LNAPLs) float on the water table; dense, nonaqueous-phase liquids (DNAPLs) sink to the bottom of the aquifer but can be trapped in pockets throughout the saturated zone. Some LNAPLs and DNAPLs may contain emulsifiers, may emulsify naturally in the groundwater, or may be emulsified by other contaminants in the groundwater. In these instances, the contact between the phases may be indistinct and recovery or observation of the free phase may be affected.
Groundwater samples are collected from all available wells on and around the site. New well installations must be developed prior to sampling by pumping out several well volumes of water to ensure that the collected water is representative of the aquifer in the region of the well. The number and frequency of groundwater sampling events for characterization purposes should be in inverse proportion to the quality and quantity of groundwater data collected at the site and discovered in the background investigation. If little is known about the concentration and location of the contaminated groundwater, further sampling will be required to characterize the contaminant plume. The money spent characterizing a site is easily recovered over the life of a project, within reason.

Collected samples are analyzed for the contaminant of interest, as well as any other water parameter that may affect either the current contaminant concentration or the effectiveness of the GCW, once operations commence. For example, if a degradation product of a primary contaminant has been determined to inhibit or compete with the degradation of the parent compound, then the daughter species must be characterized initially and monitored (along with the primary contaminant) throughout the project.

6.2.2 Water Level/Pressure Measurements. The water level in the GCW, in piezometers placed adjacent to the influent and effluent screen sections of the GCW system, and in monitoring wells placed around the zone of influence, should be monitored to evaluate the radius of influence (ROI) of the GCW. Although the pumping drawdown is offset by the recirculation of water from the well, water level and pressure head differences are observable and are useful for monitoring the performance of pumping in the well and the ROI in the formation.

A variety of tools are available to measure water levels in GCWs and monitoring wells. These include wetted tape, electric tape, electronic pressure transducers, sounding (acoustical) devices, oil/water interface probes, and airline pressure apparatus. A mechanical water level chart recorder can be installed to measure relative changes in the water level for a predetermined time interval. This can prove useful at system startup during the dynamic phase of operation. Pressure transducers can be installed in a network of monitoring wells to provide continuous measuring of water levels. The output from the transducers can be recorded and transmitted or saved by a data-logger, then downloaded to an electronic file in the field.

Pressure transducers can be difficult to set in the pumping zone, as it is necessary to feed the transducer lines through or alongside the treatment unit inside the circulating well. Problems can arise when trying to feed these lines around packers or other in-well components. Turbulence in airlift GCW systems could interfere with pressure transducer readings. Incorporating a stilling tube into the well design could overcome this problem.

6.2.3 Radius of Influence Measurements. The aquifer area that can be effectively remediated by one GCW unit can be defined by the distance to which the required level of treatment can be imparted within a feasible project life. This distance is commonly referred to as the ROI or sometimes the effective ROI. Another term commonly used to describe the outer distance of GCW effectiveness is the stagnation point. ROI will be the term used in this document for the purpose of discussion.

There is some challenge in defining the ROI. For example, with GCW configurations that incorporate in-well treatment, the contaminant must be transported to the well as the groundwater is drawn to the well. The process relies on desorption and "flushing" of
contaminant as water circulates in the aquifer. It may take many cycles for the flushing mechanism to reduce the contaminant concentrations to targeted levels. The ROI for this GCW configuration is the distance at which the number of groundwater cycles is sufficient to achieve the remediation goals within the desired project duration.

When GCW systems are used for plume interception, the ROI is defined as the distance from the well at which the plume is effectively "captured" into the circulation cell. Determining the ROI requires the application of a groundwater model. Using the design pumping rate, hydraulic gradients and groundwater velocities are calculated to determine how the background groundwater flow will affect the dimensions of the GCW circulation. Knowing this achievable ROI is extremely important for proper placement of the wells to ensure that the plume does not "pass by" the treatment system.

For GCW configurations that utilize the aquifer as an in situ bioreactor, the ROI is defined as the distance to which nutrients and/or electron donors or acceptors can be delivered. The ROI depends on the rate of delivery, the rate of sorption and desorption, the rate of decomposition, and the rate of microbial and/or abiotic utilization. Typically, the distance from the well that nutrients or electron donors can be delivered is small because of the high demand just outside the well. As the contamination near the well is degraded, the demand will decrease and distance of delivery will increase.

In summary, the definition of ROI with regard to GCW technology, as well as appropriate monitoring methods, is dependent on the system configuration, treatment technologies, and system objectives. A site-specific operational definition of ROI is suggested.

The following sections will present various GCW ROI monitoring techniques that can be applied to appropriate GCW configurations. The specific method used to evaluate the in situ performance of a GCW system must be matched to the mass transfer and removal technologies employed by that system.

6.2.3.1 Dye/Tracer Tests. GCW systems and sites with minimal aquifer monitoring installations may not produce adequate data to evaluate the GCW ROI or circulation cell. Systems with low pumping rates may induce only a very shallow head gradient around the GCW, making it difficult to determine the circulation radius. Head and water level measurements taken in monitoring wells may be insufficient to characterize the treatment area. Therefore, tracer or dye testing is sometimes required to determine the actual ROI. These tests also can be used to compare and confirm head measurements from sites with plenty of monitoring installations.

Tracer and dye tests are performed to determine groundwater flow paths and velocities in the aquifer surrounding a GCW. Two distinct tracer test approaches include the divergent test and the convergent test. The divergent test is conducted by injecting a tracer compound or dye into the GCW and then periodically collecting groundwater samples from monitoring wells or points at different depths and distances from the GCW. The data are used to determine the travel time of the tracer from the GCW to the monitoring locations.

With the convergent approach, a dye or tracer is injected into the groundwater via monitoring wells or injection points at some distance from the GCW. The GCW influent is monitored for arrival of the tracer. It should be noted that regulations pertaining to the injection of materials
into groundwater vary and should be investigated thoroughly to ensure compliance. The selection of the appropriate tracer and tracer testing methods is specific to the contaminant characteristics and GCW design; therefore, this selection should be performed on a site-specific basis.

Tracers are natural or introduced components to a groundwater system that can provide information on the movement of the groundwater. Tracers can be thermal (water temperature), or can consist of particles such as biological solids (yeast, bacteria, spores), ions, organic acids, dyes, and radioactive isotopes. The selection of a particular tracer is dependent on the data objectives and on the natural system into which the tracer will be introduced. The ideal tracer would accomplish the following:

- not interact with the aquifer matrix
- not be affected chemically by the groundwater
- be non-toxic
- move only at the rate of groundwater movement
- be easily detected
- have similar physical and/or chemical properties to the material being traced.

For instance, sulfur hexafluoride (SF₆) is used to mimic oxygen transport in aquifers because its diffusion coefficient is similar to the diffusion coefficient of oxygen.

Inorganic ionic compounds such as chloride, bromide, sulfate, and iodide; and organic compounds such as fluorobenzoate have been used extensively as groundwater tracers. The inorganic ionic compounds are easily detected in the field using ion-specific electrodes, or by measuring changes in the groundwater-specific conductance (electrical conductivity) as the tracer moves past a monitoring point. The disadvantages of ions include chemical dispersion, interference from background ions, and sorption by microorganisms or soil particles.

Various organic, fluorescent dyes are also widely used groundwater tracers. Fluorescent dyes are relatively inexpensive to use and are easily detected. Natural groundwater factors such as suspended solids, hardness, salinity, pH, and temperature can interfere with the movement and detection of the dyes. Both ionic detectors and fluorimeters (for quantification of fluorescent dyes) can be installed in a well or can be operated at ground surface to analyze collected samples.

6.3 Vadose Zone Monitoring Requirements
Vadose zone monitoring is important for assessing fate and transport of vapors with GCWs that incorporate SVE or direct injection of their off-gas. Vadose zone monitoring consists of collecting soil-gas samples and analyzing for contaminant concentrations and/or respiratory gases. Pressure monitoring can be used to determine the ROI of the GCW in the vadose zone.

6.3.1 Soil Sampling and Analysis. Soil borings are located based on either the review of existing site data or the results of the soil-gas survey. Soil borings can serve two purposes: the collection of soil samples and the installation of circulating wells and monitoring points. Soil borings have the advantage of allowing a large number of soil samples to be collected from a single location and allowing for subsequent installation of the circulating wells and monitoring points in the borings. Disadvantages include the generation of soil cuttings and the fact that drilling may require subcontracting and a large amount of time. Alternative methods, such as a
GeoProbe™ system or cone penetrometer, may be used for collection of soil samples and may be suitable for installing soil-gas monitoring points.

The hollow-stem auger method is generally preferred for drilling in unconsolidated soils, while a solid-stem auger is acceptable in more cohesive soils. The final diameter of the borehole is dependent on the diameter selected for the circulating wells, but typically it is at least two times greater than the outside diameter of the circulating well.

All drilling and sample collection activities must be observed and recorded on a geologic boring log. Data to be recorded include soil sample interval, sample recovery, visual presence or absence of contamination, soil description, and lithology. Soil samples must be labeled and properly stored immediately after collection.

It is preferable that all boreholes be completed as circulating wells or monitoring points. If this is not possible, boreholes must be abandoned according to applicable state or federal regulations. Typically, borehole abandonment is accomplished by back filling with bentonite or grout.

The soil samples are analyzed for appropriate contaminants. Additionally, moisture content, particle size, and total Kjeldahl nitrogen are useful in characterizing the soil and biodegrading potential. A summary of some soil analyses that might be appropriate is provided in Table 13.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aromatic hydrocarbons (BTEX)</td>
<td>Purge and trap GC method SW8020</td>
</tr>
<tr>
<td>TPH</td>
<td>Modified GC method SW8015</td>
</tr>
<tr>
<td>Moisture Content</td>
<td>ASTM D-2216</td>
</tr>
<tr>
<td>Particle Size Analysis</td>
<td>ASTM D422</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>EPA 351.4</td>
</tr>
</tbody>
</table>

6.3.2 Soil-Gas Sampling and Analysis. Soil-gas samples are collected from the monitoring probes in the vadose zone and analyzed for oxygen, carbon dioxide, and the contaminant of interest. The sampling method described in *A Field Test for Bioventing* can be used to sample soil gas for GCW applications (Hinchee et al., 1992). Analysis for TPH can be accomplished in the field using hand-held meters; more specific compound analysis may require laboratory analysis.

6.3.3 Surface Emission Testing. Surface emission tests are required with systems that discharge their off-gas to the vadose zone for treatment. The tests are conducted to quantify the mass flux of contaminant emissions from the ground surface to the atmosphere resulting from operation of a GCW system. The mass flux of contaminant vapors leaving the ground surface is quantified to accomplish the following:

- Track the fate of vapor-phase contaminants
- Calculate removal efficiency of the system
- Comply with regulatory limits on vapors released to the atmosphere.

Several methods have been reported to be effective in quantifying surface emission mass fluxes (DuPont, 1987; Pollack and Gordon, 1993). Typically, these tests quantify the mass of
contaminant being released from a defined area within a defined time period. Contaminant mass flux rates are described in terms of units of mass per unit area per unit time (mg contaminant/m²-day). Samples are collected with the GCW system running and turned off. The increase in mass flux from background (system off) is the contribution from the operation of the GCW.

Performing surface emissions tests typically involves passing a pure air stream slowly over the ground surface under a box made of inert material. The air stream is collected at the downstream end of the box for analysis. Evacuated Summa™ canisters or sorbent materials may be used as storage devices until the air samples can be analyzed, usually by GC. The total mass of contaminant in the sample is related to the time and ground surface area, over which the sample is collected, to yield the mass flux rate of contaminants emitted to the atmosphere.

6.4 GCW Off-Gas Monitoring Requirements and Procedures
System off-gas monitoring is required to ensure compliance with regulatory discharge permits and to perform mass balance calculations to monitor GCW performance. Monitoring for regulatory purposes involves measuring the off-gas flowrate and collecting gas samples from the discharge of the off-gas treatment system. The required sampling frequency is location dependent and must be agreed upon with the acting regulatory agency during the planning stage. The concentration of targeted contaminants is measured in the off-gas samples using appropriate and approved analytical methods. The results are used to calculate a mass discharge rate by multiplying the concentration by the flowrate. It is necessary to ensure that the mass discharge rate does not exceed the permitted discharge rate. If it does, it will be necessary to halt operations until the system is brought into compliance.

GCW performance monitoring requires sampling the off-gas from the well before the off-gas treatment system. Samples can be collected in Tedlar™ bags using the techniques described in Section 3.3.2, or in evacuated Summa™ canisters. Samples are collected more frequently at startup, then less frequently as the system operates and approaches steady state conditions. At a minimum, off-gas samples should be collected daily for the first two weeks, then twice per week for the next six weeks, then less frequently depending on the trends observed in the contaminant concentrations. The data are required to complete the mass balance around the GCW and to verify that the system is achieving the design stripping efficiency.

The data from the well off-gas samples also are used in conjunction with the off-gas data from the off-gas treatment system to monitor the effectiveness and efficiency of off-gas treatment. Concentrations in the well off-gas must be monitored to determine if the appropriate off-gas treatment technology is being used and/or when it should be changed out.

6.5 GCW Performance Modeling.
The data from the above monitoring is compared against the predictions of the system model developed as described in Section 4.2. The model is validated based on the fit or agreement between the predicted system performance and the performance measured in the field. If necessary, the model is calibrated to more accurately predict future system performance.
7.0 GCW Performance Assessment

The performance of a GCW system involves assessing the contaminant removal within the well system, the mass reduction in the aquifer, and, when appropriate, the vadose zone.

7.1 In-Well Contaminant Mass Removal Rate

The effectiveness of the GCW is assessed based on the contaminant mass removal rate and efficiency. The rate of contaminant mass removal dictates the time required for achieving cleanup goals and indicates the cost-effectiveness of the system. Assessing the effectiveness of the GCW technology entails knowing the groundwater pumping rate and the influent, effluent, and off-gas contaminant concentrations. A mass balance is constructed as follows:

\[
\text{Conc}_{\text{inf}} \times \text{FR}_{\text{inf}} = \text{Conc}_{\text{eff}} \times \text{FR}_{\text{eff}} + \text{Conc}_{\text{off-gas}} \times \text{FR}_{\text{off-gas}} \tag{3}
\]

where:
- \(\text{Conc}_{\text{inf}}\) = contaminant concentration in the water entering the well
- \(\text{Conc}_{\text{eff}}\) = contaminant concentration in the water leaving the well
- \(\text{FR}_{\text{inf}}\) = flowrate of water entering the well
- \(\text{FR}_{\text{eff}}\) = flowrate of water leaving the well
- \(\text{Conc}_{\text{off-gas}}\) = concentration in the off-gas from the well
- \(\text{FR}_{\text{off-gas}}\) = off-gas flowrate

If proper sampling and analytical procedures were followed, the mass balance should close. If the mass balance is off by more than 15%, the data are suspect and accurately assessing well performance will not be possible. Often times, the problem with poor mass balance performance is associated with collecting non-representative samples of the well influent. Sampling at one point within the annulus of the well will not provide a representative sample. It is much better to sample from within the well after the water has had a chance to mix but before any in-well treatment occurs.

Provided that the results of the mass balance are acceptable, and the mass removal rate and the stripping efficiency can be calculated, then the mass removal rate is the mass of contaminant that is removed from groundwater pumped through the well per unit of time. It is calculated as

\[
\text{MRR} = (\text{Conc}_{\text{inf}} - \text{Conc}_{\text{eff}}) \times \text{PR} \tag{4}
\]

follows:

Where:
- \(\text{MRR}\) = mass removal rate
- \(\text{PR}\) = pumping rate

In-well mass removal rates are useful for predicting the ROI (using modeling) and estimating the percentage of water circulated through the well from within that radius.

The treatment efficiency is a measure of the effectiveness of the well system for removing contaminant from the groundwater. It is calculated as follows:

\[
\text{Efficiency} = \left(\frac{[(\text{Conc}_{\text{inf}} \times \text{FR}_{\text{inf}})] - [(\text{Conc}_{\text{eff}} \times \text{FR}_{\text{eff}})]}{[(\text{Conc}_{\text{inf}} \times \text{FR}_{\text{inf}})]}\right) \times 100 \tag{5}
\]

84
With most GCW systems the influent flowrate equals the effluent flowrate so Equation 5 reduces to:

\[
\text{Efficiency} = \frac{\text{Conc}_{\text{inf}} - \text{Conc}_{\text{eff}}}{\text{Conc}_{\text{inf}}} \times 100 \quad (6)
\]

While the stripping efficiency of GCW systems cannot equal the stripping efficiency of an aboveground air stripping reactor, typical values of 75% to 90% are common. Stripping efficiencies much below 75% indicate that the well system has been poorly designed and/or operated.

Another operational parameter used to assess GCW performance is the air to water ratio. This is simply the volume of air injected to the volume of groundwater pumped. Typically, higher air to water ratios result in greater removal of contaminant. With GCW systems, the air to water ratio is limited due to the size of the air stripping reactor and the requirements for air lift pumping. Air to water ratios have been reported in the range from below 10 to over 200. The goal for optimizing GCW operation is to balance the air to water ratio and the stripping efficiency while maintaining a sufficient groundwater-pumping rate.

7.2 In Situ Contaminant Concentration Reduction

The most critical measure of GCW operation is the reduction in mass of contaminant within the volume being treated. This includes both the vadose and saturated zones. The mass of contaminant removed from the vadose and saturated zones should include the contaminant removed within the GCW and any contaminant that was biodegraded or removed by other abiotic mechanisms.

7.2.1 Vadose Zone Soils. Often, GCW systems are designed to simultaneously remove contaminants from both the vadose and saturated zones. This can be accomplished by either incorporating a SVE component in the GCW design or by injecting the off-gas into the vadose zone to support biotventing and biodegradation. The following data are required to determine the mass of contaminant removed from the vadose zone:

- contaminant concentrations measured in soil samples collected before and following GCW operation.
- the ROI of the GCW in the vadose zone
- the thickness of the vadose zone
- the bulk density of the soil within the treatment volume.

The data are used to determine the mass of contaminant in the vadose zone before and following GCW operation. The mass removed is simply the difference between the two resulting values.

Determining the mass of contaminant within a soil volume based on the measured concentrations can be tedious. The use of computer programs such as EarthVisions™ makes this task easier. This program generates a 3-D graphical representation of the contaminant distribution. The concentration ranges are broken down into shells. The program can calculate the volume of contaminated soil that falls within each shell. The mass of contaminant can be calculated by taking the average concentration of a shell, multiplying it by the volume of the shell, then multiplying the result by the bulk density of the soil.
7.2.2 Saturated Zone Soils. Mass reductions of contaminant in saturated zone soils are
calculated in much the same way as the vadose zone soils. The trick is that the analyses require
that the mass contributions from the interstitial water must be taken into account. The following
data are required to determine the mass of contaminant removed by a GCW system:

- Contaminant concentrations in saturated zone soil samples before and following GCW
 operation
- Water content of the saturated zone soil samples
- Contaminant concentrations in interstitial water.

To do this, the water content of the sample must be determined. Then an aliquot of interstitial
water is removed and analyzed for the contaminant(s) of interest. Finally, the soil including the
interstitial water is analyzed. The actual soil concentration is calculated by determining the
volume of water within a unit volume of the soil, multiplying the result by the concentration,
then subtracting the result from the measured soil concentration. Once the soil concentrations
are known, the data are used to calculate mass removal using the procedure described for vadose
zone soils. Because determining contaminant concentrations in saturated soils is time
consuming and costly, GCW performance is more commonly assessed based on reductions in the
concentrations and mass of contaminant in groundwater.

7.2.3 Groundwater. The more common method for assessing the performance of an aquifer
restoration technology is to monitor decreases in contaminant concentrations in groundwater.
The following data are required to perform this analysis at sites where the groundwater velocity
is very low:

- contaminant concentrations in groundwater within the circulation cell before and
 following GCW operation
- volume of the circulation cell
- porosity within the circulation cell.

The contaminant mass is calculated using an approach that is similar to the approach for the
vadose and saturated zone soils. First, the concentration data are entered into a computer
program that generates a 3-D profile of the contaminant distribution. Next, the volumes of
concentration shells are calculated. The total mass of contaminant is calculated by taking the
average concentration in each shell and multiplying it by the volume of that shell, then
multiplying by the porosity and adding the masses for all of the shells. The mass removal is
calculated as the total mass before GCW operation minus the mass remaining after GCW
operation.

If a significant quantity of groundwater moves past the GCW system, it is more appropriate to
calculate the mass removed based on the mass flux of contaminant that enters and leaves the
circulation cell. The following data are needed to make this calculation:

- flux of water into and out of the circulation cell during GCW operation
- contaminant concentrations in water entering and leaving the circulation cell during
 GCW operation
- contaminant concentrations in groundwater within the circulation cell before and
 following GCW operation
• volume of the circulation cell
• porosity within the circulation cell.

The mass removed from within the circulation cell can be determined as described above. The additional mass removed from the groundwater passing through the GCW system is calculated as the difference between the contaminant concentration in the water entering the circulation cell and the contaminant concentration leaving the circulation cell multiplied by the volume of water that passed through the circulation cell.

7.3 Dilution Effect in the Circulation Cell
Both in-well treatment efficiency and dilution effects should be considered when estimating the total effectiveness of the system on the surrounding plume. Because water circulating near the well is likely to be treated repeatedly, it will have a relatively low contaminant concentration. The contaminated groundwater entering the circulation zone mixes with this relatively clean water before it enters the GCW. As a result, the contaminant concentration of groundwater entering the GCW circulation zone will be lowered by dilution.

Comparing contaminant concentrations in samples collected from the GCW influent screen with samples taken at groundwater monitoring locations nearby provides information about dilution effects. For example, if the concentration in the regional plume outside the circulation cell is 100 mg/L, and the concentration at the influent screen is 1 mg/L, there is a 100-fold dilution of contaminant concentration in the circulation cell before the plume water reaches the GCW. This clearly assumes that no removal is being performed in the aquifer sediments themselves. The dilution factor is a function of the rate at which contaminated groundwater enters the circulation cell and the volume of water in the circulation cell. If the dilution factor can be quantified and one of these variables is known, the other variable can be determined. Information such as ambient groundwater velocity and concentrations from all groundwater-monitoring installations will be useful for estimating these variables.

The circulation cell around the GCW will contain groundwater that varies in contaminant concentration. Characterizing the concentration gradient between the cleaner water around the GCW and the unaffected contaminant plume may be problematic, thus preventing accurate estimation of the circulation cell volume and/or the ROI. Nevertheless, the dilution factor should be monitored and documented throughout the operational life of the GCW. Changes in the dilution factor may indicate any of the following:

• changes in circulation cell volume
• changes in ambient groundwater velocity
• changes in aquifer hydraulic conductivity
• establishment of removal processes in aquifer sediments.
8.0 REFERENCES AND BIBLIOGRAPHY

U.S. EPA, see U.S. Environmental Protection Agency.

White, M.D. and M. Oostrom. 1996. *STOMP, Subsurface Transport Over Multiple Phases*. Pacific Northwest National Laboratory - Battelle Memorial Institute, Richland, WA.

GROUNDWATER CIRCULATING WELL ASSESSMENT AND GUIDANCE

APPENDIX

GROUNDWATER CIRCULATING WELL VENDOR CONFIGURATIONS AND CASE HISTORY INFORMATION

Battelle

April 3, 1998
TABLE OF CONTENTS

1.0 GROUNDWATER CIRCULATING WELL CONFIGURATIONS AND CASE HISTORY INFORMATION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Wasatch Environmental, Inc</td>
<td>1</td>
</tr>
<tr>
<td>1.2 EG&G Environmental</td>
<td>4</td>
</tr>
<tr>
<td>1.3 IEG Technologies Corporation</td>
<td>8</td>
</tr>
<tr>
<td>1.4 KV Associates</td>
<td>15</td>
</tr>
</tbody>
</table>

2.0 GROUNDWATER CIRCULATING WELL CASE HISTORIES

<table>
<thead>
<tr>
<th>Case History</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>43</td>
</tr>
<tr>
<td>10</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>49</td>
</tr>
<tr>
<td>12</td>
<td>52</td>
</tr>
<tr>
<td>13</td>
<td>55</td>
</tr>
<tr>
<td>14</td>
<td>58</td>
</tr>
<tr>
<td>15</td>
<td>61</td>
</tr>
<tr>
<td>16</td>
<td>64</td>
</tr>
<tr>
<td>17</td>
<td>67</td>
</tr>
<tr>
<td>18</td>
<td>70</td>
</tr>
<tr>
<td>19</td>
<td>73</td>
</tr>
<tr>
<td>20</td>
<td>76</td>
</tr>
<tr>
<td>21</td>
<td>79</td>
</tr>
<tr>
<td>22</td>
<td>84</td>
</tr>
<tr>
<td>23</td>
<td>88</td>
</tr>
<tr>
<td>24</td>
<td>92</td>
</tr>
<tr>
<td>25</td>
<td>96</td>
</tr>
<tr>
<td>26</td>
<td>100</td>
</tr>
<tr>
<td>27</td>
<td>102</td>
</tr>
<tr>
<td>28</td>
<td>105</td>
</tr>
<tr>
<td>29</td>
<td>108</td>
</tr>
<tr>
<td>30</td>
<td>111</td>
</tr>
<tr>
<td>31</td>
<td>114</td>
</tr>
<tr>
<td>32</td>
<td>117</td>
</tr>
<tr>
<td>33</td>
<td>120</td>
</tr>
<tr>
<td>34</td>
<td>123</td>
</tr>
<tr>
<td>Case History</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>35</td>
<td>126</td>
</tr>
<tr>
<td>36</td>
<td>129</td>
</tr>
<tr>
<td>37</td>
<td>132</td>
</tr>
<tr>
<td>38</td>
<td>135</td>
</tr>
<tr>
<td>39</td>
<td>138</td>
</tr>
<tr>
<td>40</td>
<td>141</td>
</tr>
<tr>
<td>41</td>
<td>144</td>
</tr>
<tr>
<td>42</td>
<td>147</td>
</tr>
<tr>
<td>43</td>
<td>150</td>
</tr>
<tr>
<td>44</td>
<td>153</td>
</tr>
<tr>
<td>44</td>
<td>157</td>
</tr>
</tbody>
</table>
1.0 Groundwater Circulating Well Configurations

Various GCW configurations are being marketed for site remediation in the U.S. and Europe. The four companies listed in Table III-1 are the primary vendors of GCWs and they all have documented successful field applications of GCWs for site remediation. This section contains descriptions of some of the configurations currently offered by these vendors. The information has been provided for inclusion in this document on a volunteer basis, and questions regarding any of these case histories should be directed to the indicated vendor.

Table III-1 List of Major GCW System Vendors.

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG&G Environmental</td>
<td>64209 East Grover Lane</td>
</tr>
<tr>
<td>Contact: Gaynor Dawson</td>
<td>PR. N.E.</td>
</tr>
<tr>
<td></td>
<td>West Richland, Washington 99352</td>
</tr>
<tr>
<td>Tel: (509) 967-2347</td>
<td>FAX: (509) 967-5709</td>
</tr>
<tr>
<td>IEG Technologies Corporation</td>
<td>1833 D Crossbeam Drive</td>
</tr>
<tr>
<td>Contact: Eric Klingel</td>
<td>Charlotte, North Carolina 28217</td>
</tr>
<tr>
<td>Tel: (704) 357-6090</td>
<td>FAX: (704) 357-6111</td>
</tr>
<tr>
<td>KV Associates, Incorporated</td>
<td>281 Main Street</td>
</tr>
<tr>
<td>Contact: William Kerrfoot</td>
<td>Falmouth, MA 02540</td>
</tr>
<tr>
<td>Tel: (508) 540-0561</td>
<td>FAX: (801) 972-8400</td>
</tr>
<tr>
<td>Wasatch Environmental, Incorporated</td>
<td>2240 West California Avenue, Suite B</td>
</tr>
<tr>
<td>Contact: Les Pennington</td>
<td>Salt Lake City, Utah 84104</td>
</tr>
<tr>
<td></td>
<td>Tel: (801) 972-8400</td>
</tr>
<tr>
<td></td>
<td>FAX: (801) 972-8459</td>
</tr>
</tbody>
</table>

1.1 Wasatch Environmental, Incorporated. Wasatch Environmental, Incorporated offers the Density Driven Convection (DDC) GCW system. A generalized schematic of the DDC system is presented in Figure III-1. This system consists of a 2- to 6-inch diameter well casing with 2 screened intervals. The well installation is similar to a conventional monitoring well except for that the 2 screened sections are separated by an annular seal. Air is injected at the base of the well creating air bubbles that ascend towards the upper-screened section. As the air bubbles rise, contaminants are stripped from the groundwater and the dissolved oxygen content of the water inside the well increases to about 10 mg/L (Schrauf et al, 1996). Also, the rising air bubbles act as an air lift pump creating a pressure gradient inside the well that pumps groundwater up the well casing to the upper screen section. The groundwater then enters a circulation flow around
the well, drawing groundwater into the lower screened section and expelling groundwater and air from the upper screened section.

The remediation elements of the DDC system are air stripping and biodegradation. Air stripping occurs inside the well as the bubbles pass through the contaminated groundwater. Biodegradation in the groundwater occurs due to increased dissolved oxygen content and the system's ability to circulate nutrients, such as phosphorus and nitrogen. Biodegradation also can occur in the unsaturated zone as the stripped contaminants leave the upper screened section and enter the vadose zone. The biodegradation in the vadose zone is similar in concept to bioventing.

The DDC system utilizes simple, small diameter wells that can be a significant cost savings during installation. Using the vadose zone as an in situ bioreactor can also decrease or even eliminate off-gas treatment costs. Currently, Wasatch Environmental has applied the DDC at 6 pilot-scale sites and 28 full-scale sites, and site closure has been achieved at 9 sites. The case history information in the following section provides site, design, operational, and performance data for 20 of these sites.
Figure III-1 Schematic of the Wasatch Environmental, Inc. Density Driven Convection GCW System.
1.2 EG&G Environmental. EG&G is the distributor for the NoVOCs GCW system offering several designs for various applications. The basic design of the NoVOCs system is shown in Figure III-2. This GCW system is designed to preferentially extract VOCs dissolved in groundwater by converting them to a vapor phase and treating the vapor. The NoVOCs system involves the combination of airlift pumping to move the water and in-well air stripping to remove volatile compounds and aerate the water prior to reinjection.

Figure III-3 is a schematic of the NoVOCs configuration for remediating contamination in confined aquifers where the cleaned water must be recharged back into the same water-bearing zone under a pressure head. The NoVOCs well is constructed using an eductor pipe for the aeration column and the screened interval for reinjection if positioned below the confining layer. Air is injected through a supply line into the eductor to effect air lift, air stripping, and aeration of the water as it passes through the system. The water is lifted to a height above the reinfiltration screen, causing ponding of the water in the upper zone. This results in a buildup of enough pressure head to force the water back into the formation.

Figure III-4 shows the reverse flow NoVOCs configuration for use at sites that require a reverse circulation flow. As with the other NoVOCs configurations, the air lift, air stripping, and water aeration occurs in an eductor pipe assembly. The lifted water is transported from the top of the well to a packed off reinjection section at the bottom of the well through a recharge drainage line. The pressure head buildup above the eductor pipe from ponding water forces the water into the formation below the extraction screen.

Other variations on the basic design include using infiltration trenches in place of an outer casing as an infiltration zone. This configuration addresses issues at sites with low infiltration rates in the vadose zone and also sites with shallow groundwater and very thin vadose zones. An additional design variation is to use the vapor stripping well (recirculation well) to distribute bio-amendments to the subsurface. This Abio-enhanced™ version of the vapor stripping system could potential speed the overall treatment time and possibly lower the final contaminant concentrations in the aquifer.
Figure III-2 Schematic of the EG&G Environmental Standard NoVOCs Groundwater Circulating Well System.
Figure III-3. Schematic of the EG&G Environmental Confined Aquifer NoVOCs Groundwater Circulating Well System.
Figure III-4. Schematic of the EG&G Environmental Reverse Circulation NoVOCs Groundwater Circulation Well System.
1.3 IEG Technologies Corporation. IEG Technologies offers several configurations of GCWs of their Vacuum Vaporizer Well (UVB) and Coaxial Groundwater circulation (KGB) systems. UVB and/or KGB systems have been installed at over 50 sites in the U.S. and Europe for treating groundwater contaminated with a variety of contaminants including petroleum hydrocarbons, chlorinated solvents, and pesticides.

Figure III-5 is a schematic representation of the KGB system. IEG Technologies describes the KGB system as a combined "push and pull" technology that combines in situ air stripping with soil air venting. The systems are of an air lift design and are designed to transfer volatile contaminants to the vapor phase for extraction and aboveground treatment using activated carbon adsorption. The system consists of an air distributor that is placed at the bottom of a borehole, a double cased screen to facilitate bubble/water separation, and sampling tubes to sample the upper and lower portions of the system. Typical KGBs are placed into boreholes filled with artificial packing such as gravel and do not include a well screen.

Air is injected via an aboveground air compressor through the distributor. The injected air drives the air lift pumping action and serves as the stripping mechanism to remove volatile contaminants. A vacuum is maintained on the system headspace to enhance the stripping efficiency during air lift, and to facilitate removal of vapors transported to the KGB from the surrounding vadose zone and from the air stripping off-gas. Typically, activated carbon canisters are placed in series behind the vacuum system.
Figure III-5. Schematic of the IEG Technologies KGB Groundwater Circulating Well System.
UVB systems are available in several configurations including the UVB-Standard Circulation, UVB-Reverse Circulation, UVB-Microbiological Remediation, and UVB-Activated Carbon Remediation configurations shown in Figures III-6 through III-9. UVBs are similar to KGBs in that they also utilize a vacuum system to facilitate contaminant removal and/or oxygenation of circulated groundwater, while simultaneously supporting soil venting. The systems differ in that they are installed in dual screened well casings and can be operated in either an upflow or downflow mode.

UVB-Standard circulation systems are airlift systems and operate in an upflow mode. The vacuum on the well head serves to lift the groundwater and to draw ambient air through a pipe to a stripping reactor placed below the working water-table elevation. A water-conducting pipe extends from the bottom of the stripping reactor through a packer that separates the upper well screen from the lower well screen. The stripped contaminants and volatile contaminants that are transported to the well from the surrounding vadose zone are removed from the well head and treated aboveground, usually by activated carbon adsorption.

The UVB-Reverse Circulation system differs from the UVB-Standard Circulation system in that it operates in a downflow mode and is not an air lift system. The stripping chamber is placed at or just above the working water-table elevation and a mechanical pump is placed in the water transport line to draw water in through the upper screen and discharge the treated water out through the lower screen.

The UVB-Carbon Adsorption system, shown in Figure III-8, has an activated carbon canister incorporated into the well design. These systems can be operated in either an upflow or downflow mode depending on the direction of mechanical pumping. Contaminated water entering the well is passed through the activated carbon unit where adsorption takes place and clean water is aerated and returned to the aquifer.
Figure III-6. Schematic of the IEG Technologies Standard Circulation UVB Groundwater Circulation Well System.
Figure III-7. Schematic of the IEG Technologies Reverse Circulation UVB Groundwater Circulating Well System.
Figure III-8. Schematic of the IEG Technologies Carbon Adsorption Groundwater Circulating Well System.
Figure III-9. Schematic of the IEG Technologies Biological Treatment Groundwater Circulating Well System.
The UVB-Microbiological Remediation system, shown in Figure III-7, incorporates a mechanical pump and a biofilter type reactor into the design of a standard UVB system. The mechanical pump serves to enhance the airlift pumping which can be dampened by the resistance caused by head loss across the biofilter. The system is operated in an upflow mode with water entering the lower screen, passing through the bioreactor, then moving through an air stripping reactor before being discharged back to the aquifer through the upper screen. The in-well bioreactor functions to degrade contaminants transported to the well in the circulated water that remains after air stripping. Soil vapors are pulled into the well system through the upper screen and removed along with residual volatile contaminants stripped out of the water following biodegradation.

1.4 KV Associates (KVA). KV Associates offer the C-Sparger™ System that combines groundwater circulation with air sparging and is illustrated in Figure III-10. This system is specifically designed to remove dissolved degreasing solvents such as PCE, TCE, and DCE from groundwater. The C-Sparger™ System utilizes a 2- to 4-inch PVC well casing with two screened sections separated by an expandable packer. A submersible pump is used to draw groundwater into the upper screen and push it out the lower screen, creating a circulation pattern around the well. Air sparging is accomplished using a Spargepoint™ installed beneath the well casing. Micro-fine bubbles are created by the Spargepoint™ to strip volatile contaminants from the groundwater as they travel through the saturated soil matrix. The system alternates between groundwater circulation and air sparging to increase agitation in the formation, thus increasing stripping efficiency. One C-Sparger™ System can operate up to 3 well assemblies.

KV Associates describe other advantages of the C-Sparger™ System in their literature. The advantage of using a Spargepoint™ to inject air into the system, as opposed to a standard well screen, is the production of the micro-fine bubbles. These fine air bubbles are small enough to penetrate sandy formations, allowing much easier fluid flow than larger bubbles (Kerfoot et al., 1996). Ozone is injected with the air into the Spargepoint™. Ozone is a powerful oxidant of organic compounds, however its life span is short if injected alone. The fine air bubbles encapsulate the ozone and increase its life span in the aquifer. It is theorized that the dissolved contaminant is stripped from the groundwater by the air bubbles, and the encapsulated ozone oxidizes it. KV Associates claim that a C-Sparger™ System can attain a radius of influence of 30 to 50 feet, depending on geologic conditions.

A remediation effort in Carson City, Nevada utilized the C-Sparger™ System to remediate a PCE plume with concentrations of above 1,000 ppb. Within 30 days of operation the levels of PCE were below 3 ppb. Upon review of final reports, the Nevada Division of Environmental Protection issued site closure.
Figure III-10. Schematic of KV Associates C-Sparge™ Groundwater Circulating Well System.
2.0 Groundwater Circulating Well Case Histories

This section contains information describing past and current applications of the GCW technology. The case histories are presented by the vendor of each specific GCW configuration. Table III-2 can be used to cross-reference the case history numbers with contaminant type. The information in this section can be reviewed to determine if a GCW system was used at a site with similar site characteristics to one being considered, and how well that GCW system functioned within the time frame reported.

Table III-2. Cross References of Case History Identification Numbers by Contaminant.

<table>
<thead>
<tr>
<th></th>
<th>Potential</th>
<th>Case Histories (See Section III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum Hydrocarbons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPH</td>
<td>Strong</td>
<td>1,6,24</td>
</tr>
<tr>
<td>BTEX</td>
<td>Strong</td>
<td>43,45</td>
</tr>
<tr>
<td>Benzene</td>
<td>Strong</td>
<td>2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,22,27,33,40</td>
</tr>
<tr>
<td>Toluene</td>
<td>Strong</td>
<td>2,3,4,8,11,12,13,16,17,19,27,33,40</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>Strong</td>
<td>2,3,4,8,11,12,13,15,16,17,19,22,24,27,33,40</td>
</tr>
<tr>
<td>Xylenes</td>
<td>Strong</td>
<td>2,3,4,8,11,12,13,15,16,17,19,24,27,33,40</td>
</tr>
<tr>
<td>Non-Petroleum Hydrocarbons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>Strong</td>
<td>18</td>
</tr>
<tr>
<td>Isopropyl Ether</td>
<td>Strong</td>
<td>27,33</td>
</tr>
<tr>
<td>Polycyclic Aromatic Hydrocarbons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naphthalene</td>
<td>Strong</td>
<td>2,3,4,7,8,11,13,14,15,16,17,33,</td>
</tr>
<tr>
<td>2-ring PAH</td>
<td>Moderate</td>
<td>44</td>
</tr>
<tr>
<td>3-ring PAH</td>
<td>Weak</td>
<td>44</td>
</tr>
<tr>
<td>Chlorinated Hydrocarbons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Chlorinated Hydrocarbon</td>
<td></td>
<td>29,30,31,32,34,35,36,37,38,39,41,42</td>
</tr>
<tr>
<td>Dichloroethene</td>
<td>Strong</td>
<td>1,22</td>
</tr>
<tr>
<td>1,1-dichloroethane</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>1,2-dichloroethane</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>1,1,1-trichloroethane</td>
<td>Strong</td>
<td>28</td>
</tr>
<tr>
<td>Perchloroethylene</td>
<td></td>
<td>Strong 25,26,</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td></td>
<td>None 28</td>
</tr>
</tbody>
</table>

17
The information presented in this section was supplied voluntarily by each of the companies that are listed in Table III-1. The case history information represents a sampling of these companies' installations and is not a complete reference of all of their installations. Questions regarding any of these case histories should be directed to the indicated vendor.
Case History 1

Wasatch Environmental, Incorporated
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: DDC groundwater Circulating Wells

Number of Wells: 10 Diameter of Wells 4" Length of Wells 20'

SITE DATA

Target Contaminant(s): TPH, DCE

Site Location: American Can Property

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 8'

Thickness of Aquifer: 12'

Hydraulic Conductivities: Horizontal 18.2 ft/day Vertical ND

Soil Type: Silty Sand (SM)

OPERATIONAL DATA

Dates of Operation: 8/91 through 2/93

Status of Operation: Regulatory Closure (NOTE: DCE and some benzene was migrating to site from off-site source)

SYSTEM PERFORMANCE DATA

Radius of Influence: 18'

Contaminant ID

Initial Concentration

Final Concentration

Mass Removed

TPH: PM1; PM2; PM3

13.0; .58; 6.4 mg/L

.01; .01; .02 mg/L

ND

DCE: PM1; PM2; PM3

.50; .60; .59 mg/L

.30; .17; .43; mg/L

ND

ND denotes not determined

SUAHARROWCASECGO
OGDEN, UTAH
WEI 1020-103 DRW

GROUND SURFACE
AIR LINE
4 INCH
PVC WELL
WELL SCREEN
.02 INCH SLOT
PVC PIPE
WELL SCREEN
.01 INCH SLOT
ROUNDWATER
FLOW LINES
40 MICRON
SPARGING TIP
10-20
SILICA SAND

LEGEND
Groundwater Monitoring Well
Exploratory Boring
APPROXIMATE SCALE: 1" = 40'

GROUNDWATER MONITORING WELL
B5
SW7 S
SW10 S
B3 S
B2 S
B6 S
SW8 S
PM1 S
PM3 S
SW9 S
PS3 S
B4 S
SW3 S
B2 S
PS1 S
SW1 S
SW2 S
SW1 S
PM2 S
B1 S
SW4 S
B3 S
SW5 S
B2 S
SO S
SW6 S
SW8 S

BUILDING
DOCK
EXCAVATION
FENCE
CONTROL TRAILER
SMOKE STACK
CARPORT

APPROXIMATE SCALE: 1" = 40'

OGDEN, UTAH
WEI 1020-103 DRW
Case History 2

Wasatch Environmental, Inc
GROUNDWATER CIRCULATING WELL CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: DDC Groundwater Circulating Well

Number of Wells: 1
Diameter of Wells: 2"
Length of Wells: 12'

SITE DATA

Target Contaminant(s): BTEXN

Site Location: Meadowbrook Golf Course
Salt Lake City, Utah

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 5'
Thickness of Aquifer: 8'

Hydraulic Conductivities: Horizontal ND Vertical ND

Soil Type: Sands (SW)

OPERATIONAL DATA

Dates of Operation: 10-91 through 12-92

Status of Operation: Regulatory Closure

SYSTEM PERFORMANCE DATA

Radius of Influence: 10'

Contaminant ID Initial Concentration Final Concentration Mass Removed
Benzene 0.78 mg/l <0.002 mg/l ND
Toluene 1.0 mg/l <0.002 mg/l ND
Ethylbenzene 0.27 mg/l <0.002 mg/l ND
Xylenes 2.6 mg/l <0.002 mg/l ND
Naphthalene 0.09 mg/l <0.004 mg/l ND

ND denotes not determined
Case History 3

Wasatch Environmental, Incorporated
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: DDC Groundwater Circulating Well

Number of Wells: 1 Diameter of Wells 4" Length of Wells 20'

SITE DATA

Target Contaminant(s): BTEXN

Site Location: Schocker Site
Salt Lake City, Utah

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 6.5' to 8' Thickness of Aquifer: 15'

Hydraulic Conductivities: Horizontal ND Vertical ND

Soil Type: Silty Sand (SM)

OPERATIONAL DATA

Dates of Operation: 2-92 through 2-93

Status of Operation: Regulatory Closure

SYSTEM PERFORMANCE DATA

Radius of Influence: 15' Groundwater Pumping Rate: ND

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene (B1;SW1)</td>
<td>0.19; 0.16 mg/l</td>
<td>0.021; <0.002 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.02; 0.44 mg/l</td>
<td><0.002; <0.002 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.03; 0.43 mg/l</td>
<td><0.002; <0.002 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Xylenes</td>
<td>0.03; 1.3 mg/l</td>
<td><0.002; <0.002 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>0.03; 0.14 mg/l</td>
<td><0.004; <0.004 mg/l</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND denotes not determined
SHOCKER SITE
SALT LAKE CITY, UTAH

NOT TO SCALE

10 INCH O.A.
BORING

ANNULAR FILL

16-40 SILICA SAND

4 INCH PVC WELL SCREEN

0.125 INCH SPACING

FENCE

UNDERGROUND AIRLINE

AIR COMPRESSOR

LEGEND

GROUNDWATER MONITORING WELL

DDC CIRCULATING WELL

APPROXIMATE SCALE: 1" = 40'
Case History 4

Wasatch Environmental, Incorporated
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: DDC Groundwater Circulating Wells, Soil Vapor Extraction

Number of Wells: 6 Diameter of Wells 2" Length of Wells 15'

SITE DATA

Target Contaminant(s): BTEXN

Site Location: Site 1
Salt Lake City, Utah

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 6' to 7' Thickness of Aquifer: 10'

Hydraulic Conductivities: Horizontal ND Vertical ND

Soil Type: Silty Clay (CL), Sand (SP), and Gravel (GM)

OPERATIONAL DATA

Dates of Operation: 10-92 through Present

Status of Operation: Ongoing

SYSTEM PERFORMANCE DATA

Radius of Influence: 15'

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene (B1;B6;B10)</td>
<td>0.62; 0.79; 0.78 mg/l</td>
<td><0.002; 0.03; <0.002 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.57; 0.035; 0.01 mg/l</td>
<td><0.002; <0.002; <0.002 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.60; 0.60; 0.62 mg/l</td>
<td><0.002; 0.053; <0.002 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Xylenes</td>
<td>2.8; 0.82; 0.02 mg/l</td>
<td><0.002; <0.002; <0.002 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>0.01; 0.23; 0.43 mg/l</td>
<td><0.004; <0.004; <0.004 mg/l</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND denotes not determined
Case History 5

Wasatch Environmental, Incorporated
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: DDC groundwater circulating wells with soil vapor extraction

Number of Wells: 18
Diameter of Wells: 2"
Length of Wells: 70'

SITE DATA

Target Contaminant(s): Gasoline free product - BTEXN

Site Location: Rainbo #33 (Amoco)
Salt Lake City, Utah

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 55'
Thickness of Aquifer: 15'

Permeability: 1.0x10E-4 CM/SEC

Soil Type: Sandy Silt (SM)

OPERATIONAL DATA

Dates of Operation: 11/92 through Present

Status of Operation: Ongoing

SYSTEM PERFORMANCE DATA

Radius of Influence: 25'
Groundwater Pumping Rate: ND

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>B1 9.56 mg/L</td>
<td>1.6 mg/L</td>
<td>ND</td>
</tr>
<tr>
<td>Benzene</td>
<td>B3 14.0 mg/L</td>
<td>1.1 mg/L</td>
<td>ND</td>
</tr>
<tr>
<td>Benzene</td>
<td>B5 4.01 mg/L</td>
<td>Non Detect</td>
<td>ND</td>
</tr>
<tr>
<td>Benzene</td>
<td>B6 10.7 mg/L</td>
<td>0.78 mg/L</td>
<td>ND</td>
</tr>
<tr>
<td>Benzene</td>
<td>B7 5.24 mg/L</td>
<td>Non Detect</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND denotes not determined
SOIL VAPOR EXTRACTION AND DDC WELL DESIGN

LEGEND

- Remediation well pair (SVE and groundwater sparging)
- Shallow SVE well
- Intermediate SVE well
- Groundwater monitoring well
- Deep SVE well

APPROXIMATE SCALE: 1" = 40'

RAINBO #33
SALT LAKE CITY, UTAH
WEI GW DRW
Case History 6

Wasatch Environmental, Incorporated
GROUNDWATER CIRCULATING WELL CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: DDC groundwater circulating wells

Number of Wells: 19 Diameter of Wells 4" Length of Wells 15'

SITE DATA

Target Contaminant(s): BTEXN

Site Location: Borden South Area Salt Lake City, Utah

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 5' Thickness of Aquifer: 10'

Hydraulic Conductivities: Horizontal ND Vertical ND

Soil Type: Clay (CL) with layers of Silty Sand (SM)

OPERATIONAL DATA

Dates of Operation: 10/93 through 3/96

Status of Operation: Regulatory Closure

SYSTEM PERFORMANCE DATA

Radius of Influence: 12' Groundwater Pumping Rate: ND

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration (mg/L) Prior to Startup</th>
<th>Concentration (mg/L) Last Measured</th>
<th>% Reduction in Concentration</th>
<th>Exponential Decay Constant (% day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum</td>
<td>Average</td>
<td>Maximum</td>
<td>Average</td>
</tr>
<tr>
<td>TPH</td>
<td>42.7</td>
<td>14.0</td>
<td>6.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Benzene</td>
<td>5.7</td>
<td>2.21</td>
<td>1.4</td>
<td>0.253</td>
</tr>
</tbody>
</table>

ND denotes not determined
Case History 7

Wasatch Environmental, Incorporated
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: DDC Groundwater Circulating Wells, Soil Vapor Extraction

Number of Wells: 10 Diameter of Wells 4" Length of Wells 17.5'

SITE DATA

Target Contaminant(s): BTEXN

Site Location: Rainbo #16 (AMOCO)

Salt Lake City, Utah

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 8' Thickness of Aquifer: 12'

Hydraulic Conductivities: Horizontal ND Vertical ND

Soil Type: Silty Sand (SM)

OPERATIONAL DATA

Dates of Operation: 10-93 through Present

Status of Operation: Ongoing

SYSTEM PERFORMANCE DATA

Radius of Influence: 20' Groundwater Pumping Rate: ND

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene (B2;B3;B5)</td>
<td>2.06; 0.56; 3.51 mg/l</td>
<td><0.001; <0.002; 0.42 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.28; 0.06; 7.55 mg/l</td>
<td><0.001; <0.002; 1.8 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.44; 0.47; 0.92 mg/l</td>
<td><0.001; 0.04; 0.27 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Xylene</td>
<td>1.6; 1.6; 4.6 mg/l</td>
<td><0.001; <0.002; 1.5 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>NT; NT; NT</td>
<td><0.001; 0.013; <0.14 mg/l</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND Denotes: Not Determined, NT Denotes: Not Tested
ANNULAR FILL
4 INCH PVC WELL CASING
BENTONITE CLAY SEAL
FILTER PACK 16-40 SILICA SAND
4 INCH PVC WELL SCREEN .01 INCH SLOT 0.125 INCH SPACING
BENTONITE CLAY SEAL
4 INCH PVC WELL PIPE
4 INCH PVC WELL SCREEN .01 INCH SLOT 0.125 INCH SPACING
FILTER PACK 16-40 SILICA SAND
THREADED BOTTOM PLUG

DDC WELL DESIGN NOT TO SCALE

LEGEND
\(\bigcirc\) Groundwater monitoring well
\(\bigcirc\) DDC circulating well
\(\bigcirc\) Vent well

RAINBO #16
SALT LAKE CITY, UTAH

APPROXIMATE SCALE: 1" = 40

RAINBO #16
SALT LAKE CITY, UTAH

NEW TANKS
DISPENSER ISLANDS
DISPENSER ISLAND

PROPERTY BOUNDARY/FENCE
EMISSION STACK
SYSTEM ENCLOSURE
FORMER EXCAVATION BOUNDARY (TANKS REMOVED)

GROUNDSWATER MONITORING WELL
DDC CIRCULATING WELL
VENT WELL

APPROXIMATE SCALE: 1" = 40
Case History 8

Wasatch Environmental, Incorporated
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: DDC groundwater circulating well and soil vapor extraction

Number of Wells: 5 Diameter of Wells 4" Length of Wells 15'

SITE DATA

Target Contaminant(s): BTEXN

Site Location: Flasher Barricades
Salt Lake City, Utah

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 6' Thickness of Aquifer: 9'

Hydraulic Conductivities: Horizontal ND Vertical ND

Soil Type: Sandy Silt (ML)

OPERATIONAL DATA

Dates of Operation: 12/93 through Present

Status of Operation: Ongoing

SYSTEM PERFORMANCE DATA

Radius of Influence: 20' Groundwater Pumping Rate: ND

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>B5 5.3 mg/L</td>
<td>0.066 mg/L</td>
<td>ND</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>B5 0.78 mg/L</td>
<td>0.076 mg/L</td>
<td>ND</td>
</tr>
<tr>
<td>Benzene</td>
<td>B9 83 mg/L</td>
<td><0.002 mg/L</td>
<td>ND</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>B9 0.58 mg/L</td>
<td><0.004 mg/L</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND denotes not determined
FILTER PACK

16-40 SILICA SAND
2 INCH PVC WELL SCREEN
.01 INCH SLOT
0.125 INCH SPACING
10 INCH DIA. BORING
ANNULAR FILL
BENTONITE CLAY SEAL
PVC AIR SUPPLY LINE

NOT TO SCALE

LEGEND

Groundwater monitoring well

DDC circulating well

APPROXIMATE SCALE: 1" = 30'

DECLARER BARRICADES
WEST VALLEY CITY, UTAH
WEI GW CAS CAD
Case History 9

Wasatch Environmental, Incorporated
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: DDC groundwater circulating wells - groundwater circulation

Number of Wells: 5 Diameter of Wells 4" Length of Wells 23'

SITE DATA

Target Contaminant(s): BTEXN

Site Location: Rainbo #19 (Amoco)
Salt Lake City, Utah

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 8' Thickness of Aquifer: 15'

Hydraulic Conductivities: Horizontal 16 gpd/sq ft Vertical ND

Soil Type: Clayey Silt (ML) Silty Sand (SM)

OPERATIONAL DATA

Dates of Operation: 2/94 through 3/96

Status of Operation: Regulatory Closure

SYSTEM PERFORMANCE DATA

Radius of Influence: 23' Groundwater Pumping Rate: ND

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>MW2 1.71 mg/L</td>
<td>0.058 mg/L</td>
<td>ND</td>
</tr>
<tr>
<td>Benzene</td>
<td>MW4 0.079 mg/L</td>
<td>0.007 mg/L</td>
<td>ND</td>
</tr>
<tr>
<td>Benzene</td>
<td>MW8 1.30 mg/L</td>
<td>0.030 mg/L</td>
<td>ND</td>
</tr>
<tr>
<td>Benzene</td>
<td>MW15 .740 mg/L</td>
<td>0.007 mg/L</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND denotes not determined
Case History 10

Wasatch Environmental, Incorporated
GROUNDWATER CIRCUITING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: DDC groundwater circulating wells with soil vapor extraction

Number of Wells: 41
Diameter of Wells 2"
Length of Wells 32'

SITE DATA

Target Contaminant(s): gasoline free product - BTEXN

Site Location: Rainbo #11 (Amoco)
Salt Lake City, Utah

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 20'
Thickness of Aquifer: 12'

Hydraulic Conductivities: Horizontal ND Vertical ND

Soil Type: Sandy Silt (ML)

OPERATIONAL DATA

Dates of Operation: 4/94-6/95 through Present

Status of Operation: expanded 8/95-Ongoing

SYSTEM PERFORMANCE DATA

Radius of Influence: 15'

Contaminant ID Concentration Final Concentration Mass Removed
Benzene MW1 5.28 mg/L 3.60 mg/L ND
Benzene MW2 10.9 mg/L 1.51 mg/L ND
Benzene MW6 Free Product 3.1 mg/L ND

ND denotes not determined
Case History 11

Wasatch Environmental, Incorporated
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: DDC Groundwater Circulating Wells, Soil Vapor Extraction

Number of Wells: 18 Diameter of Wells 2" Length of Wells 22'

SITE DATA

Target Contaminant(s): BTEXN

Site Location: Salt Lake County Sheriff's Substation
Murray, Utah

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 11' Thickness of Aquifer: 15'

Hydraulic Conductivities: Horizontal ND Vertical ND

Soil Type: Silt (ML), Sand (SM)

OPERATIONAL DATA

Dates of Operation: 9-94 through Present

Status of Operation: Ongoing

SYSTEM PERFORMANCE DATA

Radius of Influence: 15' Groundwater Pumping Rate: ND

Contaminant ID Initial Concentration Final Concentration Mass Removed

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene (C6,C7,B9)</td>
<td>1.7; 4.3; 1.3 mg/l</td>
<td>0.031; 0.2; 0.65 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Toluene</td>
<td>3.8; 5.9; 0.96 mg/l</td>
<td>0.008; <0.002; 0.49 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>1.4; 3.7; 1.7 mg/l</td>
<td>0.11; 0.042; 1.5 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Xylenes</td>
<td>6.8; 10; 3.7 mg/l</td>
<td>0.46; 0.004; 3.2 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>0.14; 0.75; 0.27 mg/l</td>
<td>0.043; 0.007; 0.23 mg/l</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND denotes not determined
Case History 12

Wasatch Environmental, Incorporated
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: DDC Groundwater Circulating Wells, Soil Vapor Extraction, Hand Bailing Free Product

Number of Wells: 11 Diameter of Wells 2" Length of Wells 23'

SITE DATA

Target Contaminant(s) BTEXN/Free Petroleum Product

Site Location: Ellis Project

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 11' to 13' Thickness of Aquifer: 15'

Hydraulic Conductivities: Horizontal ND Vertical ND

Soil Type: Silty Sand (SM)

OPERATIONAL DATA

Dates of Operation: 10-94 through Present

Status of Operation: Ongoing

SYSTEM PERFORMANCE DATA

Radius of Influence: 15' Groundwater Pumping Rate: ND

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene (OS1;E3;E5)</td>
<td>1.9; 1.6; 3.3 mg/l</td>
<td>0.2; <0.002; 0.098 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.06; 0.07; 0.08 mg/l</td>
<td>0.005; <0.002; 0.006 mg/l</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.1; 0.05; 0.44 mg/l</td>
<td>0.003; <0.002; 0.053 mg/l</td>
<td></td>
</tr>
<tr>
<td>Xylene</td>
<td>0.09; 0.16; 0.09 mg/l</td>
<td>0.003; <0.002; 0.032 mg/l</td>
<td></td>
</tr>
</tbody>
</table>
DDC WELL DESIGN
NOT TO SCALE

LEGEND

Groundwater monitoring well
DDC circulating well
Vent well

ELLIS PROJECT,
OKLAHOMA CITY, OKLAHOMA
WEL GW CAS CAD
Case History 13

Wasatch Environmental, Inc
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: DDC Groundwater Circulating Wells, Soil Vapor Extraction, GW Pumping

Number of Wells: 8
Diameter of Wells 2"
Length of Wells 20'

SITE DATA

Target Contaminant(s): BTEXN

Site Location: Salt Lake County Fire Station #60
Salt Lake City, Utah

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 10' to 15'
Thickness of Aquifer: 15'

Hydraulic Conductivities: Horizontal 80 ft/day Vertical ND

Soil Type: Sands (SP,SM), Gravel (GW)

OPERATIONAL DATA

Dates of Operation: 1-95 through Present

Status of Operation: Ongoing

SYSTEM PERFORMANCE DATA

Radius of Influence: 25'
Groundwater Pumping Rate: 1.5 GPM

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene (B1;B5;B6)</td>
<td>3.48; 3.6; 2.5 mg/l</td>
<td><0.005; <0.002; <0.06 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Toluene</td>
<td>13.6; 11; 4.5 mg/l</td>
<td>0.011; 0.002; 0.15 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Ethylenbenzene</td>
<td>1.82; 2.1; 0.75 mg/l</td>
<td>0.008; <0.002; 2.3 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Xylenes</td>
<td>10.2; 8.1; 5.3 mg/l</td>
<td>0.14; 0.15; 3.5 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>NT; 0.28; 0.64 mg/l</td>
<td>0.023; 0.046; 0.49 mg/l</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND denotes not determined
LEGEND

Groundwater monitoring well
Groundwater extraction well
Vent well
DDC circulating well

APPROXIMATE SCALE: 1" = 40'

SALT LAKE COUNTY FIRE STATION #60
SALT LAKE CITY, UTAH
WLI GW CAD/CAM
Case History 14

Wasatch Environmental, Incorporated
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: DDC groundwater circulating well with soil vapor extraction

Number of Wells: 5 Diameter of Wells 2" Length of Wells 37'

SITE DATA

Target Contaminant(s): BTEXN

Site Location: Rainbo #49 (Amoco)

Ogden, Utah

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 20' Thickness of Aquifer: 17'

Hydraulic Conductivities: Horizontal ND Vertical ND

Soil Type: Sandy Silt (ML) and Silty Sand (SM)

OPERATIONAL DATA

Dates of Operation: 4/95 through 3/96

Status of Operation: Regulatory Closure

SYSTEM PERFORMANCE DATA

Radius of Influence: 15'

Groundwater Pumping Rate: ND

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene B9; B11</td>
<td>.96; 0.0 mg/L</td>
<td><0.002; 0.0 mg/L</td>
<td>ND</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>.30; 18.0 mg/L</td>
<td>.057; .005 mg/L</td>
<td>ND</td>
</tr>
<tr>
<td>Total BTEXN</td>
<td>8.160; .033 mg/L</td>
<td>.627; .005 mg/L</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND denotes not determined
Case History 15

Wasatch Environmental, Inc
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: DDC Groundwater Circulating Wells, Soil Vapor Extraction

Number of Wells: 4 Diameter of Wells 2" Length of Wells 29.5'

SITE DATA

Target Contaminant(s): BTEXN

Site Location: Rainbo #37 (AMOCO) Ogden, Utah

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 10' Thickness of Aquifer: 20'

Hydraulic Conductivities: Horizontal ND Vertical ND

Soil Type: Silty Sand (SM)

OPERATIONAL DATA

Dates of Operation: 4-95 through 2-96

Status of Operation: Regulatory Closure

SYSTEM PERFORMANCE DATA

Radius of Influence: 20' Groundwater Pumping Rate: ND

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene (B1;B3;B7)</td>
<td>0.88; 0.03; 0.23 mg/l</td>
<td><0.002; <0.002; <0.002 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td><0.002; 0.07; 0.16 mg/l</td>
<td><0.002; <0.002; 0.14 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Xylene</td>
<td>0.07; 0.27; 3.1 mg/l</td>
<td><0.002; <0.002; 0.94 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Naphthalene</td>
<td><0.004; 0.2; 0.19 mg/l</td>
<td><0.004; <0.004; 0.08 mg/l</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND denotes not determined
Case History 16

Wasatch Environmental, Incorporated
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: DDC Groundwater Circulating Wells, Soil Vapor Extraction

Number of Wells: 32 Diameter of Wells 4" Length of Wells 22'

SITE DATA

Target Contaminant(s): BTEXN

Site Location: Keesler AFB Biloxi, Mississippi

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 7' to 8' Thickness of Aquifer: 15'

Hydraulic Conductivities: Horizontal 9 feet/day Vertical 0.93 feet/day

Soil Type: Silty Sand (SM)

OPERATIONAL DATA

Dates of Operation: 5/95 through Present

Status of Operation: Ongoing

SYSTEM PERFORMANCE DATA

Radius of Influence: 15' Groundwater Pumping Rate: ND

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene (MW11; P3)</td>
<td>1.2; 1.7 mg/l</td>
<td>0.42; 9.5 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.1; 0.86 mg/l</td>
<td>0.35; 1.3 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.29; 0.86 mg/l</td>
<td>0.63; 1.3 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Xylenes</td>
<td>1.2; 2.0 mg/l</td>
<td>0.75; 3.2 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>0.071; 0.15 mg/l</td>
<td>0.39; 0.49 mg/l</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND denotes not determined
LEGEND

- DDC groundwater circulating well
- Soil vapor extraction well location
- Groundwater monitoring well
- Exploratory soil boring location

APPROXIMATE SCALE: 1" = 50'

KEESLER AIR FORCE BASE, BILOXI, MS

WEI GW CASE CAD
Case History 17

Wasatch Environmental, Incorporated
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: DDC Groundwater Circulating Wells, Soil Vapor Extraction

Number of Wells: 15 Diameter of Wells 2" Length of Wells 35'

SITE DATA

Target Contaminant(s): BTEXN

Site Location: Top Stop
Park City, Utah

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 12' to 17' Thickness of Aquifer: 25'

Soil Type: Sandy Gravel (GW), Silt (ML)

OPERATIONAL DATA

Dates of Operation: 11-95 through Present

Status of Operation: Ongoing

SYSTEM PERFORMANCE DATA

Radius of Influence: 25' Groundwater Pumping Rate: ND

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene (W1,W2,W3)</td>
<td>0.61; 0.21; 0.067 mg/l</td>
<td>0.005; <0.02; <0.005 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.02; 0.67; 0.006 mg/l</td>
<td><0.005; <0.02; <0.005 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.38; 0.59; 0.16 mg/l</td>
<td>0.082; 0.069; 0.06 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Xylenes</td>
<td>1.1; 1.9; 0.082 mg/l</td>
<td>0.30; 0.062; 0.017 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>0.21; 0.25; 0.081 mg/l</td>
<td>0.07; 0.053; 0.01 mg/l</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND denotes not determined
LEGEND

- DDC groundwater circulating well
- Vent well
- Groundwater monitoring well

Underground utility line: -G- gas, -HPG- high pressure gas, -P- power, -W- water

APPROXIMATE SCALE: 1" = 50'

TOP STOP,
PARK CITY, UTAH

WEI GW CASE
Case History 18

Wasatch Environmental, Incorporated
GROUNDWATER CIRCULATING WELL CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: Infiltration gallery DDC groundwater circulating wells

Number of Wells: 4 Diameter of Wells 4” Length of Wells 15’

SITE DATA

Target Contaminant(s): Methanol

Site Location: Leroy Well #11

Leroy, Wyoming

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 5’ Thickness of Aquifer: 10’

Hydraulic Conductivities: Horizontal 13 ft/day Vertical ND

Soil Type: Silty Sand and Gravel (GM)

OPERATIONAL DATA

Dates of Operation: 4/96 through Present

Status of Operation: Ongoing

SYSTEM PERFORMANCE DATA

Radius of Influence: 15’ Groundwater Pumping Rate: 2 gpm

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>4,000 ppm</td>
<td><5 ppm</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND denotes not determined
ANNULAR FILL
4 INCH PVC WELL CASING
NATIVE SOIL SEAL
FILTER PACK PEA GRAVEL
4 INCH PVC WELL SCREEN .01 INCH SLOT 0.125 INCH SPACING
4 INCH PVC WELL PIPE
4 INCH PVC WELL SCREEN .01 INCH SLOT 0.125 INCH SPACING
FILTER PACK PEA GRAVEL
THREADED BOTTOM PLUG

PPC AIR SUPPLY LINE

AIR SUPPLY TUBE

GROUND SURFACE

6.5'

1'

2.5'

5'

PVC AIR SUPPLY LINE

ANNULAR FILL
4 INCH PVC WELL CASING
NATIVE SOIL SEAL
FILTER PACK PEA GRAVEL
4 INCH PVC WELL SCREEN .01 INCH SLOT 0.125 INCH SPACING
4 INCH PVC WELL PIPE
4 INCH PVC WELL SCREEN .01 INCH SLOT 0.125 INCH SPACING
FILTER PACK PEA GRAVEL
THREADED BOTTOM PLUG

DDC WELL DESIGN

NOT TO SCALE
Case History 19

Wasatch Environmental, Incorporated
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: DDC Groundwater Circulating Wells, Soil Vapor Extraction

Number of Wells: 10
Diameter of Wells 2"
Length of Wells 30'

SITE DATA

Target Contaminant(s): BTEX/ Free Phase Petroleum Product

Site Location: Site 1 Denver, Colorado

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 13' to 27'
Thickess of Aquifer: 20'

Permeability: 5.6 X 10E-5 CM/SEC

Soil Type: Silty Clay (CL), Weathered Bedrock

OPERATIONAL DATA

Dates of Operation: 7-96 through Present

Status of Operation: Ongoing

SYSTEM PERFORMANCE DATA

Radius of Influence: 15'
Groundwater Pumping Rate: ND

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene (S1;S2)</td>
<td>13; 1.8 mg/l</td>
<td>12; 0.97 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Toluene</td>
<td>14; 1.7 mg/l</td>
<td>7.6; 0.39 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>10; 2 mg/l</td>
<td>2.3; 0.75 mg/l</td>
<td>ND</td>
</tr>
<tr>
<td>Xylenes</td>
<td>49; 15 mg/l</td>
<td>12; 5.8 mg/l</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND denotes not determined
DDC WELL DESIGN

NOT TO SCALE
Case History 20

Wasatch Environmental, Incorporated
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: DDC Groundwater Circulating Wells, Soil Vapor Extraction, Passive Soil Venting

Number of Wells: 18 Diameter of Wells 4" Length of Wells 24.5'

SITE DATA

Target Contaminant(s): BTEXN/ Free Phase Petroleum Product

Site Location: Salt Lake Airport, North Support Fueling Facility

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 12' Thickness of Aquifer: 15'

Hydraulic Conductivities: Horizontal 4 ft/day Vertical ND

Soil Type: Silt (ML)

OPERATIONAL DATA

Dates of Operation: 9-96 through Present.

Status of Operation: Ongoing (No subsequent monitoring)

SYSTEM PERFORMANCE DATA

Radius of Influence: 25' Groundwater Pumping Rate: ND

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Product</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND denotes not determined

00/CASR.00
Groundwater Monitoring Well Design

- **10 Inch Dia. Boring**
- **Annular FRL**
- **4 Inch PVC Well Casing**
- **Bentonite Clay Seal**
- **Filter Pack 16-40 Silica Sand**
- **4 Inch PVC Well Screen**
- **0.01 Inch Slot**
- **0.125 Inch Spacing**
- **Bentonite Clay Seal**
- **4 Inch PVC Well Pipe**
- **4 Inch PVC Well Screen**
- **0.01 Inch Slot**
- **0.125 Inch Spacing**
- **Filter Pack 16-40 Silica Sand**
- **Threaded Bottom Plug**

DDC Well Design

LEGEND

- Groundwater monitoring well
- Vent well
- DDC circulating well

APPROXIMATE SCALE: 1" = 50'

SALT LAKE CITY AIRPORT, NORTH SUPPORT FUELING FACILITY

SALT LAKE CITY, UTAH

WEI GW CASE
Case History 21

EG&G Environmental
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: Standard construction with eductor pipe

Number of Wells: 1 System Diameter 6 in System Length 22 ft

SITE DATA

Target Contaminant(s): 1,2 DCE & BTEX

Site Location: Oceana NAS, Virginia

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 3 to 6 ft Thickness of Aquifer: ~15 ft

Hydraulic Conductivities: Horizontal 5 ft/day Vertical ~1 ft/day

OPERATIONAL DATA

Dates of Operation: 8/96 through 11/96
Status of Operation: Currently Operating

SYSTEM PERFORMANCE DATA

Radius of Influence: >40 ft Groundwater Pumping Rate: 5 gpm

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2 DCE</td>
<td>10,000 ppb</td>
<td>58</td>
<td>not quantified</td>
</tr>
<tr>
<td>Benzene</td>
<td>7 ppb</td>
<td>ND</td>
<td>not quantified</td>
</tr>
<tr>
<td>Ethyl Benzene</td>
<td>12 ppb</td>
<td>ND</td>
<td>not quantified</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NoVOCs Installation at Oceana Naval Air Station
DCE Case Study

Setting
Oceana NAS, Virginia
Single well pilot NoVOCs installation

Hydrogeology
Fine sand with silt
Hydraulic conductivity ~ 1x10^-3 cm/sec
Saturated thickness - 15 feet
Hydraulic gradient - 0.007 ft/ft
Vadose zone thickness - 3 to 5 ft.

Contamination
cis-1,2-DCE - peak concentrations as high as 10,000 ppb
Lower levels of BTEX and TPH present
Primary objective of hot-spot mass removal

Inorganic Chemistry
Dissolved iron - 80 ppm

Results
Pumping rate - 5 gpm
Period of operation - 3 month pilot operation
Radius of influence greater than 40 feet, about 3 times plume thickness
BTEX reduced to levels below or near detection limits
Maximum 1,2-DCE concentration reduction - 99+ %
Most wells within treatment zone have reached 1,2-DCE cleanup standard after 3 months of operation

1,2-DCE CONCENTRATION REDUCTIONS, 3 MONTHS OF OPERATION
NoVOCs Installation at Oceana Naval Air Station

DCE CONCENTRATION REDUCTION PROFILES
(note the logarithmic scale on the y-axis)

Operation Details

- 3 hp & 1.5 hp regenerative blowers
- Off-gas treatment - granular activated carbon
- pH control - automated acid metering system
- pH control system has effectively controlled iron precipitation/fouling with virtually no maintenance
- Several monitoring wells to measure performance and radius of treatment zone
- At 5 gpm - air-to-water ratio = 75:1
- Mobile equipment trailer and process controls
- System operation has been in-service over 98% of time with very limited inspection (system shutdowns have been due to power outages and flooding from hurricanes)
Case History 22

EG&G Environmental
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: Standard construction with eductor pipe

Number of Wells: 1 System Diameter 6 in. System Length 220 ft

SITE DATA

Target Contaminant(s): TCE

Site Location: Coeur d'Alene, Idaho

Confined or Unconfined Aquifer: Unconfined

Depth to Groundwater: 190 ft Thickness of Aquifer: unknown, plume is in top 30 ft

Hydraulic Conductivities: Horizontal $5 \times 10^{-3} \text{ cm/s}$ Vertical 10^{-3} cm/s

OPERATIONAL DATA

Dates of Operation: 11/96 through current

Status of Operation: currently operating

SYSTEM PERFORMANCE DATA

Radius of Influence: not yet determined Groundwater Pumping Rate: 35 gpm

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCE</td>
<td>900 ppb</td>
<td>180 ppb after 3 weeks</td>
<td>unknown</td>
</tr>
</tbody>
</table>
NoVOCs Installation at Industrial Site, Coeur d'Alene, Idaho

Setting
Coeur d'Alene, Idaho
Single well NoVOCs installation at light industrial plant
TCE plume is present in the Rathdrum Prairie Aquifer, an EPA
designated Sole Source Aquifer

Hydrogeology
Unconsolidated medium and coarse sands
Hydraulic conductivity ~ 5x10^-3 cm/sec
Plume thickness - 30 feet
Vadose zone thickness - 190 ft.

Contamination
TCE - peak concentrations as high as 1,500 ppb
Average concentrations of about 900 ppb
Primary objective to treat plume under plant property
(upgradient wells indicate upgradient TCE sources)

Inorganic Chemistry
Alkalinity of 247 mg/l as CaCO₃, groundwater is in equilibrium
with calcite (indicating a strong potential for calcite scale
formation)

Initial Results
Pumping rate - 35 gpm
Period of operation - started in November 1996
Expected radius of treatment zone about 90 feet
TCE concentration reduction of about 80 % measured during
the first 3 weeks of system operation
Monitoring of inlet/outlet concentrations indicate 85 % removal
of TCE in a single pass through the NoVOCs well

Operation Details
- 17.5 hp regenerative blower
- Closed loop system - no air discharge/permits
- Off-gas treatment - granular activated carbon
- pH control - carbon dioxide addition
- pH control system has effectively controlled calcite precipitation/ fouling
 with virtually no maintenance
- Three monitoring wells to measure performance/treatment zone
- At 35 gpm - air-water ratio = 14:1
- Mobile equipment trailer and process controls
- System operation has been in-service over 99% of time with very limited
 inspection
Pilot Testing of NoVOCs In-well Stripping Process

Laboratory Setting
Laboratory pilot testing of NoVOCs in-well stripping process, conducted by Battelle Northwest Laboratory. Full-scale NoVOCs well (70 feet column, 6-inch diameter) constructed in lab.

Contamination
1,1,1-TCA introduced to a tank at two concentrations; one test at 410 ppb and one test at 259 ppb. Primary objective of the pilot test was to verify the mass transfer through NoVOCs in-well stripping process and validate design parameters.

Operations and Results
The pilot system was operated at a relatively low air-to-water ratio (6:1, due to equipment limitations) and achieved a removal efficiency of approximately 65% of the TCA concentration per treatment cycle. The engineering calculations used to predict stripping efficiency were demonstrated to be accurate. The stripping efficiency can be easily increased to >90% by simply increasing the air-to-water ratio to greater than 20:1.

Results of NoVOCs Pilot Testing for 1,1,1-TCA Removal

![Graph showing TCA concentration over number of treatment cycles for Test 1 and Test 2, with predicted lines.]
Case History 23

EG&G Environmental
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: Standard Construction
Number of Wells: 1 System Diameter 6 in System Length 15 ft

SITE DATA

Target Contaminant(s): TPH & BTEX
Site Location: Fairchild AFB, WA
Confined or Unconfined Aquifer: unconfined
Depth to Groundwater: 8 ft Thickness of Aquifer: 6 ft
Hydraulic Conductivities: Horizontal 220 ft/day Vertical ~100 ft/day

OPERATIONAL DATA

Dates of Operation: 5/96 through 7/96
Status of Operation: closed

SYSTEM PERFORMANCE DATA

Radius of Influence: <35 ft Groundwater Pumping Rate: 3 to 6 gpm

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPH-G</td>
<td>10,200 ppb</td>
<td>2,200 ppb</td>
<td>estimated at 22 lbs.</td>
</tr>
<tr>
<td>Xylene</td>
<td>490 ppb</td>
<td>100 ppb</td>
<td></td>
</tr>
<tr>
<td>Ethyl Benzene</td>
<td>240 ppb</td>
<td>10 ppb</td>
<td></td>
</tr>
</tbody>
</table>

NoVOCs Installation at Fairchild Air Force Base
BTEX Case Study

Setting
Fairchild Air Force Base, WA,
NoVOCs Technology Demonstration Site
Single well located in center of plume

Hydrogeology
Medium sand with silt, hydraulic conductivity ~ 8×10^{-2} cm/sec
Saturated thickness - 4.6 to 5.8 feet
Gradient - 0.0013 ft/ft
Vadose zone thickness - ~ 8 ft.

Contamination
TPHg 10,200 ppb - Sheen observed; Benzene 5 ppb; Toluene 10 ppb;
Ethylbenzene 237 ppb; Xylene 496 ppb

Inorganic Chemistry
Total alkalinity (as CaCO$_3$) - ~500 mg/L
Dissolved iron - 20 to 80 mg/L

Operating Results
Pumping rate - 5 gpm
Stripped VOCs in vapor stream - 12 to 25 ppmv
Daily mass removal - 0.26 lb hydrocarbons/day
TPH of NoVOCs recharge water at non-detect levels
Average TPH reductions of 50% in first operating week
Radius of treatment zone greater than 5 times saturated thickness

REDUCTION IN TPH-G CONCENTRATIONS AFTER 1 MONTH OF OPERATION

NoVOCs Performance Data
NoVOCs Installation at Fairchild AFB

TPH-G CONCENTRATION REDUCTIONS

ETHYLBENZENE AND XYLENE CONCENTRATION REDUCTIONS

Operation Details

- 2 - 3 hp regenerative blowers, closed-loop operation no air emissions
- Off-gas treatment - granular activated carbon
- pH control - automated acid metering system
- 6 monitoring wells to measure performance and radius of treatment zone
- Mobile equipment trailer and process controls
Case History 24

EG&G Environmental
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: Standard configuration with eductor pipe
Number of Wells: 2 System Diameter 10 in System Length 60 ft

SITE DATA

Target Contaminant(s): Site Data
Site Location: Aubagne, France
Confined or Unconfined Aquifer: Unconfined
Depth to Groundwater: 8 ft Thickness of Aquifer: 50 ft
Hydraulic Conductivities: Horizontal 140 ft/day Vertical ~28 ft/day

OPERATIONAL DATA

Dates of Operation: 7/94 through 12/95
Status of Operation: closed

SYSTEM PERFORMANCE DATA

Radius of Influence: ~120 ft Groundwater Pumping Rate: 120 & 60 gpm

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCE</td>
<td></td>
<td></td>
<td>More than 4,000 lbs. combined w/SVE system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NoVOCs Installation at a Pigment Manufacturing Site

PCE Case Study

Setting
Pigment manufacturing site, France
Two-well commercial NoVOCs installation

Hydrogeology
Medium sand
Hydraulic conductivity ~ 5×10^{-2} cm/sec
Saturated thickness - 55 feet
Hydraulic gradient - 0.007 ft/ft
Vadose zone thickness - 8 ft.

Contamination
PCE - 3 ppm average initial dissolved concentration, peak concentrations as high as 23 ppm
DNAPL presumed present
Primary objective of hot-spot mass removal

Results
Pumping rate - 125 gpm NV-1, 60 gpm NV-2
Period of operation - 18 Months
Radius of influence ~ 115 feet (35 meters) per well
Maximum concentration reduction - 98%
Average concentration reduction - 91%
Total mass removal in conjunction with SVE ~ 4000 lb.

PCE CONCENTRATIONS REDUCTIONS

EGcG Environmental
The predicted circulation zone for a NoVOCs well is an important system design parameter. The water recharged from the upper well screen in a NoVOCs well has dissolved oxygen (DO) concentrations in excess of the background DO found in most aquifers. Therefore, the distribution of DO in the aquifer can be used to demonstrate the extent of the area being treated by the NoVOCs well. At this site the circulation zone for each well was measured by analyzing DO in groundwater after 10 months of operation. The extent of the circulation zone for wells NV-1 and NV-2 is approximately 35 to 40 meters (115 to 130 feet) in radius, respectively. There was a reasonable match between the design-predicted and measured circulation zones.

Radial Influence of NoVOCs Well NV-1

- NV-1a
- PZ-3
- SV-3
- SV-2

Radial Distance from NV-1 (meters)

Dissolved Oxygen (mg/l)

Radial Influence of NoVOCs Well NV-2

- NV-2a
- SV-5
- PZ-1
- PZ-2
- BR-4

Radial Distance from NV-2 (meters)

Dissolved Oxygen (mg/l)
Case History 25

EG&G Environmental
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: Standard construction with eductor pipe

Number of Wells: 1 System Diameter 10 in System Length 50 ft

SITE DATA

Target Contaminant(s): TCE

Site Location: Edwards AFB, CA, Site 19

Confined or Unconfined Aquifer: Semi-confined

Depth to Groundwater: 27 ft Thickness of Aquifer: 23 ft

Hydraulic Conductivities: Horizontal 10 ft/day Vertical ~1 ft/day

OPERATIONAL DATA

Dates of Operation: 1/96 through 7/96

Status of Operation: closed

SYSTEM PERFORMANCE DATA

Radius of Influence: >50 ft Groundwater Pumping Rate: 3 to 10 gpm

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>___ TCE ___</td>
<td>~300 ppb</td>
<td>5 ppb</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NoVOCs Installation at Edwards Air Force Base
TCE Case Study

Setting
Edwards Air Force Base, CA
NoVOCs Technology Demonstration Site

Hydrogeology
Sandy silt/silty sand
Low yield aquifer ~ 1x10^-3 cm/sec
Saturated thickness - 23 feet
Hydraulic gradient - 0.0047 ft/ft
Vadose zone thickness - 27 ft.

Contamination
TCE - 300 ppb initial

Inorganic Chemistry
Alkalinity - 288 ppm as CaCO₃, groundwater is in equilibrium with calcite (strong potential for scaling)

Initial Results
Pumping rate - 3 to 8 gpm
Period of operation - 7 Months
Radius of treatment zone - >50 feet, more than 2 times plume thickness
Average concentration reduction at 4 months ~ 67%
Maximum concentration reduction - 97%

INITIAL CONCENTRATION REDUCTIONS

TCE concentration (ppb) after 4 months of operation

TCE concentration (ppb) prior to system operation

REGIONAL GROUNDWATER FLOW DIRECTION

0 5 10 20 feet 40 feet
Contaminant Concentration Reduction Profiles - Edwards AFB

WELL M1S 40 FEET AWAY

WELL M2S 40 FEET AWAY

WELL M3S 38 FEET AWAY

WELL M4S 30 FEET AWAY

WELL M5S 50 FEET AWAY

NoVOCs Performance Data
NoVOCs in-Well Removal Efficiency, Edwards AFB

NoVOCs System at Edwards AFB
Single Pass TCE Concentration Reduction Through NoVOCs Well

Operation Details

- 3 - 1.5 hp rotary vane blowers
- Closed - loop operation - no air emissions
- Off - gas treatment - granular activated carbon
- pH control - carbon dioxide addition to injected air
- 6 monitoring wells to measure performance and radius of treatment zone
- At 8 gpm - air-water ratio = 55:1
- During system demonstration period of 7 months, 4 of 6 shallow zone monitoring wells reached 5 ppb MCL for TCE
- Average single pass removal through the NoVOCs well of 90 %
- Flow sensors showed significant hydraulic influence (changes in vertical and horizontal flow directions and velocities) at all points monitored (at least 35 feet from NoVOCs well)
Case History 26

KV Associates, Incorporated
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: C-Sparge™
Number of Wells: 3 System Diameter 4 in System Length 35 ft

SITE DATA

Target Contaminant(s): PCE, TCE, DCE Vinyl Chloride
Site Location: Ed’s Cleaners Falmouth, MA
Confined or Unconfined Aquifer: Unconfined
Depth to Groundwater: 15 Thickness of Aquifer: 250
Hydraulic Conductivities: Horizontal 100-200 ft/day Vertical 20-40 ft/day

OPERATIONAL DATA

Dates of Operation: 1Jan96 through 30Mar96
Status of Operation: Closed

SYSTEM PERFORMANCE DATA

Radius of Influence: 40 ft Groundwater Pumping Rate: 3 gpm

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCE</td>
<td>up to 4000 ppb</td>
<td>BDL to 38 ppb</td>
<td></td>
</tr>
<tr>
<td>TCE</td>
<td>up to 1400 ppb</td>
<td>BDL to 7 ppb</td>
<td></td>
</tr>
<tr>
<td>DCE</td>
<td>up to 190 ppb</td>
<td>BDL to 28 ppb</td>
<td></td>
</tr>
<tr>
<td>VC</td>
<td>up to 10</td>
<td>BDL</td>
<td></td>
</tr>
</tbody>
</table>
Case History 27

IEG Technologies Corporation
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: UVB 400 mm with pump

Number of wells: 1
Diameter of Wells: 16"
Length of Wells: 41'

SITE DATA

Target Contaminant(s): BTEX

Site Location: Laurel Hill, NC

Confined or Unconfined Aquifer: Unconfined

Depth of Groundwater: 28.5
Thickness of Aquifer: 12.5

Hydraulic conductivities: Horizontal 10^{-4} cm/sec Vertical 10^{-5} cm/sec

OPERATIONAL DATA

Dates of Operation: 9/92 through Present

Status of Operation: Operating

SYSTEM PERFORMANCE DATA

Effluent Air Volume: 275 m3/hr

Up and Down Stream Stagnation Point: 35

Groundwater Pumping Rate: 4 m3/hr

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>3,800</td>
<td>608 ppb</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>14,000</td>
<td>1980 ppb</td>
<td></td>
</tr>
<tr>
<td>Ethyl Benzene</td>
<td>5,200</td>
<td>698 ppb</td>
<td></td>
</tr>
<tr>
<td>Xylene</td>
<td>29,000</td>
<td>3040</td>
<td></td>
</tr>
<tr>
<td>IPE</td>
<td>5,300</td>
<td>698</td>
<td></td>
</tr>
</tbody>
</table>
Title: UVB 400 with pump
Laurel Hill, NC

NOT TO SCALE

Total Depth 41'
Well Diameter 16"

static water level
28.6'

Scale
Drawing No.
By
Project No.

Date
Description
UVB 400 with pump

Prepared for
IEG TECHNOLOGIES CORP.
5016-D West WT Harris Blvd.
Charlotte, NC 28269
Case History 28

IEG Technologies Corporation
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: _UVB 400 mm with pump_

Number of wells: _1_ Diameter of Wells _16"_ Length of Wells _133'_

SITE DATA

Target Contaminant(s): _Chloinated Hydrocarbons_

Site Location: _Charlotte, NC_

Confined or Unconfined Aquifer: _Unconfined_

Depth of Groundwater: _25.5'_ Thickness of Aquifer: _107.5'_

Hydraulic conductivities: Horizontal _1.8x10^{-3}cm/sec_ Vertical _=1.8x10^{-4}cm/sec_

OPERATIONAL DATA

Dates of Operation: _9/93_ through _6/95_

Status of Operation: _Operating_

SYSTEM PERFORMANCE DATA

Effluent Air Volume: _300cfm_

Up and Down Stream Stagnation Point: _200'_ Groundwater Pumping Rate: _8m^3/hr_

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>III - Trichloroethane</td>
<td>7,700 ppb</td>
<td>2,800 ppb</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>3 ppb</td>
<td>4 ppb</td>
<td></td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>220 ppb</td>
<td>80 ppb</td>
<td></td>
</tr>
<tr>
<td>II - Dichloroethene</td>
<td>2,200 ppb</td>
<td>990 ppb</td>
<td></td>
</tr>
<tr>
<td>1,1 - Dichloroethane</td>
<td>136 ppb</td>
<td>42 ppb</td>
<td></td>
</tr>
<tr>
<td>1,2 - Dichloroethane</td>
<td>150 ppb</td>
<td>31 ppb</td>
<td></td>
</tr>
</tbody>
</table>
Total Depth 133'
Well Diameter 16''

static water level

25.6'
Case History 29

IEG Technologies Corporation
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: UVR 400 mm with Pump

Number of wells: 6 Diameter of Wells 16" Length of Wells 160.92'

SITE DATA

Target Contaminant(s): Chlorinated Hydrocarbons

Site Location: Berlin IV, Germany

Confined or Unconfined Aquifer: Unconfined

Depth of Groundwater: 45.92' Thickness of Aquifer: 114.8'

Hydraulic conductivities: Horizontal 10^3 cm/sec Vertical 10^4 cm/sec

OPERATIONAL DATA

Dates of Operation: 5/93 through 10/94

Status of Operation: Closed

SYSTEM PERFORMANCE DATA

Effluent Air Volume: 300 m3/hr

Up and Down Stream Stagnation Point: 228' Groundwater Pumping Rate: 15 m3/hr

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHC</td>
<td>39,000 ppb</td>
<td>\leq25 ppb</td>
<td></td>
</tr>
</tbody>
</table>
Case History 30

IEG Technologies Corporation
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: UVR 400mm with pump

Number of wells: 2 Diameter of Wells 16" Length of Wells 81.92'

SITE DATA

Target Contaminant(s): Chlorinated Hydrocarbons

Site Location: Berlin, Germany

Confined or Unconfined Aquifer: Unconfined

Depth of Groundwater: 45.92' Thickness of Aquifer: 36'

Hydraulic conductivities: Horizontal 10^3cm/sec Vertical 10^{-4}cm/sec

OPERATIONAL DATA

Dates of Operation: 12/88 through 11/94

Status of Operation: Closed

SYSTEM PERFORMANCE DATA

Effluent Air Volume: 390m3/hr.

Up and Down Stream Stagnation Point: 72' Groundwater Pumping Rate: 8m3/hr

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHC</td>
<td>10,000 ppb</td>
<td>≤25 ppb</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case History 31

IEG Technologies Corporation
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION
Configuration Employed: ___ UVB 400mm with pump _____
Number of wells: __ 2 __ Diameter of Wells 16" Length of Wells 73.76'

SITE DATA
Target Contaminant(s): ___ Chlorinated Hydrocarbons
Site Location: Cologne, Germany
Confined or Unconfined Aquifer: ___ Unconfined
Depth of Groundwater: __ 55.76' Thickness of Aquifer: __ 18'
Hydraulic conductivities: Horizontal __ 10^2 cm/sec Vertical __ 10^3 cm/sec

OPERATIONAL DATA
Dates of Operation: __ 5/92 __ through __ 3/95
Status of Operation: ___ Closed

SYSTEM PERFORMANCE DATA
Effluent Air Volume: __ 360 m^3/hr.
Up and Down Stream Stagnation Point: __ 36' Groundwater Pumping Rate: __ 15 m^3/hr

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHC</td>
<td>2.100 ppb</td>
<td>≤ 10 ppb</td>
<td></td>
</tr>
</tbody>
</table>
Total Depth 73.76'

Well Diameter 16''

static water level

55.76'

UVB 400 with pump
Cologne, Germany

Title
UVB 400 with pump
Cologne, Germany

Prepared for
IEG TECHNOLOGIES CORP.
5016-D West WT Harris Blvd.
Charlotte, NC 28269
Case History 32

IEG Technologies Corporation
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: UVB 400 mm with Pump

Number of wells: 1 Diameter of Wells 16" Length of Wells 67.24'

SITE DATA

Target Contaminant(s): Chlorinated Hydrocarbons

Site Location: Frankfort, Germany

Confined or Unconfined Aquifer: Unconfined

Depth of Groundwater: 26.24' Thickness of Aquifer: 41'

Hydraulic conductivities: Horizontal 10^{-4} cm/sec Vertical 10^{-5} cm/sec

OPERATIONAL DATA

Dates of Operation: 2/89 through 2/91

Status of Operation: Closed

SYSTEM PERFORMANCE DATA

Effluent Air Volume: 330 m3/hr.

Up and Down Stream Stagnation Point: 82' Groundwater Pumping Rate: 15 m3/hr

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHC</td>
<td>2,000 pph</td>
<td>20 ppb</td>
<td></td>
</tr>
</tbody>
</table>
UVB 400 with pump
Frankfort, Germany

Total Depth 67.24'
Well Diameter 16''

static water level
26.24'

NOT TO SCALE

Title
UVB 400 with pump
Frankfort, Germany

Prepared for
IEG TECHNOLOGIES CORP.
5015-D West WT Harris Blvd.
Charlotte, NC 28269
Case History 33

IEG Technologies Corporation
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: 1 UVB 400 mm with Air Lift

Number of wells: 1
Diameter of Wells: 16"
Length of Wells: 66.5'

SITE DATA

Target Contaminant(s): BTEX

Site Location: Troutman, NC

Confined or Unconfined Aquifer: Unconfined

Depth of Groundwater: 46.5'
Thickness of Aquifer: 20'

Hydraulic conductivities: Horizontal $1.9 \times 10^{-4} \text{cm/sec}$
Vertical $= 1.9 \times 10^{-5} \text{cm/sec}$

OPERATIONAL DATA

Dates of Operation: 9/92 through Present

Status of Operation: Operating

SYSTEM PERFORMANCE DATA

Effluent Air Volume: 250m3/hr

Up and Down Stream Stagnation Point: 45'
Groundwater Pumping Rate: $\approx 4 \text{m}^3/\text{hr}$

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>1,600</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>63</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ethyl Benzene</td>
<td>3</td>
<td>≤ 1</td>
<td></td>
</tr>
<tr>
<td>Xylene</td>
<td>53</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>IPE</td>
<td>2,000</td>
<td>1,120</td>
<td></td>
</tr>
</tbody>
</table>
Case History 34

IEG Technologies Corporation
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION
Configuration Employed: UVB 400 mm Air Lift
Number of wells: 1 Diameter of Wells 16" Length of Wells 55.78'

SITE DATA
Target Contaminant(s): Chlorinated Hydrocarbons
Site Location: Tuebingen, Germany
Confined or Unconfined Aquifer: Unconfined
Depth of Groundwater: 22.96' Thickness of Aquifer: 32.8'
Hydraulic conductivities: Horizontal 10^{-4} cm/sec Vertical 10^{-5} cm/sec

OPERATIONAL DATA
Dates of Operation: 12/89 through 1/90
Status of Operation: Closed

SYSTEM PERFORMANCE DATA
Effluent Air Volume: 220 m3/hr
Up and Down Stream Stagnation Point: 65' Groundwater Pumping Rate: 4 m3/hr
<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHC</td>
<td>50 ppb</td>
<td>5 ppb</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case History 35

IEG Technologies Corporation
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION
Configuration Employed: UVB 400 mm Air Lift
Number of wells: 1 Diameter of Wells 16" Length of Wells 52.7'

SITE DATA
Target Contaminant(s): Chlorinated Hydrocarbons
Site Location: Schelklingen, Germany
Confined or Unconfined Aquifer: Unconfined
Depth of Groundwater: 33' Thickness of Aquifer: 19.7'
Hydraulic conductivities: Horizontal 10^2 cm/sec Vertical 10^3 cm/sec

OPERATIONAL DATA
Dates of Operation: 1/90 through 7/92
Status of Operation: Closed

SYSTEM PERFORMANCE DATA
Effluent Air Volume: 300 m^3/hr
Up and Down Stream Stagnation Point: 40' Groundwater Pumping Rate: 4 m^3/hr

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHC</td>
<td>1,800 ppb</td>
<td>10 ppb</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total depth 52.7'
Well diameter 16"

Static Water Level 33'

Title: UVB 400 Airlift
Location: Scheiklingen, Germany

Scale: NONE

IEG TECHNOLOGIES CORP.
5015-D West WT Harris Blvd.
Charlotte, NC 28269
Case History 36

IEG Technologies Corporation
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: UVB 400 mm Air Lift

Number of wells: 1 Diameter of Wells 16" Length of Wells 68.88'

SITE DATA

Target Contaminant(s): Chlorinated Hydrocarbons

Site Location: Mainz, Germany

Confined or Unconfined Aquifer: Unconfined

Depth of Groundwater: 19.68' Thickness of Aquifer: 49.2'

Hydraulic conductivities: Horizontal 10^{-4} cm/sec Vertical $=10^{-5}$ cm/sec

OPERATIONAL DATA

Status of Operation: Closed

SYSTEM PERFORMANCE DATA

Effluent Air Volume: 270m3/hr.

Up and Down Stream Stagnation Point: 100' Groundwater Pumping Rate: $=4m^3$/hr

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHC</td>
<td>800 ppb</td>
<td><20 ppb</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case History 37

IEG Technologies Corporation
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: UVPB 400 mm Air Lift
Number of wells: 1 Diameter of Wells 16" Length of Wells 42.6'

SITE DATA

Target Contaminant(s): Chlorinated Hydrocarbons
Site Location: Furth, Germany
Confined or Unconfined Aquifer: Unconfined
Depth of Groundwater: 32.8' Thickness of Aquifer: 9.8'
Hydraulic conductivities: Horizontal 10^{-5} cm/sec Vertical 10^{-6} cm/sec

OPERATIONAL DATA

Dates of Operation: 8/89 through 1/91
Status of Operation: Closed

SYSTEM PERFORMANCE DATA

Effluent Air Volume: 220 m3/hr
Up and Down Stream Stagnation Point: 20' Groundwater Pumping Rate: $=4 m^3$/hr

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHC</td>
<td>3.800 ppb</td>
<td>10 ppb</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Title: UVB 400 Airlift
Furth, Germany

Scale: NONE

IEG TECHNOLOGIES CORP.
5015-D West WT Harris Blvd.
Charlotte, NC 28269
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: _ UVB 400mm Air Lift

Number of wells: 1 Diameter of Wells 16" Length of Wells 46 feet

SITE DATA

Target Contaminant(s): Chlorinated Hydrocarbons

Site Location: Berlin, Germany

Confined or Unconfined Aquifer: Unconfined

Depth of Groundwater: 26.24 feet Thickness of Aquifer: 19.7 feet

Hydraulic conductivities: Horizontal 10^3 cm/sec Vertical 10^4 cm/sec

OPERATIONAL DATA

Dates of Operation: 4/89 through 7/90

Status of Operation: Closed

SYSTEM PERFORMANCE DATA

Effluent Air Volume: 350 m^3/hr.

Up and Down Stream Stagnation Point: 40 feet Groundwater Pumping Rate: 4 m^3/hr

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHC</td>
<td>3,100 ppb</td>
<td>30 ppb</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case History 39

IEG Technologies Corporation
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION
Configuration Employed: UVB 400 mm Air Lift
Number of wells: 1 Diameter of Wells 16" Length of Wells 55.78'

SITE DATA
Target Contaminant(s): Chlorinated Hydrocarbons
Site Location: Eislingen Germany
Confined or Unconfined Aquifer: Unconfined
Depth of Groundwater: 19.68' Thickness of Aquifer: 23'
Hydraulic conductivities: Horizontal 10^3 cm/sec Vertical $= 10^4$ cm/sec

OPERATIONAL DATA
Dates of Operation: 3/89 through 5/92
Status of Operation: Closed

SYSTEM PERFORMANCE DATA
Effluent Air Volume: 240m3/hr.
Up and Down Stream Stagnation Point: 46' Groundwater Pumping Rate: 15m3/hr

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHC</td>
<td>10,000 ppb</td>
<td><10 ppb</td>
<td></td>
</tr>
</tbody>
</table>
Title: UVB 400 Airlift
Eislingen, Germany

Scale: NONE

IGE TECHNOLOGIES CORP.
5016-D West WT Harris Blvd.
Charlotte, NC 28269
Case History 40

IEG Technologies Corporation
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: 1 UVB 200 mm with pump

Number of wells: 1 Diameter of Wells 8" Length of Wells 20'

SITE DATA

Target Contaminant(s): BTEX

Site Location: Wilmington, NC

Confined or Unconfined Aquifer: Unconfined

Depth of Groundwater: 5' Thickness of Aquifer: 15'

Hydraulic conductivities: Horizontal 10^{-3} cm/sec Vertical 10^{-4} cm/sec

OPERATIONAL DATA

Dates of Operation: 7/93 through 12/94

Status of Operation: Closed

SYSTEM PERFORMANCE DATA

Effluent Air Volume: 170m3/hr

Up and Down Stream Stagnation Point: 30' Groundwater Pumping Rate: 4 to 5m3/hr

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>160</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>3.3</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Ethyl Benzene</td>
<td>130</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Xylene</td>
<td>110</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>403</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Prepared for</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UVB 200 with pump</td>
<td>IEG TECHNOLOGIES CORP.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5015-D West WT Harris Blvd.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Charlotte, NC 28269</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scale</th>
<th>Drawing No.</th>
<th>By</th>
<th>Project No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UVB 200 with pump</td>
</tr>
</tbody>
</table>
Case History 41

IEG Technologies Corporation
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION
Configuration Employed: UVR 250mm Air Lift
Number of wells: 1 Diameter of Wells 10" Length of Wells 52.44'

SITE DATA
Target Contaminant(s): Chlorinated Hydrocarbons
Site Location: Giengen Germany
Confined or Unconfined Aquifer: Unconfined
Depth of Groundwater: 26.24' Thickness of Aquifer: 26.2'
Hydraulic conductivities: Horizontal 10^{-4} cm/sec Vertical 10^{-5} cm/sec

OPERATIONAL DATA
Dates of Operation: 8/87 through 2/90
Status of Operation: Closed

SYSTEM PERFORMANCE DATA
Effluent Air Volume: 200m3/hr
Up and Down Stream Stagnation Point: 53' Groundwater Pumping Rate: ≈3m3/hr

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHC</td>
<td>2.000 ppb</td>
<td><10 ppb</td>
<td></td>
</tr>
</tbody>
</table>

GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: UVB 300 mm with Pump
Number of wells: 1 Diameter of Wells 12" Length of Wells 39.32'

SITE DATA

Target Contaminant(s): Chlorinated Hydrocarbons
Site Location: Plochingen, Germany
Confined or Unconfined Aquifer: Unconfined
Depth of Groundwater: 13.12' Thickness of Aquifer: 26.2'
Hydraulic conductivities: Horizontal 10^{-4} cm/sec Vertical 10^{-5} cm/sec

OPERATIONAL DATA

Dates of Operation: 5/89 through 12/93
Status of Operation: Closed

SYSTEM PERFORMANCE DATA

Effluent Air Volume: 260 m3/hr
Up and Down Stream Stagnation Point: 52' Groundwater Pumping Rate: 7 m3/hr

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHC</td>
<td>4,000 ppb</td>
<td><10 ppb</td>
<td></td>
</tr>
</tbody>
</table>
UVB 300 System Schematic
Plochingen, Germany

Prepared for
IEG TECHNOLOGIES CORP.
5015-D West WT Harris Blvd.
Charlotte, NC 28269
Case History 43

IEG Technologies Corporation
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION
Configuration Employed: UVB 400 mm with Pump (reverse flow)
Number of wells: 2 Diameter of Wells 16" Length of Wells 68.8'

SITE DATA
Target Contaminant(s): BTEX
Site Location: Berlin II, Germany
Confined or Unconfined Aquifer: Unconfined
Depth of Groundwater: 32.8' Thickness of Aquifer: 36'
Hydraulic conductivities: Horizontal 10^3 cm/sec Vertical 10^4 cm/sec

OPERATIONAL DATA
Dates of Operation: 10/90 through 2/93
Status of Operation: Closed

SYSTEM PERFORMANCE DATA
Effluent Air Volume: 380m3/hr.
Up and Down Stream Stagnation Point: 72' Groundwater Pumping Rate: 10m3/hr

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTEX</td>
<td>280,000 ppb</td>
<td><50 ppb</td>
<td></td>
</tr>
</tbody>
</table>
Total Depth 68.8'

Well Diameter 16''

32.8'

static water level

NOT TO SCALE

Title
UVB 400 with pump (reverse flow)
Berlin II, Germany

Prepared for
IEG TECHNOLOGIES CORP.
6016-D West WT Harris Blvd.
Charlotte, NC 28269

<table>
<thead>
<tr>
<th>Scale</th>
<th>Drawing No.</th>
<th>By</th>
<th>Project No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Description</td>
<td></td>
<td>UVB 400 with pump</td>
</tr>
</tbody>
</table>
Case History 44

IEG Technologies Corporation
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: UVB 400 with pump and in-situ bioreactors

Number of wells: 1 Diameter of Wells 16" Length of Wells 22'

SITE DATA

Target Contaminant(s): Creosote

Site Location: Gainesville, FL

Confined or Unconfined Aquifer: Unconfined

Depth of Groundwater: 8-12' Thickness of Aquifer: 10-14'

Hydraulic conductivities: Horizontal 10^{-4} cm/sec Vertical 10^{-5} cm/sec

OPERATIONAL DATA

Dates of Operation: 2/95 through Present

Status of Operation: Operating

SYSTEM PERFORMANCE DATA

Effluent Air Volume: 306 m3/hr

Up and Down Stream Stagnation Point: 35' Groundwater Pumping Rate: 1 m3/hr

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-ring PAHs</td>
<td>4.861 ppb</td>
<td>1991 ppb</td>
<td>710 gm</td>
</tr>
<tr>
<td>3-ring PAHs</td>
<td>1.354 ppb</td>
<td>1045 ppb</td>
<td>76 gm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modified UVB 400 with pump and in-situ bioreactor

Total Depth 22'

Gainesville, FL
Case History 45

IEG Technologies Corporation
GROUNDWATER CIRCULATING WELL
CASE HISTORY INFORMATION FORM

SYSTEM INFORMATION

Configuration Employed: SZB 400 mm with 2 pumps

Number of wells: 2 Diameter of Wells 16" Length of Wells 45 92'

SITE DATA

Target Contaminant(s): BTEX

Site Location: Parchim, Germany

Confined or Unconfined Aquifer: Unconfined

Depth of Groundwater: 13.12' Thickness of Aquifer: 32.8'

Hydraulic conductivities: Horizontal 10^{-5} cm/sec Vertical 10^{-6} cm/sec

OPERATIONAL DATA

Dates of Operation: 7/93 through 11/94

Status of Operation: Closed

SYSTEM PERFORMANCE DATA

Effluent Air Volume: 380 m3/hr

Up and Down Stream Stagnation Point: 64' Groundwater Pumping Rate: 15 m3/hr

<table>
<thead>
<tr>
<th>Contaminant ID</th>
<th>Initial Concentration</th>
<th>Final Concentration</th>
<th>Mass Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTEX</td>
<td>2.690 ppb</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IEG Technologies SZB 400 with two pumps
Parchim, Germany

Total depth 45.92'
Static water level 13.12'
Well diameter 16"