New Technologies for Treating Severe Bleeding in Far-Forward Combat Areas

Dr. Michael A. Dubick and Dr. Bijan Kheirabadi
US Army Institute of Surgical Research
3400 Rawley East Chambers Avenue
San Antonio, TX 78234-6315
USA

michael.dubick@amedd.army.mil / bijan.kheirabadi@amedd.army.mil

ABSTRACT

Introduction
Hemorrhage accounts for nearly 50% of death on the battlefield and the majority of these fatalities occur before the wounded Soldier reaches a surgical facility. The natural ability of blood to clot rapidly and seal the bleeding sites is inadequate to control a more severe hemorrhage and is often diminished after traumatic injuries. Therefore, the use of blood clotting drugs/devices is essential to stop the severe hemorrhage and prevent death of patients. The identification of new technologies to stop severe hemorrhage is a major topic for this symposium.

Rationale
Identification, development and evaluation of new hemostatic products and technologies capable of stopping life threatening hemorrhage relevant to battlefield injury, have been one of the main focuses of the Combat Casualty Care Research program in the US Army. Currently, none of the presently available FDA approved hemostatic agents meet all the criteria of an ideal hemostatic agent for combat use. Thus, efforts continue to test new hemostatic agents in development to identify those that are safe and more effective for treating military casualties.

Methods and Results
Swine models of severe hemorrhage caused by femoral and carotid arterial injury under intact coagulation status and coagulopathic conditions have been utilized to evaluate the safety and efficacy of Combat Gauze. Combat Gauze (kaolin-coated gauze) was recently distributed by US forces as the main hemostatic product for treating external hemorrhage in the far-forward combat zone. Efficacy studies have indicated that Combat Gauze stopped arterial bleeding in 80% of pigs (8 of 10), but it was not immediately effective and often required more than one application. It was also much less effective under coagulopathic conditions. Thus, several newer products are being developed to address these deficiencies. These include chitosan- and fibrinogen-based dressings, as well as new technologies for delivery of hemostatic products to deep penetrating bleeding wounds that may be inaccessible to topical dressings. In addition, pressure point hemostatic devices are being developed to be used in conjunction with hemostatic dressings, to treat bleeding in junctional areas such as the groin and axilla, where tourniquets cannot be applied.

Conclusions
Combat Gauze has been recognized as a safe and significantly more effective hemostatic dressing against major arterial hemorrhages than previously deployed products. However, the product has limitations. Several
New Technologies for Treating Severe Bleeding in Far-Forward Combat Areas

Hemorrhage accounts for nearly 50% of death on the battlefield and the majority of these fatalities occur before the wounded Soldier reaches a surgical facility. The natural ability of blood to clot rapidly and seal the bleeding sites is inadequate to control a more severe hemorrhage and is often diminished after traumatic injuries. Therefore, the use of blood clotting drugs/devices is essential to stop the severe hemorrhage and prevent death of patients. The identification of new technologies to stop severe hemorrhage is a major topic for this symposium.
New Technologies for Treating Severe Bleeding in Far-Forward Combat Areas

new products are being developed to deliver a more effective solution to treat significant bleeding on the battlefield.

Key Words: Hemostasis, bleeding, Combat Gauze, chitosan, animal models.

1.0 INTRODUCTION

Acute hemorrhage accounts for about 50% of battlefield deaths in conventional warfare, and for 30% of casualties who die from wounds [1-4]. The majority of these fatalities occur before the wounded Soldiers can reach a hospital. For example, it was suggested up to one third of the deaths from exsanguination during the Vietnam War could have been prevented by the use of effective field hemorrhage control methods [4-6].

The majority of hemorrhagic deaths on the battlefield are due to intracavitary hemorrhage, which generally is not readily accessible and cannot be controlled with externally applied hemostatic agents [7-9]. Recent emphasis on the use of body armor protection, however, has reduced the number of casualties in this category. As a result, extremities remain the most common site of injury in military conflicts [10,11]. Extremity hemorrhage accounted for nearly 10% of all deaths in Vietnam [12]. A recent epidemiology study of 6,609 combat wounds in Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF) showed that extremities were the most common sites of injury among 1,566 casualties (54%), the majority of which was amendable to tourniquet application [13]. According to the Wound Data and Munitions Effectiveness Team (WDMET) database, exsanguination from extremity wounds accounts for more than half of all potentially preventable deaths in combat [14]. Also, a recent evaluation of autopsy data from nearly 1000 casualties from OEF, OIF revealed that hemorrhage accounted for 85% of potentially survivable deaths, with 31% and 69% of these deaths representing compressible and non-compressible wounds, respectively [15]. Thus, a major tenet of the US Army’s Combat Casualty Care Research Program is that a significant increase in survival may be achieved by the prehospital use of simple and effective methods of hemorrhage control, such as a hemostatic dressing, a tourniquet device or a combination of both [14].

It is clear that the natural ability of blood to clot rapidly and seal bleeding sites can be inadequate to control a more severe hemorrhage and this capability is often diminished after traumatic injuries and blood loss. Therefore, the use of hemostatic dressings or devices, as well as drugs to enhance blood clotting, is essential to stop severe hemorrhage and prevent death of injured Soldiers.

2.0 HEMOSTATIC DRESSING

Up until the onset of OEF and OIF, the Army Field Bandage (AFB) was the mainstay to control external bleeding. It is composed of a thick layer of absorbent cotton that is wrapped in layers of gauze and attached to two long straps for wrapping around the wound. It absorbs large volumes of blood and provides a matrix that promotes platelet aggregation and blood coagulation while exerting pressure on the wound. As planning for OEF and OIF developed, research efforts were accelerated to produce a more effective hemorrhage control products than the standard gauze dressing. Essentially, the new products that emerged for the treatment of external bleeding can be categorized into dressings or granular/powder products. Examples of such products are illustrated in Figs 1 and 2. Initially, four new hemostatic products were developed: HemCon Chitosan dressing (HC), QuikClot granules (QC), Fibrin Sealant Dressing (FSD) and Rapid Deployment Hemostat (RDH) dressing. Three of these agents (HC, QC and FSD) were initially deployed to the battlefield and two (HC and QC) were widely distributed after receiving clearance from the US FDA and used by the US Armed Forces in the current conflicts. Each of these products differed in the mechanisms through which they induced
hemostasis. Chitosan, deacetylated chitin, is a nontoxic and biodegradable substance derived from the shells of shrimp or other shellfish and has strong muco-adhesive properties suitable for hemostatic treatment. Thus, the primary mechanism of action of the original HemCon dressing, the newer Chitoflex dressing and other chitosan-based products such as Celox, appears to be tissue adherence and coverage of wounds.

![Figure 1: New Hemostatic Dressings.](image1)

A) Combat Gauze, B) Latest version of HemCon dressing, C) TraumaStat, D) Stasilon dressing.

Note that TraumaStat is no longer available and of the remaining 3, only Combat Gauze was effective against severe arterial bleeding. See text for additional descriptions.

![Figure 2: New Granular/Powder Hemostatic Products.](image2)

A) WoundStat, B) SuperQR; C) Celox.

Note that of the 3, only Celox continues to be used as the others had significant safety issues (see text).

The RDH dressing is also a chitin-based product composed of poly-N-acetyl-glucosamine (p-GlcNAc) which is fully acetylated and lyophilized, but it is algae-derived. Its hemostatic action is not fully understood but red blood cell and platelet aggregation, activation of the clotting cascade, and local vasoconstriction have been suggested as possible mechanisms.

Chitosan was also the basis for hemostasis for a product called TraumaStat, which was a dressing of nonwoven porous polyethylene fibers (high surface area) filled with precipitated silica. These filled fibers were impregnated with a chitosan derivative. Although TraumaStat was reported to be more effective than HC dressing in stopping bleeding in a swine femoral artery transaction model [16], this product never made it to the commercial market and is no longer available. Non-chitosan dressings have also been developed. For example, Stasilon (Entegrion Co, Chapel Hill, North Carolina) is a dual-fiber dressing made of type E continuous filament glass and a specialty rayon material woven together as a special textile material. Although work in our laboratory did not find the dressing successful in stopping an arterial hemorrhage, the company is pursuing using this dressing for non life-threatening bleeding or for burn wound coverage.
A relatively new hemostatic product, Celox (CX), was developed as a powder form of different types of chitosan. It was cleared by the US FDA in 2006 for the emergency treatment of bleeding from external wounds. Like other chitosan products it relies on binding to negatively charged surfaces such as red blood cells and adhering to tissue at the site of injury. Besides the dry powder, Celox is also packaged in small packets that dissolve upon contact with blood, releasing the Celox powder. Celox products have been deployed to the battlefield, but no data have been reported on its use.

In contrast to chitosan-based products and other dressing mentioned above, the original QC hemostatic agent was composed of zeolite granules which is an aluminosilicate. When poured into a bleeding wound, it absorbs water, concentrating erythrocytes, platelets, and clotting factors in the wound, thereby promoting coagulation. However, the exothermic reaction produced has been recognized as a major safety concern and has been linked to significant thermal tissue damage in the wound in both animal experiments and combat casualties [17-18]. As a consequence, the original QC granules are no longer produced or sold by the manufacturer (Z-Medica, Wallingford, Connecticut). It was replaced by a newer QC product (QuikClot ACS+) which is composed of synthetic zeolite beads that are packaged in small porous cotton bags for easy application and removal from the wound. The new formulation does not produce excessive heat when mixed with blood and causes no thermal damage to the tissues [19]. Different still, is the Fibrin Sealant Dressing composed of fibrinogen and thrombin derived from human plasma. As the dressing comes in contact with blood, the protein layer dissolves and fibrinogen polymerization occurs forming an adhesive fibrin layer that conforms and attaches tightly to the wound, thereby stopping bleeding. Currently, newer versions of FSD are under development in the US and the Fibrin Patch (Ethicon, Johnson and Johnson, Somerville, NJ), is currently being tested in a clinical trial for surgical application.

3.0 EFFICACY AND SAFETY OF HEMOSTATIC DRESSINGS AND GRANULAR PRODUCTS

Over the past 10-15 yrs, a number of studies in experimental animals have evaluated the efficacy and acute safety of these hemostatic products. At our institute the majority of studies have been performed in swine models designed to be potentially lethal (not treatable with gauze alone) to quantitate blood loss easily, maximize reproducibility and minimize any artificial bias that could favor a particular product. For the most part models have spanned from high volume bleeding under low venous pressure (grade V liver injury) to high volume bleeding under high arterial pressure (abdominal aorta or femoral artery injuries). To evaluate hemostatic products in a more combat relevant extremity wound, we have often used a mixed groin injury model (femoral artery injury in groin) that includes both soft tissue and vascular injuries.

In an early study with the prototype HemCon bandage, our laboratory demonstrated efficacy to reduce bleeding in a swine grade V liver injury [20]. However in studies with the final product, as well as newer HC dressings against high pressure arterial bleeding, they produced hemostasis only briefly (on average <1hr) in 71% of swine subjected to an aortotomy injury,[21] and it failed consistently to stop bleeding in a femoral artery injury model in swine [22]. In addition, investigators at our institute found the original RDH dressing ineffective in controlling severe venous (Grade V liver injury) and arterial bleeding (aortotomy study) in large animals [23,24]. However, a modified version of RDH (mRDH) was reported to be effective in similar models by another group,[25-27] but the mRDH did not stop bleeding in a mixed bleeding (arterial and venous) groin injury [28].

In a swine groin injury model with complete transection of the femoral artery and vein, CX was shown to be as effective as QC and HC in preventing rebleeding, and significantly better than standard gauze treatment
[29]. In a more recent swine study comparing granular agents, CX was successful in stopping arterial hemorrhage and supported the survival of 60% of animals while HC and QC (ACS+) were only effective in 10% of the cases [30].

Very little information is available on the use of hemostatic products in combat situations. A recent study reported [31] on 40 patients treated with the HemCon bandage. Although difficult to quantitate, the attending surgeon felt that the dressings applied to extremity wounds either stopped or greatly decreased the bleeding in the 95% of surviving patients.

The original QC has been found to be effective against severe venous (Grade V Liver injury) and low pressure mixed bleedings (groin injury), reducing both blood loss and mortality rates in swine [28,32,33]. The reduction in blood loss, however, has not always been significant. Under high pressure arterial bleeding, QC was found to be ineffective in producing hemostasis or reducing blood loss [22]. As mentioned above, new formulations of QC with no heat generation (ACS+) have not been found effective against arterial bleeding.

Recently, however, a new hemostatic product, Combat Gauze, produced by the company that makes QC (Z-Medica, Wallingford, CT), has become available for treating external wounds. It consists of rolled, non-woven medical gauze (50% polyester and 50% rayon) impregnated with a contact (intrinsic) pathway activating clotting agent, kaolin. The prototype of this dressing (X-Sponge) demonstrated encouraging efficacy in less severe hemorrhage models in swine [34]. Combat Gauze was also successful in our efficacy study in normal pigs against severe arterial bleeding, resulting in an 80% survival rate [35]. The efficacy and safety of this useful dressing was extensively studied at our institute in both femoral and carotid artery, as well as jugular vein injury models [35,36] with no issues reported.

In addition to the original QC, other aluminum phyllosilicate products have received FDA clearance for treating external bleeding. For example, WoundStat (WS), composed of smectite granules, is believed to stop bleeding by the granules absorbing water, swelling and forming a clay material with high plasticity that adheres to tissue and seals bleeding sites. In addition to water absorption, which concentrates clotting factors and blood cells, the granules have a negative electrostatic charge that activates the intrinsic pathway and accelerates the blood clotting process. WS was shown to have procoagulant activity in an in Vitro human blood clotting assay [37]. The superior efficacy of WS to stop arterial bleeding was demonstrated by us and others in groin arterial hemorrhage models in pigs [30,38]. This agent was 100% successful in stopping arterial hemorrhage and preventing exsanguination while neither HemCon or QuikClot ACS+ were effective against this bleeding [30]. Fig 3 illustrates survival profiles after treating with different hemostatic products in our swine femoral artery hemorrhage model.
However, histologic findings of residual WS granules in and around blood vessels, even after extensive washing, led to further evaluation of the safety of this agent. WS was found to induce significant endothelial toxicity, leading to intravascular thrombosis, thereby prohibiting its use in the wound with vascular injuries [36]. In addition, treatment of endothelial cells or macrophages with WS in vitro, led to 100% mortality at 24 hr. The significance of its toxicity, necrosis of the vessel and surrounding tissue, as well as thromboembolism in distal organs, has led to its withdrawal from use by the US military. Another powder product evaluated was SuperQR, made from an iron salt and hydrophilic polymer that when exposed to blood, rehydrates and forms an artificial scab that seals the injury. In our swine groin injury model, SuperQR prevented a lethal hemorrhage in 70% of the 10 animals tested, but it produced a significant exothermic reaction that precludes its continued use [30]. Currently, only the original QR powder is available over-the-counter for the treatment of minor surface injuries or nose bleeds.

To date, the fibrinogen-based dressings have been the most efficacious with an excellent long-term safety profile. Since they are absorbable, they may be used for treating internal bleeding, as well as external bleeding wounds. The hemostatic efficacy and acute safety of this dressing type has been shown in a number of large animal hemorrhage studies involving both non-survival and survival operations [39-47]. Recently, the efficacy and safety of the Fibrin Patch dressing was demonstrated with packing for treating a grade V liver injury in coagulopathic swine [48]. Most recently, a newer version of the FSD was found to be more efficacious than Combat Gauze or WoundStat in a coagulopathic swine groin arterial hemorrhage model [49].

4.0 TOURNIQUETS

No discussion of topical hemostatic devices would be complete without mention of tourniquets. As noted above, the extremities remain the most common site of injury in combat wounded, the majority of which were
amendable to tourniquet application [13]. Although tourniquets have been used for injuries throughout history [50-52], their safe use has been hotly debated [53-54]. Based on a study performed at our institute evaluating 7 different tourniquet devices, the Combat Application Tourniquet (CAT) and Special Operations Forces Tactical Tourniquet (SOFTT) were selected as the most effective tourniquets in stopping arterial blood flow and easiest to apply and remove for far-forward use [55]. Fig 4 illustrates 3 recommended tourniquets by the US military. A recent study by Kragh et al. [56] comparing casualties who were treated with tourniquets versus those who were not, clearly demonstrated the life saving value of this simple device to control extremity hemorrhage. The device was more effective when applied before the onset of shock and the data also showed no limb was amputated due to tourniquet use, supporting the relative safety and continued use of this device in prehospital military and potentially in civilian environments. With regard to safety, the low number of nerve palsies observed either resolved after removal of the tourniquet or were resolving [56]. It is important to mention that the application of a tourniquet is not universally successful on upper or lower limbs. Tourniquets stopped bleeding in 93% to 100% of the upper extremities, but they were only successful in 71% to 75% of lower extremity bleedings [57]. This may relate to several factors, but also that in compressible areas such as the groin or axilla, a tourniquet cannot be placed properly to provide adequate pressure for controlling the bleeding. Thus, newer products under development have focused on focal pressure clamps to attempt to address this serious problem, believed to be responsible for 20% of potentially preventable deaths from hemorrhage [14]. It is presumed that such a device would have the best chance for success when applied in conjunction with a hemostatic dressing.

![Figure 4: Recommended Tourniquets by the US Army.](image)

A) Combat Application Tourniquet (CAT), B) Special Operations Tactical Tourniquet (SOFTT) and C) Emergency Military Tourniquet (EMT).

5.0 CONCLUSION

Future combat scenarios where the troops will be more dispersed, imply that evacuation times of casualties may commonly exceed 24 hr. Even in urban environments, evacuation may be delayed significantly, as was learned in Somalia [58]. It has even been suggested that air evacuation time from battlefields of the future to a treatment facility could approach 96 hours. Taken together, the implication is that at a minimum, several hours may pass before any surgical intervention is possible to treat the injured Soldier and it is well established that mortality rates rise with increasing evacuation times [1,5]. Therefore, development of hemostatic dressings, newer tourniquets and hemostatic drugs and forward use of blood products will be the future direction to control bleeding and provide effective resuscitation on the battlefield. Of the various hemostatic products...
New Technologies for Treating Severe Bleeding in Far-Forward Combat Areas

currently available to the US military, CAT tourniquets and Combat Gauze hemostatic dressings, provide the best protection. Combat Gauze can be applied to any type of external wound and can be removed easily prior to surgical intervention without leaving behind any significant residue. Although it is larger than most other hemostatic dressings (7.6 X 366 cm), it is insufficient to cover large soft tissue wounds often seen in combat. A larger version of Combat Gauze is becoming available to address this need. Still, the greatest unmet need for controlling bleeding on the battlefield, centers around non-compressible torso wounds [14]. Currently, prevention through the use of body armor is the only treatment. However, several hydrogel based products such as ClotFoam, BioFoam and chitosan-coated cellulose sponge plugs are under development for this purpose by direct injection into the wound site. Although beyond the scope of this article, it should be mentioned that major efforts are underway to employ more judicious use of blood products, such as plasma, platelets, recombinant activated factor VII and fibrinogen products as an intravenous treatment for non-compressible hemorrhage, recognizing their limitations in large vascular injuries not controlled by surgical intervention. Taken together, these limitations further emphasize the importance and urgent need for development of effective hemostatic dressings and agents to control both compressible and non compressible bleeding on the battlefield.

6.0 ACKNOWLEDGEMENTS

“The opinions or assertions contained herein are the private views of the author and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.”

The authors thank Briza Horace with assistance in preparation of the manuscript.

7.0 REFERENCES

New Technologies for Treating Severe Bleeding in Far-Forward Combat Areas

New Technologies for Treating Severe Bleeding in Far-Forward Combat Areas

New Technologies for Treating Severe Bleeding in Far-Forward Combat Areas

