Award Number: W81XWH-06-1-0415

TITLE: International Disability Educational Alliance (IDEAnet)

PRINCIPAL INVESTIGATOR:
William Kennedy Smith, M.D.

REPORT DATE: March 2011

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: (Check one)

✓ Approved for public release; distribution unlimited

□ Distribution limited to U.S. Government agencies only;
report contains proprietary information

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
International Disability Educational Alliance (IDEAnet)

The expansion of the Internet and World Wide Web has enabled the global distribution of information on an unprecedented scale. This relatively recent occurrence has combined with rapid improvements in the functionality of “Commercial Off the Shelf” (COTS) Information and Communications Technology (ICT) to create unprecedented opportunities for the design and implementation of innovative Advanced Distributed Learning (ADL) and Knowledge Management (KM) systems on a global scale. The Center for International Rehabilitation (CIR), through its International Rehabilitation Network (IRN) program, has been in the forefront of such efforts in remote, underserved and post-conflict areas of the world. The current proposal represents a continuation and expansion of these efforts. It calls for the systematic evaluation of IRN’s blended distributed learning efforts to date, the creation of scalable models of content development and delivery, and the engineering of an updated web portal facilitating Virtual Communities of Practice (CoP). The aims of the project are: to develop a web-based Knowledge Management system coupled with a global alliance of participating individuals and institutions to allow for the development and evaluation of a variety of educational and training strategies including but not limited to Advanced Distributed Learning (ADL), Communities of Practice (CoP) and Open Content Development. Knowledge Management is important to any organization. The research and development of cost effective strategies to harness knowledge communities, and to create and deliver Advanced Distributed Learning (ADL), is particularly important to large technologically advanced, culturally and geographically diverse organization such as the Department of Defense. In addition, a sub-component of the project focuses on training for three cohorts of individuals: physicians, physical therapists and hospital administrators working at Ministry of Health rehabilitation centers in Iraq. The proposed project will test the hypothesis that it is possible to design and implement a global Knowledge Management system facilitating Advanced Distributed learning to serve geographically and culturally diverse audiences in remote and underserved regions of the world in a cost-effective manner using commercially-available "off the shelf" technology.
14. ABSTRACT
The expansion of the Internet and World Wide Web has enabled the global distribution of information on an unprecedented scale. This relatively recent occurrence has combined with rapid improvements in the functionality of “Commercial Off the Shelf” (COTS) Information and Communications Technology (ICT) to create unprecedented opportunities for the design and implementation of innovative Advanced Distributed Learning (ADL) and Knowledge Management (KM) systems on a global scale. The Center for International Rehabilitation (CIR), through its International Rehabilitation Network (IRN) program, has been in the forefront of such efforts in remote, underserved and post-conflict areas of the world. The current proposal represents a continuation and expansion of these efforts. It calls for the systematic evaluation of IRN’s blended distributed learning efforts to date, the creation of scalable models of content development and delivery, and the engineering of an updated web portal facilitating Virtual Communities of Practice (CoP).

The aims of the project are: to develop a web-based Knowledge Management system coupled with a global alliance of participating individuals and institutions to allow for the development and evaluation of a variety of educational and training strategies including but not limited to Advanced Distributed Learning (ADL), Communities of Practice (CoP) and Open Content Development. Knowledge Management is important to any organization. The research and development of cost effective strategies to harness knowledge communities, and to create and deliver Advanced Distributed Learning (ADL), is particularly important to large technologically advanced, culturally and geographically diverse organization such as the Department of Defense. In addition, a sub-component of the project focuses on training for three cohorts of individuals; physicians, physical therapists and hospital administrators working at Ministry of Health rehabilitation centers in Iraq. The proposed project will test the hypothesis that it is possible to design and implement a global Knowledge Management system facilitating Advanced Distributed learning to serve geographically and culturally diverse audiences in remote and underserved regions of the world in a cost-effective manner using commercially-available “off the shelf” technology.

15. SUBJECT TERMS
Distance learning, Amputee, Rehabilitation Professionals, Database, Telemedicine, Knowledge Management, Communities of Practice

16. SECURITY CLASSIFICATION OF:
Unclassified

17. LIMITATION OF ABSTRACT
Unclassified and unlimited

18. NUMBER OF PAGES
58

19a. NAME OF RESPONSIBLE PERSON
Dr. William K. Smith

19b. TELEPHONE NUMBER
312-229-1359
312-280-4970

Standard Form 298
Table of Contents

Front Cover ... 1
SF 298 .. 2
Glossary .. 6
Introduction ... 7
Body ... 7

A. Research (R) and Development (D) of Pedagogical Model, Virtual Community of Practice and Medical Volunteer Network (iCon) .. 7

R1: Research and evaluate the existing empirical literature and theoretical/conceptual models for social design strategies and relevant technologies for building effective Virtual Communities of Practice in a cross-cultural, disability-related, poly-linguistic setting ... 7

R2: Research into issues of importance in the areas of Knowledge Management and Communities of Practice ... 11

R3: Pilot study of International Consultants in Medicine (iCon) in various geographically regions ... 14

D1: Design and implement metrics for tracking involvement in Communities of Practice and the interactive components of Advanced Distributed Learning courses ... 16

D2: Further develop and refine iCon store-and-forward system for use in medical consultation ... 20

D3: Organize workshops and meetings to expand iCon teleconsultation service and CoPs into underserved areas. ... 24

D4: Continue work on disability rights using IDEAnet for reporting applications... 25

B. Research and Development of Advanced Distributed Learning Materials 27

R1: Research existing literature and tools available for program and web design for Open Content development ... 27

D1: Continue to develop and/or refine educational materials ... 28

D2: Continue to encourage the collaboration of Open Content methodologies to develop and disseminate materials ... 31

C. Research and Delivery of Advanced Distributed Learning 32

R1: Research and evaluate existing empirical literature of appropriate locales for online delivery of educational services ... 32

R2: Conduct literature review and evaluation of cost-effective delivery options including those based on licensing, consulting, tuition, and train-the-trainer methodologies ... 33

D1: Stage regional IDEAnet conferences and meetings of experts in disability and rehabilitation in the Western Balkans, the Middle East and other regions ... 34

D2: Deliver educational materials in post-conflict areas as ancillary funding permits ... 35

Key Research Accomplishments ... 36
Reportable Outcomes ... 36
Conclusions .. 37
References .. 39
Glossary

ADL: Advanced Distributed Learning
AMA: American Medical Association
BiH: Bosnia and Herzegovina
CIR: Center for International Rehabilitation
CMS: Chicago Medical Society
CoPs: Communities of Practice
CRPD: Convention on the Rights of People with Disabilities
FELP-AA: A non-governmental organization based in Nairobi, Kenya committed to developing and maintaining a network of Public Health epidemiologists and laboratory scientists who have graduated from the Field Epidemiology Training Program (FELTP)
GUI: Graphical User Interface
GIS: Global Implementation Solutions - a non-profit organization which assists local and international healthcare partners and clients with coordinating, implementing and monitoring their healthcare activities.
iCons in Medicine: program incorporating a number of tools to allow healthcare providers to connect online
iConsult: teleconsultation program that connects healthcare providers in remote or medically underserved areas with a network of committed specialty physicians
IDEAnet: International Disability Educational Alliance
IDRM: International Disability Rights Monitor
IMSA: Iraqi Medical Sciences Association
ISPO: International Society for Prosthetics and Orthotics
iRC: iCon Resource Center
iTAB: iCons Tele-consultation Advisory Board
ITF: International Trust Fund for Demining and Mine Victims Assistance
KM: Knowledge Management
MOU: Memorandum of Understanding
NAAMA: National Arab American Medical Association
NGOs: non-governmental organizations
NUPOC: Northwestern University Prosthetic and Orthotic Center
OCs: online communities
OERs: Open Educational Resources
P&O: prosthetics and orthotics
PT: physical therapists/physiotherapists
SCORM: Shareable Content Object Reference Model
SN: social networking
UKC: University Klinical Center
VCoPs: Virtual Communities of Practice
WBCL: Web-Based Collaborative Learning
Introduction

The contractor for the International Disability Educational Alliance (IDEAnet) is the Center for International Rehabilitation (CIR). William K. Smith, MD, is the Principal Investigator. The mission of IDEAnet is to foster collaborative efforts to use distributed learning and telemedicine to address health disparities and foster effective, sustainable health services internationally. This is accomplished through the innovative use of telecommunications technologies, computer-based training, state-of-the-art engineering projects, capacity-building education programs, interactive online tools, and advocacy on disability rights. In order to best achieve this mission, the network is divided into two topically-based Communities of Practice: the Rehabilitation Services Community and the Telemedicine Resource Center. Under the scope of work completed during this grant period, the CIR continues its work to develop a global pedagogical model as a framework for guiding the cost-effective development and delivery of blended Advanced Distributed Learning. The CIR has added to this the development of an effective, web-based Knowledge Management platform to facilitate Virtual Communities of Practice, including a medical volunteer network, as well as Open Content development, Information Services and effective program evaluation.

Body

A. Research (R) and Development (D) of Pedagogical Model, Virtual Community of Practice and Medical Volunteer Network (iCon).

R1: Research and evaluate the existing empirical literature and theoretical/conceptual models for social design strategies and relevant technologies for building effective Virtual Communities of Practice in a cross-cultural, disability-related, poly-linguistic setting.

As noted in the previous year’s report, the terminology used to describe Virtual Communities of Practice (VCoP) and their structure is similar to that associated with Online Communities (OCs) and Social Networking (SN). Though the concepts are not identical, the overlapping themes and structural elements are markedly similar, as both VCoPs and OCs focus on the development of a strong network of individuals with whom information and knowledge can be shared. The term “Communities of Practice” (CoP) has been used historically to describe “groups of people informally bound together by shared expertise and passion for a joint enterprise.”¹ Further, these groups are formed to “reflect the members’ own understanding of what is important,”² and members of these communities were expected and encouraged to “share their experiences and knowledge in free-flowing, creative ways that foster new approaches to problems.”³ Examples of CoPs are found within a number of organizations, and have been called different names at various times, including “learning communities”

Regardless of the variation in nomenclature, CoPs (virtual or otherwise) and Online Communities share the goal of connecting a disparate group of individuals or practitioners and allowing them to take responsibility for a domain of knowledge.

Successful VCoPs and OCs, according to Yang, are those “in which the contribution of each member is highly regarded...[and in which] every member [is asked] to take responsibility for information-sharing and problem solving.” Successful OCs have been described as those which “do not just serve the user but also involve the user,” and Gongla and Rizzuto note the importance of daily participation by members of a community to foster the “exchange of ideas with other individuals who have experience and skill related to the same area of work.” It is not sufficient simply link individuals to one another based solely on their occupation, but rather individuals must be encouraged for establish personal connections with one another. While encouraging members’ active participation in an online community can be difficult, and studies indicate that “‘lurking’ is the ‘norm’ and only a few members post regularly,” steps can be taken to improve user participation. Creating a shared history among users, developing a means of welcoming new members to foster the development of a strong community, and ensuring that members see value in participation can help to increase their involvement. Through active networking tools and resources, including membership and program updates, it is possible to encourage members of an OC to contribute knowledge that may be of interest to other community members.

By using e-newsletters and external websites, particularly “social networking sites,” it is possible to raise awareness about the existence of an OC and encourage new membership to join. Additionally, these tools provide credibility and value to the materials and information contained within the community. Building on existing connections with key partners allows for the establishment of an OC that not only enables and facilitates collaboration between members, but also “trust management, accountability, and quality control” of the materials and information within the OC. The verification of member credentials and identity is of great import, as Kamel Boulos and Wheeler note, to ensure the validity of the information that they provide to the community. Though unrestricted membership would be ideal, by restricting

4 Ibid.
7 Gongla and Rizzuto (2001).
8 Ibid.
11 Gongla and Rizzuto (2001) note the importance of shared experiences and common tacit knowledge.
12 These include Facebook (rank 15, 40 million users), and sites such as Wordpress (blogging; rank 29, 26 million users), Twitter (microblogging), YouTube (video sharing; rank 6, 73 million users), others.
membership to individuals that are part of a particular group or profession, it is possible to limit or eliminate issues related to abuse or the distribution of inappropriate materials.15

The utilization of “Web 2.0 tools”16 within an online networking website allows an opportunity for members of the OC to share and create information and connect to one another based on common interests or goals. Web 2.0 network technologies and services employ a “user-focused” approach with regard to their design and functionality, allowing for the creation of content by and collaboration between members.17 Further, these technologies have led to the creation of new platforms that allow users to communicate, collaborate, and share information online.18 The United Nations (UN) indicates that approximately 1.8 billion people worldwide are now using the Internet,19 and according to recent reports by 2011, an estimated 80 percent of active Internet users will have a virtual presence,20 including the use of SN websites, which Forrester Research increased by 60 percent in 2008 among individuals aged 35 to 54.21 Additional reports indicate that websites focused on user-generated content including YouTube, Facebook, and Twitter continue to gain in popularity.22

In addition to “lay uses” of SN websites, individuals are using these and other sites to locate health information. According to findings of a recent study, 61 percent of Americans have searched online to find answers to health-related questions.23 Further, a recent report from the London School of Economics indicated that there is more health information than ever available online, and it is becoming increasingly accessible as smartphones, and tablet and personal computers become more common.24 David McDaid, senior research fellow at the London School of Economics, notes the importance of validating the sources of information posted online, particularly information that is available to the general public.25 Without some type of verification of an individual’s credentials, there is a “risk of dissemination of incorrect

16 As reported previously, Web 2.0 views the Internet as a result of the creation of its users, and tasks the user with creating, updating, and changing the content and trends of how the web, technology, and web design are used to enhance creativity, communications, secure information sharing, collaboration and functionality. Common “Web 2.0 tools” include blogs, vlogs, Wikis, RSS feeds, photo and video sharing, web forums, instant messaging, and chats.
17 O’Reilly, 2005 per McGee, James B. and Begg, Michael (2008). What medical educators need to know about “Web 2.0.” Medical Teacher. 30: 164-196.
information,” which in the case of health-related information can be particularly problematic.26

Physicians, healthcare providers, and health and medicine-related organizations are among those creating and accessing information posted online. Dr. Karthik Murugiah, author of a recent study on the use of YouTube to provide information on CPR techniques, noting the massive reach of SN websites, stated “professional groups could make more use of them to boost public awareness.”27 According to Dr. Joseph Kvedar, the Director of the Center for Connected Health, SN websites such as Twitter provide “a method of mass communication” that is real-time and “designed for mobility.”28 29 Medical associations and organizations frequently use Twitter to share information with their membership or other interested parties quickly. Clinical nurse Phil Baumann has noted a number of additional medical uses for Twitter,30 31 which include:

1. Disaster alerting and response,
2. Drug safety alerts from the FDA,
3. Diagnostic brainstorming, and
4. Rare disease tracking and resource connection.

Healthcare providers who chose to use SN websites may opt to only connect to other physicians, or to also connect with patients. According to Pauline Chen, MD it is unclear if engagement via Facebook and Twitter helps or hinders a patient-doctor relationship32 - a concern that is echoed by other physicians. Studies indicate that medical trainees are among those in the medical profession who are frequently using SN sites, and 44.5 percent of them have a Facebook account.33 While the insight that these individuals may be able to contribute to a discussion on a particular topic may differ from that of more established clinicians, Thompson, et al.34 note that their understanding of the importance of medical professionalism and patient privacy may be a concern when using social networking websites.

Per Kamel Boulos and Wheeler, the inclusion of Web 2.0 tools on a website can help to create “a more human approach to interactivity on the Web...[and a] greater sense of community in a potentially ‘cold’ social environment.”35 Further, these tools can provide an environment “where advice and expertise, and even multi-media clinical

34 Ibid.
elements, can be easily shared among [physicians]…and where they can all learn from each other.”36 The opportunities to collaborate with others in the same field provided by OCs are particularly valuable for clinicians who are “isolated from typical urban clinical centres [sic] of excellence, in remote and rural areas.”37

By utilizing SN websites that have an existing audience, the CIR has been better able to increase awareness about IDEAnet programs and encourage user involvement. YouTube channels have been created for the iCons in Medicine and International Disability Rights Monitor (IDRM) programs,38 and videos related to program activities have been posted. Additional materials pertaining to the iCons and IDRM programs have been posted within Groups and Fan Pages created on Facebook, as well as on Twitter.39 Bi-weekly blog posts and e-newsletters41 sent to iCons in Medicine members cover a range of global health and health IT topics, and have helped to increase user involvement in the program. The use of these external sites have also helped to encourage new traffic to the IDEAnet website, and have increased interest in its programs.

R2: Research into issues of importance in the areas of Knowledge Management and Communities of Practice.

A review of the current literature suggests a shift in the field of Knowledge Management (KM) towards a model that places greater emphasis on the generation of content by users. SNs and OCs provide an opportunity to encourage users to engage in “cross organizational sharing”42 within the KM field, making it possible to “bring disparate groups together to foster sharing, thus efficiently using knowledge.”43 When opportunities for interaction, sharing, and collective learning, are made available to participants in an OC focused on KM, they will likely contribute to the knowledge base. As illustrated in Table 1, websites that allow users to contribute information, either through text, images, videos, or multiple forms of media continue to gain in popularity. Per Liaw, et al., these SN websites allow individuals to “acquire and share experience or knowledge.”44 By offering information of value to users through channels with which they are already familiar, it is possible to encourage their participation in other OCs.

36 Ibid.
37 Ibid.
38 http://www.youtube.com/user/IconsinMedicine and http://www.youtube.com/user/TheIDRM respectively
40 Information on a range of topics is posted on a blog on Wordpress (http://iconsinmedicine.wordpress.com), Blogger (http://iconsinmedicine.blogspot.com/), and Tumblr (http://iconsinmedicine.tumblr.com). Similar accounts have been created for the IDRM (see the “Socialize” tab of http://card.ly/The_IDRM for more information).
41 Archive of past “iConnection” e-newsletters is available online: http://archive.constantcontact.com/fs033/1102482325007/archive/1102518353612.html
43 Ibid.
Table 1: Information regarding the external social networking websites selected to disseminate information about IDEAnet programs. Shades of gray are used to show the availability of each dissemination method allowed on the site – darker gray tones denote websites that are more applicable for this type of activity, the darkest being those for which the website is most applicable.

<table>
<thead>
<tr>
<th>Website</th>
<th>URL</th>
<th>Ranking</th>
<th>Instructional Information</th>
<th>Social Networking</th>
<th>Video Sharing</th>
<th>Photo Sharing</th>
<th>Blogging</th>
<th>Micro Blogging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blogger</td>
<td>www.blogger.com</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facebook</td>
<td>www.facebook.com</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flickr</td>
<td>www.flickr.com</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructables</td>
<td>www.instructables.com</td>
<td>1,356</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumblr</td>
<td>www.tumblr.com</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twitter</td>
<td>www.twitter.com</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VodPod</td>
<td>www.vodpod.com</td>
<td>2,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WordPress</td>
<td>www.wordpress.com</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YouTube</td>
<td>www.youtube.com</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The establishment of a KM network within an online community allows participants to not only “absorb information, but also to connect their previous knowledge to their newly acquired information.” Gonella and Rizzuto note the importance of participants in a KM network being aware of the scope and membership of the community, as well as the roles of those involved. By ensuring that members of a KM-based OC are aware of their place within the community, the likelihood that they will share information that is of interest to them with the broader group increases, allowing all participants in the community to benefit from the information.

As noted by He et al., individuals within a network who view one another as “‘real’ and trustworthy” are more likely to exchange information. By involving social networking opportunities in a KM network, which may include the use of personal and organizational profiles, participants in the network are able to familiarize themselves with one another and are more likely to contribute new knowledge and information.

According to Lau, et al., the most successful KM-based OCs are those in which users are able to not only interact with one another directly, but also “distribute, disseminate,

45 “Ranking” is as per Alexa (http://www.alex.com/). Sites are ranked according to: users worldwide, page views, minutes per visit, and other factors.
46 “Instructional Information” is used here to denote the provision of information related to how to participate in IDEAnet programs, and background information.
47 “Materials for Download” is used here to denote materials that will be provided for download and use by interested parties. The materials may include: written/pictorial instructions, articles, videos, images, and other materials.
48 Liaw, et al. (2008)
exchange and share information in different multimedia formats such as voice, movie, and peer-to-peer, or to a group. This type of extensive sharing can be achieved through the use of Web 2.0 tools, both within the OC and by posting materials on external websites. In addition to allowing users to share video, photos, and other media, the creation of a discussion space is imperative to the formation of strong relationships within a KM network.

As noted by experts on the structure of social networks and social interaction, the formation of an online KM network is dependent on weak and strong ties, and a system that includes both is most successful. Strong ties are characterized by common norms and high social network density, while weak ties are those that form in the “holes” between these norms within the social network. The strength of ties in a network is determined by the amount of time, emotional connection, level of intimacy, and amount of reciprocation among users and within user-groups in a given network. Individuals with strong social ties to one another are likely to have overlapping bases of knowledge and experience, and thus the information that they can provide to a network may be less diverse. While networks with only strong ties are frequently viewed by researchers as being “redundant,” a recent study by Damon Centola, assistant professor of system dynamics and economic sociology at the MIT Sloan School of Management, indicates that “people need to hear a new idea multiple times before making a change” and so the repetition produced by strong ties may be beneficial.

While strong ties are likely to promote the transfer of tacit knowledge, weak ties are also of great import to the development of a successful KM network, and it is through them that new knowledge can best be introduced into a KM-based OC. Weak ties represent a perspective that is not within the shared norms of most participants in the network. Thomas, et al. note the importance of “communication among loosely structured networks and communities of people.” As noted by Bouty, the initial interaction between individuals with weak social ties may be approached with caution, however once the interaction proves to be mutually beneficial, it is likely to be repeated. While strong ties can create a “base of understanding” among participants, without some divergence and difference of opinion, new ideas are less likely to be generated, shared, or implemented within the network. Variation among participants in an OC, whether due to life experiences; geography; cultural, linguistic, political, religious variation; or other factors can contribute to the growth of a KM network. By communicating with one another about a given topic and understanding the basis of the

58 Bouty (2000), as per McFadyen et al.
differences between members of an OC and how these differences impact one’s opinions, an open and effective exchange of knowledge can occur.\(^{59}\)

R3: Pilot study of International Consultants in Medicine (iCon) in various geographically regions.

During the current reporting period, the CIR has investigated the possibility of supporting a data collection and epidemiology research study pilot project in Kenya with the Field Epidemiology and Laboratory Program Alumni Association (FELP-AA) - a non-government organization (NGO) based in Nairobi, Kenya which is committed to developing and maintaining a network of Public Health epidemiologists and laboratory scientists who have graduated from the Field Epidemiology Training Program (FELTP). Organizations in Kenya are currently collecting data using a paper-based process to support epidemiology studies, but are interested in exploring electronic means of capturing and managing this data. Through the iConsult program and participation from MedRed, a medical informatics company which has offered the use of its mobile application to iCons, for this purpose,, the CIR would be able to provide a store-and-forward application to record data, and transmit and store this data on systems which can be used for follow-up analytics. The application will enable the construction of customizable electronic forms for the data to be recorded for the various epidemiological studies, as well as providing a decision support component to enable the clinicians recording data to obtain a second opinion on the diagnosis of symptoms and the prescription of treatment.

The objectives of this mobile health program are:

1. To provide increased access to healthcare for people in developing countries, particularly for those living in remote locations.
2. To provide access to high-quality diagnosis and improve treatment outcomes.
3. To provide a means to monitor disease and epidemic outbreaks.
4. To provide cell phones, PDAs, computers, servers, and installation services that allow wireless transmission of clinical data and integration of the data into a database.
5. To provide instructional materials and train in-country clinical personnel to facilitate clinical data entry into the computers and databases.
6. Work with in-country personnel to plan and conduct a pilot assessment of the technologies defined by 1-5 above in developing countries.
7. Work with in-country personnel to evaluate clinical data and information technologies used in 6 above.
8. Evaluate potential dissemination of the technologies defined by 1-5 above to other parts of Kenya.
9. Provide management for the above tasks to include technical interfaces with medical experts to define and characterize system interfaces, assess and manage contract risks, and define a cohesive, integrated development and pilot evaluation effort for the project.

The proposed outline of the pilot is as follows:

Phase 1 (0 - 6 months)

Deployment (0 - 3 months)

Phase 1 will commence with the online demonstration of the tablet application. Assuming the application is felt to have merit and the parties agree to proceed, CIR will work with the partners to develop a plan for deployment, configuration, training and support for the Kenya pilot. The goal is to have a system up and running in 3 months. This will require the parties to reach an understanding on where the system will be hosted, who will have administrative responsibility and data access as well as other issues.

(Pilot 3-6 months)

For the pilot, CIR will provide 5 tablet computers with software for use in data collection activities in Kenya. These tablets may be used with cellular cards for real-time connectivity or in "store-and-forward" mode, which will allow information to be collected on the tablet in the field, encrypted and stored on the device and then forwarded to the server when the device is connected to the internet at a later time.

During phase one CIR will also work with Global Implementation Solutions (GIS) to better understand the program parameters, user needs, and technical infrastructure relevant to the project and will translate these into a set of long-term system configuration, installation, and support plan.

Phase 2 (6-12 months)

CIR will port the tablet computer application to a smartphone and/or tablet that may be deployed alongside the tablet computers in Kenya. The goal of this phase is to offer a smaller and more portable platform, for data collection, while at the same time leveraging smartphone technology and the cellular infrastructure. Should the smartphone-based application be well received, the parties may decide to proceed with rolling out a larger number of devices and porting the application to additional mobile platforms.

Phase 3 (12 months-ongoing)

CIR will provide long-term application support and maintenance, including enhancements and new features.

An online demo of capabilities which would be suitable for the data collection pilot in Kenya was presented to GIS, a U.S.-based liaison to FELP-AA, in February 2011. In mid-March 2011 a demonstration of this capability will be demonstrated to the parties in Kenya and it is expected that by the middle of the second quarter 2011 a decision will be made regarding the direction of the pilot project. It is expected that this pilot
will be successful and will lead to a long-term project for data collection in Kenya and other parts of the world where similar studies are underway.

Individuals in many regions of the world were affected by severe health crises following natural disasters during the reporting period. Haitians continue to be affected by epidemiological outbreaks following the 2010 earthquake and its aftermath. Citizens located near the earthquake epicenter and surrounding areas are in need of emergency epidemiological outbreak response systems and assistance. Similarly, individuals affected by massive floods in Pakistan were faced with insufficient supplies of food, potable water, medications, and healthcare personnel. In an effort to provide some assistance to these individuals, iConsult Chapters were created to allow physicians to designate their desire to provide consultations to medical personnel working in-country.

D1: Design and implement metrics for tracking involvement in Communities of Practice and the interactive components of Advanced Distributed Learning courses.

Previously, established basic quantitative metrics were used to assess the usage of the IDEAnet website, and measure the activity in interactive areas. These were applied during the current reporting period. The following tool was used to track these metrics:

- Google Analytics, a free service from Google that was implemented to track statistics for all CIR websites (http://www.google.com/analytics/index.html).

Graph 1 (Above): New members by date
As in previous years, custom metrics were used to measure certain functions and areas of the IDEAnet website. These tools were written to analyze the sites (Microsoft SQL database using ColdFusion) and to display the results in a password-protected website. Graph 1 above and the tables and graphs below display a monthly breakdown of the activity on ideanet.org February 2010 through February 2011.

<table>
<thead>
<tr>
<th>Date Range</th>
<th>Visits</th>
<th>Page Views</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb-10</td>
<td>1,999</td>
<td>4,654</td>
</tr>
<tr>
<td>Mar-10</td>
<td>2,240</td>
<td>5,366</td>
</tr>
<tr>
<td>Apr-10</td>
<td>2,021</td>
<td>4,446</td>
</tr>
<tr>
<td>May-10</td>
<td>1,916</td>
<td>4,011</td>
</tr>
<tr>
<td>Jun-10</td>
<td>1,733</td>
<td>3,751</td>
</tr>
<tr>
<td>Jul-10</td>
<td>1,752</td>
<td>3,604</td>
</tr>
<tr>
<td>Aug-10</td>
<td>1,650</td>
<td>3,325</td>
</tr>
<tr>
<td>Sep-10</td>
<td>1,706</td>
<td>3,914</td>
</tr>
<tr>
<td>Oct-10</td>
<td>2,150</td>
<td>4,477</td>
</tr>
<tr>
<td>Nov-10</td>
<td>1,746</td>
<td>3,549</td>
</tr>
<tr>
<td>Dec-10</td>
<td>1,307</td>
<td>3,250</td>
</tr>
<tr>
<td>Jan-11</td>
<td>1,292</td>
<td>3,103</td>
</tr>
<tr>
<td>Feb-11</td>
<td>1,604</td>
<td>3,406</td>
</tr>
<tr>
<td>Totals</td>
<td>23,116</td>
<td>50,856</td>
</tr>
</tbody>
</table>

Table 2 (Above): Visitor statistics- February 1, 2010 – February 28, 2011

Visits for all visitors
23,116 Visits | 58.82 Visits / Day

Pageviews for all visitors
50,856 Pageviews
Average Pageviews for all visitors | 2.20 Pages/Visit
Graph 2 (Above): Visitors and Pageviews

23,116 visits from 2 visitor types

![Pie chart showing visitor types]

Graph 3: Visits by visitor type

All traffic sources sent a total of 23,116 visits

- 19.58% Direct Traffic
- 30.26% Referring Sites
- 50.16% Search Engines

Top Traffic Sources

<table>
<thead>
<tr>
<th>Sources</th>
<th>Visits</th>
<th>% visits</th>
</tr>
</thead>
<tbody>
<tr>
<td>google (organic)</td>
<td>10,404</td>
<td>45.01%</td>
</tr>
<tr>
<td>(direct) (none)</td>
<td>4,525</td>
<td>19.58%</td>
</tr>
<tr>
<td>stumbleupon.com (referral)</td>
<td>1,901</td>
<td>8.48%</td>
</tr>
<tr>
<td>yandex (organic)</td>
<td>509</td>
<td>2.20%</td>
</tr>
<tr>
<td>cimetwork.org (referral)</td>
<td>504</td>
<td>2.18%</td>
</tr>
</tbody>
</table>

Keywords

<table>
<thead>
<tr>
<th>Keywords</th>
<th>Visits</th>
<th>% visits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ideanet</td>
<td>1,366</td>
<td>11.78%</td>
</tr>
<tr>
<td>center for international rehab</td>
<td>802</td>
<td>6.92%</td>
</tr>
<tr>
<td>idea net</td>
<td>545</td>
<td>4.70%</td>
</tr>
<tr>
<td>ideanet.org</td>
<td>327</td>
<td>2.82%</td>
</tr>
<tr>
<td>www.ideanet.org</td>
<td>247</td>
<td>2.13%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country/Territory</th>
<th>Visits</th>
<th>Pages/Visit</th>
<th>Avg. Time on Site</th>
<th>% New Visits</th>
<th>Bounce Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>United States</td>
<td>11,005</td>
<td>2.25</td>
<td>00:01:26</td>
<td>79.05%</td>
<td>61.84%</td>
</tr>
<tr>
<td>2</td>
<td>Bosnia and Herzegovina</td>
<td>4,148</td>
<td>4.03</td>
<td>00:00:42</td>
<td>17.70%</td>
<td>30.25%</td>
</tr>
<tr>
<td>3</td>
<td>India</td>
<td>1,074</td>
<td>2.02</td>
<td>00:01:17</td>
<td>93.02%</td>
<td>67.88%</td>
</tr>
<tr>
<td>4</td>
<td>Canada</td>
<td>994</td>
<td>1.91</td>
<td>00:00:10</td>
<td>84.41%</td>
<td>66.20%</td>
</tr>
<tr>
<td>5</td>
<td>United Kingdom</td>
<td>831</td>
<td>1.86</td>
<td>00:01:10</td>
<td>90.25%</td>
<td>70.88%</td>
</tr>
<tr>
<td>6</td>
<td>France</td>
<td>623</td>
<td>1.30</td>
<td>00:00:35</td>
<td>50.88%</td>
<td>86.52%</td>
</tr>
<tr>
<td>7</td>
<td>Germany</td>
<td>518</td>
<td>1.96</td>
<td>00:01:05</td>
<td>69.69%</td>
<td>72.20%</td>
</tr>
<tr>
<td>8</td>
<td>Mexico</td>
<td>337</td>
<td>1.85</td>
<td>00:00:50</td>
<td>63.50%</td>
<td>74.78%</td>
</tr>
<tr>
<td>9</td>
<td>Brazil</td>
<td>332</td>
<td>1.97</td>
<td>00:01:00</td>
<td>88.25%</td>
<td>75.00%</td>
</tr>
<tr>
<td>10</td>
<td>Italy</td>
<td>318</td>
<td>1.53</td>
<td>00:00:48</td>
<td>87.42%</td>
<td>78.93%</td>
</tr>
<tr>
<td>11</td>
<td>Australia</td>
<td>313</td>
<td>1.80</td>
<td>00:00:44</td>
<td>89.46%</td>
<td>74.44%</td>
</tr>
<tr>
<td>12</td>
<td>Jamaica</td>
<td>286</td>
<td>1.27</td>
<td>00:00:50</td>
<td>81.47%</td>
<td>86.71%</td>
</tr>
<tr>
<td>13</td>
<td>Venezuela</td>
<td>236</td>
<td>1.50</td>
<td>00:01:06</td>
<td>92.37%</td>
<td>72.88%</td>
</tr>
<tr>
<td>14</td>
<td>Pakistan</td>
<td>221</td>
<td>1.97</td>
<td>00:01:18</td>
<td>91.86%</td>
<td>72.40%</td>
</tr>
<tr>
<td>15</td>
<td>Ireland</td>
<td>212</td>
<td>1.94</td>
<td>00:01:07</td>
<td>64.62%</td>
<td>67.45%</td>
</tr>
<tr>
<td>16</td>
<td>(not set)</td>
<td>174</td>
<td>1.71</td>
<td>00:00:43</td>
<td>93.58%</td>
<td>71.84%</td>
</tr>
<tr>
<td>17</td>
<td>Netherlands</td>
<td>170</td>
<td>1.82</td>
<td>00:01:06</td>
<td>84.71%</td>
<td>72.94%</td>
</tr>
<tr>
<td>18</td>
<td>Belgium</td>
<td>164</td>
<td>1.57</td>
<td>00:00:45</td>
<td>59.15%</td>
<td>76.22%</td>
</tr>
<tr>
<td>19</td>
<td>Argentina</td>
<td>154</td>
<td>2.73</td>
<td>00:02:31</td>
<td>57.53%</td>
<td>60.39%</td>
</tr>
<tr>
<td>20</td>
<td>Spain</td>
<td>149</td>
<td>2.19</td>
<td>00:01:42</td>
<td>80.54%</td>
<td>65.77%</td>
</tr>
<tr>
<td>21</td>
<td>Serbia</td>
<td>127</td>
<td>3.11</td>
<td>00:01:37</td>
<td>86.14%</td>
<td>44.88%</td>
</tr>
<tr>
<td>22</td>
<td>Russia</td>
<td>120</td>
<td>1.58</td>
<td>00:00:52</td>
<td>88.33%</td>
<td>78.07%</td>
</tr>
<tr>
<td>23</td>
<td>Colombia</td>
<td>112</td>
<td>2.21</td>
<td>00:01:54</td>
<td>88.38%</td>
<td>67.86%</td>
</tr>
<tr>
<td>24</td>
<td>Egypt</td>
<td>102</td>
<td>1.87</td>
<td>00:01:20</td>
<td>78.43%</td>
<td>75.49%</td>
</tr>
<tr>
<td>25</td>
<td>Switzerland</td>
<td>102</td>
<td>2.48</td>
<td>00:03:48</td>
<td>87.25%</td>
<td>62.75%</td>
</tr>
</tbody>
</table>

Table 3: Site visits by country/nation. 23,116 visits came from 168 countries/territories (February 1, 2010 – February 28, 2011). Above are the top 25 nations listed based on the number of visits.
D2: Further develop and refine iCon store-and-forward system for use in medical consultation.

iCons in Medicine and iConsult

iCons in Medicine is a global telehealth and humanitarian medicine volunteer alliance that uses innovative applications of technology and social networking tools to improve healthcare delivery in remote and medically-underserved areas, and reduce global health disparities. To achieve these goals by leveraging local and regional healthcare providers, and empowering them with tools that can assist in the delivery of care, iCons implemented the iConsult program. iConsult is a teleconsultation environment through which a volunteer network of medical specialists (Volunteers) offer teleconsultation and expert advice to healthcare providers (Requestors) working in remote or medically underserved areas. The program enables communication and information exchange between Volunteers and Requestors who enroll in the program and provides a facility through which expert medical knowledge is available at the point of care, wherever medicine is practiced. Effectively iCons is based on a user registration and vetted membership principle, with users classified as General Members, Volunteers, and Requestors. The membership classification defines the level of access and the features available to a user. In addition, Volunteer and Requestor member credentials are vetted through organizational entities to ensure they are qualified to practice medicine and have the necessary expertise.

The iConsult teleconsultation environment consists of a client and a server component. The client component is a client-server application based on a store-and-forward methodology, using a medical case principle and intended for use by Requestors. It allows Requestors to collect information and document cases at the point of care, irrespective of whether an Internet connection is available. The case information and supporting documentation (images with potential annotations and documents with potential notes) can be uploaded to the server at a later time. The server routes the case to all available Volunteers in the specialty requested. The client-server application also allows for requesting a second opinion on a case from another Volunteer should a Requestor desire another perspective on a case. In the case of a second opinion request, only the original case data is submitted to the iCons Volunteers in the specialty requested, excluding the Volunteer who previously consulted on the case. In this way the confidentiality of the consultation between a Volunteer and a Requestor is protected, and it is up to the Requestor to share information obtained from the Volunteer who initially consulted on the case. This asynchronous communication does not lend itself to working on emergency cases, but is effective for difficult and specialized cases where time is not a critical factor and care can be delivered over a period of days instead of minutes.

In the previous reporting period, the iConsult client-server application (see Appendix A for a sample) was further refined to enhance the functionality, usability, and look-and-feel. A detailed set of requirements and Graphical User Interface (GUI) specification was provided to an outside firm tasked with the design and development

of the new version of the application. Currently iConsult is going through the development and testing process, and it is anticipated the new version of will be available for release in Summer 2011, though this release date is dependent on the completion of server-side development.

The server component is a web-based environment, which allows a Volunteer to accept a case and interact one-to-one with a Requestor. The server-side tools enable Volunteers to accept a case in their specialty area and provide advice asynchronously. This advice, usually in the form of messages attached to the case, is received by the Requestor and the communication between the Requestor and the Volunteer continues until the Requestor closes the case. Throughout this process both parties have the ability to add annotations and notes to existing case images and documents, as well as the option to attach additional documentation to the case, in the form of documents, images, or other information.

The server component also provides social networking features, typical of those found on popular social networking sites. Users have the ability to create a profile, which becomes searchable by the community. The level of access to the profile information is determined by the membership level of a user. Members have the ability to create and participate in discussions, start real-time chats, and communicate via email messages with other members. In addition, members can upload documents and other information effectively creating a knowledge center focused around their area of expertise.

An RFP for the re-design and development of the server component was published and proposals have been received from firms bidding on the work. The objective of this effort is to improve the quality of service and usability, enhance functionality, and simplify administration. Specific improvements include:

- Enable business users (non-developers) to update content without coding HTML
- Improve social networking features
- Improve scalability of the back end content management system
- Enable the support of the new client application, and provide better integration
- Enhance security and performance

The iConsult program remains fully functional while upgrades to the application are in progress, and will also remain fully functional when work begins on the website.

As technology constantly evolves, iCons tracks developments and trends and stays current by identifying and embracing those technologies that enjoy wide adoption and stand to offer flexibility and enhanced capabilities to its membership. Currently the popularity of smart mobile devices is paving the way for investigating the integration of a mobile application into the existing iConsult laptop/desktop application.
Program Membership
The current membership in the iCons in Medicine network includes over 400 individuals in 12 countries around the world. These individuals represent 35 academic and medical centers, and include renowned experts in telemedicine, e-health, and global health disparities. Over 130 physicians with expertise in 35 medical specialties (see Appendix B) are available to respond to teleconsultation requests from individuals representing over 20 organizations in 10 countries.

Chapters
Chapters are defined as a group of physicians who volunteer as consultants through the iConsult program. They are responsible for recruiting and enrolling qualified physicians as Volunteers in the iConsult program. New Chapters are formed when three or more Volunteers apply to create a Chapter. Currently, iCons in Medicine has 11 Chapters.

Volunteers
Volunteers are physicians who provide free teleconsultations to healthcare providers in remote and medically underserved areas through the iConsult program. All Volunteers enroll through a Chapter. Currently, iCons in Medicine has 134 Volunteer members (see Appendix C).

Member Organizations
Member Organizations are groups of healthcare providers who receive teleconsultation services through the iConsult program. They are responsible for recruiting and enrolling Requestors in the iConsult program. Non-profit healthcare delivery organizations operating in remote or underserved areas are eligible to form Member Organizations. Currently, iCons in Medicine has 27 Member Organizations.

Requestors
Requestors are healthcare providers working in remote or underserved areas who request teleconsultations through the iConsult program. All Requestors enroll through a Member Organization. Currently, iCons in Medicine has 52 Requestors (see Appendix D).

National Secretariats
National Secretariats recruit and manage Chapters and Member Organizations within a specific geographic area, usually a country. National Secretariats may be formed within an existing entity, such as an academic medical center or major hospital, or as an independent charitable entity established solely for iConsult. Currently, iCons in Medicine has three National Secretariats and four prospective National Secretariats are under review (see Appendix E).

Social Networking
During the current reporting period, efforts continue to utilize Social Networking to generate interest in the program and initiate communication and discussion among members.
- **E-Newsletter** — Every two weeks, the e-newsletter is sent to all members of the iCons in Medicine network, as well as other individuals who have expressed an interest by signing up to receive the e-newsletter. It is sent to over 700 individuals in the healthcare field and other interested parties. Each issue features information about iCons in Medicine members in the news, as well as current Global Health, and Health IT news *(see Appendix F)*.

- **Blogging** — A blog (weblog) is a website, usually maintained by an individual or organization, with regular entries of commentary, descriptions of events, or other material such as graphics or video. Information on a given Global Health/Health IT topic is posted on three popular blogging websites every two weeks (opposite the e-newsletter). The information is applied to three different websites to ensure broad coverage, as different groups may access each *(see Appendix G)*. Blogs have also been created for the IDRM program on two of these three blogging websites (WordPress, Blogger) to expand the reach of the audience of the program.

- **StumbleUpon** - An online community that allows its users to discover and rate Webpages, photos, and videos. StumbleUpon is a personalized recommendation engine which uses peer and social-networking principles. Webpages are presented when the user clicks the "Stumble!" button on the browser's toolbar. StumbleUpon chooses which Webpage to display based on the user's ratings of previous pages, ratings by his/her friends, and by the ratings of users with similar interests. To increase traffic to the iCons in Medicine website and information posted on external websites, StumbleUpon has been utilized.

- **Facebook** – A social networking website where users create a personal profile account and can add friends, send messages, and share links and other information. In addition to a personal profile, Facebook allows users to create Groups and Fan Pages. Facebook Groups are analogous to clubs in the offline world and Pages function like a profile account, but are specific to a brand or organization. A Profile, Group, and Fan Page have been created to extend the network of iCons in Medicine and raise general awareness of the program. Pages and Groups have also been created for the IDRM and the CIR *(see Appendix H)*.

- **Twitter** – A social networking and microblogging service that enables its users to send and read messages known as “tweets.” Tweets are text-based posts of up to 140 characters displayed on the author's profile page and delivered to the author's subscribers who are known as “followers.” An iCons in Medicine account has been created and daily updates are posted on technology and health-related topics. This is a further effort to make individuals aware of the program *(see Appendix I)*. A Twitter account has also been created for the IDRM program and updates on disability-related topics are posted frequently.

- **Videos** - Videos pertaining to the iCons in Medicine program are posted on two video sharing websites (YouTube and Vodpod) *(see Appendix J)*. YouTube Channels have also been created for the CIR and the IDRM program.
Intermittent videos are produced and posted on these channels to generate and interest in the CIR and its programs.

- Photos - Photos and videos are posted on a Flickr account (see Appendix K).

iCons Telemedicine Advisory Board (iTAB)
This board consists of 14 leaders in the telemedicine industry. The iTAB meets quarterly via conference call, more often when necessary. Individual board members are contacted as needed for input or advice.

D3: Organize workshops and meetings to expand iCon teleconsultation service and CoPs into underserved areas.

In May 2010 the iTAB hosted a meeting at the ATA annual meeting in San Antonio, Texas. CIR/iCons’s Haiti efforts were recapped for the group which initiated the conversation of iCons role in future natural disasters. It was determined that iCons would best function as a “clearing house” providing online pre-coordination for emergencies in these situations. The suggested course of action is as follows:

- Start coordination efforts to prepare for similar events in the future
- Use an Open Content model to provide useful tools to disaster relief healthcare workers
- Pre-qualify organizations to be called upon when a natural disaster strikes
- Encourage participation of iCon volunteers to provide teleconsultations to afflicted areas.

A mobile application development plan was also presented to the iTAB by staff. It outlined how the development of a mobile application would address needs of medics worldwide, through data capture, storage, retrieval, decision support and consultation. MedRed, a medical informatics company, has offered the use of its mobile application to iCons, for this purpose. Patient outreach capabilities have also been discussed, as part of a comprehensive offering, whether deployed in disaster areas or underserved parts of the world. Leveraging the proliferation of mobile phones, it will be possible to provide general prevention information, clinic locations and next steps following a diagnosis and treatment.

The possibility of holding a CIR/iCons conference focused on the Role of Healthcare Information Technology (HIT) to Address Health Disparities was also discussed.

In June 2010, staff exhibited at the American Medical Association Medical Student (AMA-MSS) Medical Specialty Showcase. The purpose of this event is to provide an introduction to various specialties to medical students, and offer promotional materials to assist career decision-making. While one must be a licensed physician to participate in the iConsult program, medical students were encouraged to sign up for iCons in Medicine as a General Member. This allows individuals to interact with others in the healthcare industry using the social networking tools provided until they are qualified to participate in teleconsultations. Approximately 50 students wished to find out more
about iCons, and most took at least the one page handout that showed how medical students could participate in the program as General Members.

Staff also attended the 2010 mHealth Summit held in Washington, DC in November 2010. This event convened leaders in research, technology and policy to share their expertise and draft a blueprint for the future of mobile health.

D4: Continue work on disability rights using IDEAnet for reporting applications.

During the current reporting period, the CIR continued to utilize several social networking outlets to generate interest and encourage participation in the International Disability Rights Monitor (IDRM) project. This social networking outreach includes:

- **Blogging** — Information on disability and disability rights-related issues is posted on three popular blogging websites intermittently to ensure broad coverage, as different groups may access each. *(see Appendix L)*

- **Facebook** – A Group and Fan Page have been created to extend the network of IDRM and raise general awareness of its projects. *(see Appendix M)*

- **Twitter** – An IDRM account has been created and intermittent updates are posted pertaining to disability and rights. This is a further effort to make individuals aware of the program. *(see Appendix N)*

- **Videos** - Videos pertaining to IDRM projects are posted on YouTube, a popular video sharing website. *(see Appendix O)*

Review of IDRM Methodology

During this reporting period, the International Disability Rights Monitor (IDRM) research methodology was adapted to reflect the Convention on the Rights of People with Disabilities (CRPD). This process included a comprehensive update of the existing IDRM methodology, as well as the establishment of a peer-review group to provide comments and feedback to ensure that the revised methodology was of the highest standards. The peer-review group was comprised of representatives from a number of international disability organizations who have an expertise in disability law and policy and also access to a network of people with disabilities.

Collaborating with other disability organizations and attending a number of international meetings at the UN in 2010 and 2011 have helped IDRM staff to formulate a draft text of the new IDRM methodology for peer-review. The peer-review process included a four-month period during which feedback was given on the newly developed methodology through a project group on the iCons in Medicine website. The iCons online platform enabled the group members to interact with one another and with IDRM staff. Along with the opportunity to exchange ideas and information through the discussion features of the project group, resource materials pertaining to monitoring were also uploaded so that group members had access to up-to-date information on the topic. Upon completion of the feedback stage, a final document incorporating the
feedback was circulated to group members. The final document on monitoring
disability rights will be circulated to the peer-review group members for distribution
among their networks and also will be made available on the IDRM website.

IDRM Special Edition

Work has been ongoing to develop a special edition IDRM publication that will
document the process by which the CRPD came to fruition. This new report will
capture the evolution and inception of the CRPD, and will gather details from central
participants in the process. The IDRM Ireland Coordinator, Mary Keogh, has led the
reworking of the IDRM methodology for this special report. Contributors to the report
will include: Ambassador Don Mackay; Ambassador de Alba; Ambassador Gallegos;
and Professor Gerard Quinn, a noted legal expert on disability. The CIR intends to
present this special edition IDRM publication to the Secretary of State as a record of
the process that led to the adoption of the Convention. All chapters are to be completed
by the beginning of April with tentative publication date set for September 2011. The
following are Draft Chapter Working Titles, Content, and Authors:

Chapter 1: The IDRM Journey
Author: Dr. William Kennedy Smith
This chapter discusses the project’s successes since its establishment in 2003. It also
highlights the key role that civil society must take in monitoring disability rights, and
discusses the future plans for the IDRM.

Chapter 2: Making Disability An Issue for International Law
Author: Ambassador De Alba
This chapter discusses the instrumental role that Mexico played in introducing the
General Assembly Resolution that established the Ad-Hoc Committee.

Chapter 3: The Early Days
Author: Ambassador Gallegos
This chapter discusses the beginning years of the CRPD negotiations.

Chapter 4: Bringing the Negotiations to An End
Author: Ambassador MacKay
This chapter discusses the different strategies used by to bring about the negotiations.

Chapter 5: The UN Special Rapporteur and the CRPD
Author: Mr. Shuiab Chalklen, UN Special Rapporteur on Disability
This chapter discusses how the role of the UN Special Rapporteur has developed since
the adoption of the CRPD.

Chapter 6: The CRPD – Key Legal Issues
Author: Professor Gerard Quinn
This chapter discusses the strategies used to overcome key legal areas during the AD-
Hoc negotiations.

Chapter 7: Civil Society’s Role
Author: TBD
B. Research and Development of Advanced Distributed Learning Materials

R1: Research existing literature and tools available for program and web design for Open Content development.

The production of Open Content materials ensures that information is able to reach as wide and varied an audience as possible. Open Content materials are defined as materials, often of a creative nature, which are made available for use.61 This can include images, videos, and text, as well as other types of Open Educational Resources (OERs). The term “Open Content” is often used in conjunction with “Open Source,” defined as software for which the code is made publically and freely available.62 Though they differ in a number of ways, both Open Content materials and Open Source code share the ultimate goal of ensuring that materials and information are made available.

The development and refinement of Open Content materials within online communities has grown increasingly common, due in part to the dramatic increase in the amount of user-generated content that is available online.63 The success of OERs is dependent on the reliability of the source of the information contained within them.64 As noted by Kamel Boulos and Wheeler, in an online community, it is often difficult to verify that users are in fact who they claim to be. Though limiting membership to individuals who have been vetted can impact the input users have on OERs, the materials produced are likely to be of higher quality and that the information contained within them is valid and pertinent.

As noted by Ellaway and Martin, Open Content materials possess a level of sustainability that other resources may not,65 and like Open Source software, also allows for significant cost-savings as they are less costly to maintain.66 The collaborative process involved in the development and refinement of OERs and other materials ensures that these materials will have a wide distribution. By involving individuals from different cultures and backgrounds in the process of creating OERs, these individuals can be empowered “with the ability to recontextualize the material, translate it into their own language and take ownership of it”67 and are likely to share the materials with peers outside of the OC within which they were created.

In addition to web-based delivery of OERs, mobile devices can provide an alternative method of delivery. According to experts, the number of mobile devices in use

61 As defined by Sharing Resources in Education (SHARE) (http://www.share.uni-koeln.de/?q=en/glossary/29).
62 As defined by Princeton University (http://wordnetweb.princeton.edu/perl/webwn?s=).
67 Baraniuk (2006) as noted by Ellaway and Martin.
worldwide is increasing, and they are becoming a “part of the ‘digital life’ for many individuals around the world.”68 Further reports indicate that there are an estimated 4.6 billion mobile phone users worldwide with three-quarters of these individuals in developing nations,69 and Ericsson reports that mobile broadband subscriptions are on track to surpass one billion by 2011.70 In some regions, a reliable Internet connection may not be available, though mobile devices may be commonplace. Though only a reported 16 of Palestinian households have Internet access, a 2009 United Nations report indicates that 81 percent have a cell phone.71 It is important to note that in many regions, just as reliable Internet connectivity may be problematic, only simple devices that allow for calls and texting are available.72 For healthcare providers in the developed world, smartphones and mobile devices have become increasingly common,73 and a reported 72 percent of physicians are utilizing smartphones personally and professionally.74

Continued efforts have been made to improve the iCons in Medicine website to ensure that it is user-friendly and that materials and information are provided in a manner that meets users’ needs. The iCons in Medicine program software is currently undergoing large-scale revisions in order to ensure its usability. These updates have been based on user feedback and on extensive testing of the teleconsultation process. In addition, the possibility of creating a mobile application to be paired with the existing website and desktop application has been explored, and updates to both the website and software have been geared towards this future integration.

D1: Continue to develop and/or refine educational materials.

During this reporting period the CIR worked with its partner the University Clinical Center Tuzla (UKC), the Association of Physiatrist from the Federation of Bosnia and Herzegovina (BiH), and the Association of Physiatrists of the Republic Srpska to organize the Third International Congress of BiH Physiatrists. The three-day Congress was successfully organized in October 2010.

As part of the Congress, the CIR and the UKC organized the First International Society for Prosthetics and Orthotics (ISPO) Conference in the BiH. International experts from Europe and the United States participated in the Congress and exchanged current

scientific knowledge to improve the quality of life of individuals with disabilities in the Balkan Region. During the Congress, a total of 13 prosthetic and orthotic related lectures were presented. The topics covered included the following:

- Post-Operative Management of the Residual Limb
- Treating X-Rays or Patients – Reestablishing Balance
- Body Alignment and Spine Stability
- Prosthetic Prescription Principles
- Cost-Effective Prosthetic Technologies
- Addressing the Needs for P&O Education for Members of the Rehabilitation Team

In addition, during the current reporting period, the following training modules were adapted to ensure cultural appropriateness, expanded to include addition clinically-related information, and translated into Bosnian:

1. **Disability and Rehabilitation** - Includes basic information on how a rehabilitation clinics help coordinate the participation of the various specialists involved in the integrated rehabilitation process of an individual with a disability. Describes the major functions of rehabilitation clinic such as: coordinating the pattern of treatment and educating the involved staff and the patients.

2. **Anatomy of the Spine** – This training module contains basic human anatomy, and describes each region of the spine, its functions and characteristics and also includes basic information on the ligaments, vertebral bodies, and muscles.

3. **Biomechanics of the Spine** - Provides an overview of the vertebral bodies of the cervical, thoracic, and lumbar regions including the functions of each vertebral body, cervical spine, goniometry, and various movements in the planes and axes of the human body.

4. **Pathologies of the Spine** – This section describes common pathologies affecting the spine such as idiopathic and congenital scoliosis. It includes information on clinical manifestations, diagnosis, tests, and techniques used to measure the spinal curves and orthotic treatment. Other pathologies like kyphosis, spondylolisthesis, spondylolysis, Potts’s disease, and common injuries are also included, as well as recommended interventions and treatment.

5. **Cervical and Spinal Clinical Considerations** – Provides recommendations for the use of cervical and spinal orthoses in the treatment of traumatic injuries and pathologies. Includes biomechanical principles used to provide pain management and positional control, such as the principle of the three-point system.

6. **Overview of Cervical & Spinal Orthotics** – The goal of this section is to provide an overview of cervical and spinal orthotics. It includes the different categories used to describe the treatment of the cervical and spinal regions, and provides information on the type of spinal orthoses most commonly used to provide pain management, support, and motion control. It includes information on the designs and application of metal and
plastic lumbosacral (LSO), thoracolumbosacral (TLSO), and cervico-thoracolumbosacral orthoses (CTLSO), and on how they are used to reposition the spine into a more anatomically correct alignment, as in the case of scoliosis.

7. Cervical & Spinal Orthotics Treatment – Provides information on how to fit a cervical orthosis and on how to make a custom fitted thoracolumbar sacral spinal orthosis (TLSO). Also provides a basic understanding of the cervical and spinal orthotics classification and their different designs and fitting principles, and information on how to identify the anatomical landmarks that are used as references for proper measurement and custom fabrication of a TLSO.

8. Anatomy of the Upper Extremities - This module provides an overview of the upper extremity anatomy that is used in the fabrication of an upper extremity orthosis. It describes the functions of the muscle groups, the nerves that innervate them, and facilitates the understanding of the changes in movement and of the type of assistance that the orthosis will provide to the patients, according to his/her capacity and/or needs.

9. Biomechanics of the Upper Extremities – This training module provides a basic understanding of the biomechanics of the upper extremity and of its applications in evaluation of a patient and in the manufacturing of an orthosis. It describes how to effectively apply biomechanical principles when evaluating a patient for an orthosis, and on how to identify anatomical structures. This section also provides an understanding of range of motion (ROM) of the upper extremities, and on how to achieve a functional ROM (not necessarily a full ROM).

10. Clinical Considerations - This module provides information about injuries and illnesses to support knowledge and understanding of the most common conditions that affect the body structures and function of the upper extremity. Musculoskeletal conditions and neurological disease can benefit from the timely indication of a properly manufactured orthotic device. Various injury types, including fractures, dislocations, sprains, tendinitis, and degenerative processes that can be caused by trauma, mechanical stress, disease, or aging joints can be seen in the upper extremity. Also, certain conditions of the nervous system can affect the functional level of the upper extremity. Fractures, joint disease, periarticular disorders (rotator cuff tear), central nervous system and peripheral nerve injuries are all described and discusses in this module.

11. Principles and Components – This module describes the different categories, and components of upper limb orthosis systems currently available and provides information of whether their primary purpose is therapeutic or functional. It provides the necessary information to categorize upper limb orthosis by different pathologies (e.g., spinal cord injury, arthritis, trauma, head injury), joint encompassed (e.g., shoulder, elbow, wrist), or treatment objective (e.g., promote healing, prevent deformity, enhance function). It also explains how to categorize upper limb orthosis by static and dynamic, and subcategorize them as either functional of therapeutic.

12. Wrist Hand Orthosis - Provides information on how to cast, and fabricate a static wrist hand orthosis to support the wrist joint, maintain the functional architecture of the hand, and prevent wrist-hand deformities. This module also discusses the use of
therapeutic attachments, such as metacarpophalangeal (MCP) extension stops, interphalangeal (IP) extension assists, and thumb extension assists.

Module I: Anatomy of Spine III June 1 - June 15, 2010
Module II: Biomechanics of the Spine III June 16 - June 30, 2010
Module III: Pathology -Spinal Orthotics III August 1 - August 16, 2010
Module IV: Clinical Consideration, Spinal Orthotics August 17 - September 1, 2010
Module V: Overview of Cervical & Spinal Orthotics September 2 – Sept. 30, 2010
Module VI: Cervical & Spinal Orthotics Treatment October 1 - October 15, 2010

Module I: Anatomy of the Upper Extremities December 1 - December 15, 2010
Module II: Biomechanics of the Upper Extremities December 15 - Dec. 31, 2010

In October 2010, a three-day Spinal Orthotic Practical and Theoretical evaluation was conducted under the supervision of Hector Casanova, CPO/L from CIR Chicago and Mr. Michael Quigley, CPO/L, CIR’s Prosthetics & Orthotics consultant.

During the Congress, a total of 13 Prosthetic and Orthotic related lectures were presented. Some of the topics included the following: Post-Operative Management of the Residual Limb, Treating X-Rays or Patients – Reestablishing Balance, Body Alignment and Spine Stability, Prosthetic Prescription Principles, Cost-Effective Prosthetic Technologies, and Addressing the Needs for P&O Education for Member of the Rehabilitation Multidisciplinary Team.

As part of activities associated with the Spinal Orthotics training program, a one-day hands-on technical workshop was organized at the UKC Prosthetics and Orthotics Training Center in Tuzla. Dr. Jose Miguel Gomez, one of the leading experts in the treatment of Idiopathic Scoliosis in the U.S., was invited to share his clinical expertise with the students and UKC’s prosthetics and orthotics staff. Other members of the Rehabilitation Multidisciplinary Team, including the Head of the UKC’s Orthopedic Surgery department and UKC’s Physical Medicine & Rehabilitation and Physical Therapists attended and actively participated in the evaluation of three children with idiopathic scoliosis. With the assistance of the CIR and UKC staff, Dr. Gomez took an impression, fabricated, and delivered a Thoraco Lumbar Sacral Orthosis (TLSO) to the patients.

D2: Continue to encourage the collaboration of Open Content methodologies to develop and disseminate materials

The incorporation of EMR capabilities into the iCons collaboration and teleconsultation environment is under consideration, to allow patient information to be readily available by physicians and allow for the provision of improved care. A number of open source EMR systems have been considered, among them OpenEMR and OpenMRS, but to date no decision has been made to move forward with making this functionality available. Before this functionality can be added, a number of questions would first
need to be addressed, including the data retention policy, confidentiality and security, HIPAA implications.

The two EMR applications which were investigated are described in the following paragraphs. Of the two, OpenEMR is a more full-featured application best suited for managing the activities of a medical practice/clinic. OpenMRS offers features which make it easier to support data collection and analytics on the collected data.

OpenEMR
The Open Electronic Medical Record application is a platform that supports medical practice management, electronic medical records, prescription writing and medical billing. OpenEMR also provides a robust security model, HIPAA compliance, and support for ANSI X12 and HL7. This is a full-feature application that allows for the management of all the functions around the operation of a medical practice/clinic. Thus, medical claims and accounts receivable are features of the application, along with a calendar for managing appointments, customizable forms for medical encounters, document management for electronic or scanner records, plus support for voice recognition. OpenEMR also offers a web front-end for easy access from anywhere, through a browser.

OpenMRS
The Open Medical Record System is a software platform which enables users to design a customized medical record system. It is a platform that can support medical informatics since its concept is to limit the use of free text and use coded information. It is based on a concept dictionary which defines all diagnosis, tests, procedures, tests, drugs and other general questions and potential answers. Thus it enables a user to customize the system for different uses, since there is no direct dependence on actual types of medical information or specific data collection forms. OpenMRS can also support a number of simultaneous users, since it is a client-server application, as well as offering a web front-end, making it easily accessible through a browser.

C. Research and Delivery of ADL

R1: Research and evaluate existing empirical literature of appropriate locales for online delivery of educational services.

According to Ferdig, et al., “technology continues to link diverse cultures by reducing temporal and spatial separation.”75 According to experts, the feelings of social isolation commonly associated with the geographic separation of students can be mitigated in part through the use of computer-supported collaborative learning (CSCL) or Advanced Distributed Learning (ADL).76 These modes of teaching not only allow students to feel somewhat connected to their peers, but also to control the speed of their learning and

75 Ferdig, et al. (2007).
R2: Conduct literature review and evaluation of cost-effective delivery options including those based on licensing, consulting, tuition, and train-the-trainer methodologies.

Findings of recent studies indicate that a distance learning approach can achieve similar education performance results to traditional face-to-face models. Additional research comparing one-on-one tutoring and classroom instruction found a student achievement

77 Liaw, et al. (2008)
78 Riverin and Stacey (2008).
81 Li, Qing; Lau, Rynson W.H.; Shih, Timothy K; and Li, Frederick W.B. (2008). Technology Supports for Distributed and Collaborative Learning over the Internet. ACM Transactions on Internet Technology. 8(2):10.
83 Li, et al. (2008).
difference of two standard deviations in favor of tutorial instruction.84 While this method is preferable, Fletcher, et al. note that it is not possible to provide a human tutor to every student and maintain a cost-effective model. By employing education technologies that allow materials to be tailored to suit the needs to students, a system similar to direct tutoring can be established while also ensuring that it is affordable and globally accessible.

According to a study to assess the costs needed to achieve a common instructional outcome conducted by Fletcher, et al. (1990), the most cost-effective approaches to instruction were found to be computer-based and peer tutoring. The comparative study examined tutoring by professionals, peer tutoring, reducing class size, increasing instructional time, and using computer-based instruction. Though Fletcher, et al.’s findings indicate that a computer-based approach is ultimately the most cost-effective, other similar studies indicate that a combination of peer tutoring and computer-based instruction provides a greater benefit to students than online instruction alone.85

Historically, the CIR has used a “blended learning” approach to deliver training materials pertaining to prosthetic and orthotic fabrication techniques. It is likely that as ICT continues to advance, these courses will employ more online delivery and formal hands-on workshops will be phased out. Through e-learning systems, including Moodle, WebCT, and Blackboard, course materials can be managed effectively by instructors and delivered to students. In addition to simplifying the process of tracking students’ progress and communicating with students, these systems allow students to access materials according to their availability.86

The iCons in Medicine program also relies on web-based interaction as opposed to face-to-face meetings to improve patient care. Though the program is primarily focused on communication between healthcare providers and specialty physicians via teleconsultation, it treats all participants as peers within a network with the common goal of sharing information and knowledge to ensure the provision of quality care.

D1: Stage regional IDEAnet conferences and meetings of experts in disability and rehabilitation in the Western Balkans, the Middle East and other regions.

As mentioned in section A: D3, the possibility of CIR/iCons holding a Conference focused on Role of HIT to Address Health Disparities was discussed at length during the May 2010 iTAB meeting. It was agreed that hosting an annual one-and-a-half day conference with the major focus application of HIT would prove to be beneficial to the program, its membership, and other interested parties within the health and technology fields. Details and planning for this proposed conference have not yet been finalized.

Additionally, as mentioned in section B:D1, the CIR worked with the University Clinical Center Tuzla (UKC), the Association of Physiatrist from the Federation of Bosnia and Herzegovina (BiH), and with the Association of Physiatrists of the Republic

85 Fletcher, et al. (2007)
86 Ibid.
Srpska, to organize the Third International Congress of BiH Physiatrists. The three-day Congress was successfully organized in October 2010.

D2: Deliver educational materials in post-conflict areas as ancillary funding permits.

During the current reporting period the CIR continued to work with the University Clinical Center Tuzla (UKC) to provide training and education to rehabilitation professionals in the Balkan region. The training program delivered during this period included courses on upper and lower extremity orthotics, as well as spinal and cervical orthotics. The training was delivered in a format that combined online components with hands-on practical workshops and evaluations. The result was the delivery of high-quality education for orthotic technicians and improved provision of services for landmine survivors and other individuals with disabilities. The following online provides an overview of the training materials delivered through CIR’s International Disability Educational Alliance Network (IDEAnet) website:

Lower Extremity Orthotics II (February 2010 – May 2010)
Module I Lower Extremity Anatomy II
Module II Lower Extremity Pathology II
Module III Knee Ankle Foot Orthotics
Module IV Overview of Hip-Knee-Ankle-Foot Orthosis (HKAFO), Hip Orthosis, Knee Orthosis, and Rotational Control Orthosis

Spinal and Cervical Orthotics (June 2010 – November 2011)
Module I Anatomy of the Cervical and Spinal Regions
Module II Biomechanics of the Spine
Module III Pathology of the Spine
Module IV Clinical Considerations
Module V Overview of Cervical & Spinal Orthotics
Module VI Cervical & Spinal Orthotics Treatment

Upper Extremity Orthotics (December 2010 – February 2011)
Module I Anatomy of the Upper Extremities
Module II Biomechanics of the Upper Extremities
Module III Clinical Considerations

During this reporting period three hands-on practical evaluations were organized and conducted in collaboration with the UKC, and a practical training session of a one-stage circumferential casting technique use to fabricate a Thoracolumbar Sacral Orthosis (TLSO), as well as the modification, fabrication and fitting process of the orthosis was organized and conducted at the UKC’s Prosthetics and Orthotics Training Center in Tuzla. The CIR also furthered efforts led by Hector Casanova, CP/L to collaborate with the UKC to develop, refine, and deliver spinal and upper extremity training materials. A total of 13 training modules were delivered to 21 students from the region.

As part of the clinical training provided to the students and rehabilitation staff, several multidisciplinary clinical evaluations of children and adults with various musculoskeletal disabilities were organized during this period to help addresses
questions and clinical consideration that the medical staff had regarding specific clinical cases. Physical therapists and physical medicine and rehabilitation staff were involved in the evaluations and members of the families of the people with disabilities interacted with CIR staff and technical consultants.

Key Research Accomplishments

- Investigated the possibility of supporting a data collection/mobile health program pilot project in Kenya with the Field Epidemiology and Laboratory Program Alumni Association (FELP-AA).

- Researched and solicited outside firms to reconstruct the website as part of the overall effort to improve the quality of service, upgrade functionality, and simplify administration.

- Investigated the use of smart mobile devices for integration of a mobile application into the existing iConsult laptop/desktop application.

- Researched the possibility of holding a CIR/iCons conference focused on the Role of Healthcare Information Technology (HIT) to Address Health Disparities.

- Investigated iCons’ role in future natural disasters. It was determined that iCons would best function as a “clearing house” providing online pre-coordination for emergencies in these situations.

REPORTABLE OUTCOMES

- Established iConsult Chapters to allow physicians to designate their desire to provide consultations to medical personnel working in areas affected by the natural disasters that struck Haiti and Pakistan.

- Adapted P&O training modules for cultural aspects, additional clinically related information, and translation into Bosnian.

- Continued tracking of developments and trends to stay current by identifying and embracing those technologies that are widely adopted and stand to offer flexibility and enhanced capabilities to its membership of the program.

- Continued building Social Networking to generate interest in the iCons in Medicine program and initiate communication and discussion among members. Activities include: refinement of the bi-monthly newsletter; expansion of a bi-monthly blog that is posted on three different websites to ensure broad coverage; increase traffic to the iCons in Medicine website through StumbleUpon; continued use of Facebook profile, groups, and fan pages; continued daily updates on Twitter; intermittent videos produced and posted on YouTube channels to generate and interest in the CIR and its programs.
Delivered of 12 online training modules in Prosthetics and Orthotics

Provided upper and lower extremity and spinal and cervical orthotics training and education through online and hands-on practical workshops to rehabilitation professionals in the Balkan region.

Refinement of the iConsult client-server application to enhance the functionality, usability, and aesthetics.

Organized and executed the Third International Congress of BiH Physiatrists in coordination with the University Clinical Center Tuzla (UKC), the Association of Physiatrist from the Federation of Bosnia and Herzegovina (BiH), and the Association of Physiatrists of the Republic Srpska. The three-day congress was held in October 2010 in Tuzla, BiH. During this Congress, the CIR helped to coordinate the First International Society for Prosthetics and Orthotics (ISPO) Conference in which international experts from Europe and the United States participated and exchanged current scientific knowledge to improve the quality of life of individuals with disability in the Balkan Region.

Continued the utilization of several social networking outlets to generate interest and encourage participation in the International Disability Rights Monitor (IDRM) project: Blogging, Facebook, Twitter, and YouTube.

Adapted the International Disability Rights Monitor (IDRM) research methodology to reflect the Convention on the Rights of People with Disabilities (CRPD).

Continued development of a special edition of the IDRM publication to document the history of the Convention on the Rights of People with Disabilities, which has an anticipated publication date of September 2011.

Continued growth and maintenance of the iCons in Medicine Membership.

Continued work with the iTAB, which is composed of leaders in the telemedicine industry who meet monthly in order to create a volunteer support network for the iCons in Medicine program.

Conclusions

Historically, the CIR has worked to provide technical assistance, education, and training to medical practitioners in medically underserved areas. During the current reporting year, the CIR continued to utilize its experience distributing learning materials; conducting hands-on workshops aimed at transferring appropriate rehabilitation technologies; promoting interaction between rehabilitation professionals; and providing solutions through the development of tools, core curricula, and strategic plans that address the needs of people with disabilities, and the war-wounded population. These ongoing efforts have led to the delivery of 12 online training modules in Prosthetics and Orthotics, prosthetic demonstrations and hands-on practical
evaluations in Tuzla, BiH. Through these training efforts, the CIR hopes to ensure that the needs of people with disabilities are met in areas worldwide where access to quality medical care and rehabilitation services are limited.

The CIR’s use of Social Media continues to grow, resulting in an increased awareness and interest in the iCons in Medicine program. Over 700 healthcare professionals receive a bi-monthly e-newsletter from iCons in Medicine, and these individuals and other interested parties respond to materials distributed through Facebook, Twitter, blogs, and videos posted online. These external social networking outlets have also been utilized to share information about the IDRM project, and to generate interest and encourage participation it. Information posted online by the CIR is frequently reposted by others, further increasing the audience that is exposed to these materials.

To date, over 400 professionals in the medical industry have become members of iCons in Medicine. Half of these participants have elected to join the “iConsult” program, allowing them to provide and receive teleconsultations through iCons in Medicine. The program has been structured in such a way that participants are organized and recruited via groups within their geographic region. Taking into consideration user feedback, iTAB input and extensive testing of the teleconsultation process, the iConsult client-server application, through which teleconsultations are submitted, is in the process of being revamped with enhanced capabilities. The result will be a more user-friendly application. Once completed, an overhaul of the website, used by Volunteers to respond to teleconsultation requests, will take place to compliment the updated client-server application. To further expand the program, the possibility of creating a mobile application to be paired with the existing website and desktop application has been explored, and the aforementioned updates to both the website and software have been geared towards this future integration.

It is anticipated that through increased social networking efforts and ongoing refinement of the iCons in Medicine website and software application, it will be possible to ensure a strong and sustainable network. Through this network, it will be possible to share and disseminate new knowledge, information, and ideas, and to ensure the provision of quality health services worldwide through telemedicine.
References

Soubhi MD PhD, Hassan; Bayliss MD MSPH, Elizabeth, A.; Fortin MD MSc CMFC, Martin; Hudon, MD CMFC, Catherine; van den Akker PhD, Marjan; Thivierge MD,

Thompson MD MS, Lindsay, A.; Dawson PhD, Kara; Ferdig PhD, Richard; Black MA, Erik W.; Boyer Med, J.; Coutts Med, Jade; and Black MD, Nicole Paradise (2008). The Intersection of Online Social Networking with Medical Professionalism. *Journal of General Internal Medicine*. July; 23(7): 954-957.

Wilensky, Hiroko; Su, Norman Makoto; Redmiles, David; and Mark, Gloria (2008). *A Community of Knowledge Management Practioners: Mirroring Power across Social Worlds*, in IFIP International Federation for Information Processing, Volume 270; *Knowledge Management in Action*, Mark Ackerman, Rose Dieng-Kuntz, Carla Simone, Volker Wulf; (Boston: Springer), pp. 195-207.

Appendix A

Sample screens from iConsult client-server application

Login Screen

Case Screen

Image Annotation Screen

Messages Screen
Appendix B

Allergy and Immunology Medical Genetics
Anesthesiology Neurological Surgery
Colon and Rectal Surgery Nuclear Medicine
Dermatology Obstetrics and Gynecology
Emergency Medicine Ophthalmology
Family Medicine Orthopaedic Surgery
Internal Medicine :: General Otolaryngology
Internal Medicine :: Adolescent medicine Pathology
Internal Medicine :: Cardiology Pediatrics
Internal Medicine :: Endocrinology Physical Medicine and Rehabilitation
Internal Medicine :: Gastroenterology Plastic Surgery
Internal Medicine :: Geriatrics Preventative Medicine
Internal Medicine :: Hematology Psychiatry and Neurology
Internal Medicine :: Infectious disease Radiology
Internal Medicine :: Nephrology Surgery
Internal Medicine :: Oncology Thoracic Surgery
Internal Medicine :: Pulmonology Urology
Internal Medicine :: Rheumatology
Appendix C

iCons

in Medicine

"iConsult"

A Global Telehealth and Humanitarian Medicine Volunteer Alliance

www.iconsinmed.org

iConsult is a program of iCons in Medicine that uses the internet to connect healthcare providers in remote or medically underserved areas (Requests) with a network of committed specialty physicians (Volunteers) who volunteer their expertise to provide clinical support. This program expands treatment options to patients who otherwise would not have access to specialty care.

PROVIDING TELECONSULTATIONS – VOLUNTEERS

Volunteers are physicians who provide free teleconsultations and clinical decision-making support to healthcare providers in remote or medically underserved areas. The responsibilities of the Volunteer are as follows:

- Provide a minimum of three medical teleconsultations per year to healthcare providers in remote or underserved areas using the iConsult features of the iCons in Medicine website.
- Communicate peer-to-peer as a source of knowledge for the requesting healthcare provider (no doctor-patient relationship is established).
- Maintain a valid license to practice medicine in a recognized iCons healthcare specialty.

GROUPS OF VOLUNTEERS - CHAPTERS

Chapters are responsible for recruiting and enrolling qualified physicians as Volunteers in the iConsult program.

All Volunteers enroll in the program through a Chapter. iConsult Volunteers may choose to join an existing Chapter or begin one of their own. Volunteers generally enroll in a Chapter with which they have a prior affiliation, such as a Chapter based at their place of employment. New Chapters are formed when three or more Volunteers (Chair, Medical Director, and Secretary) apply to create a Chapter.

(See reverse side for technical requirements, tools and features)

TECHNICAL REQUIREMENTS FOR VOLUNTEERING

In order to participate in iConsult, Volunteers should have the following:
- PC with 32 bit Windows and 5 megabytes of free hard drive space
- Internet connection with Microsoft Internet Explorer version 6, 7, or 8

TOOLS AND FEATURES FOR VOLUNTEERS

Once enrolled in a Chapter, Volunteers use the iCons in Medicine website to provide consultations. Features include:

- E-mail notification of new cases
- Personal homepage on which Volunteers can manage and respond to cases, read current news, and view their contacts
- Searchable member directory that allows Volunteers to find additional information about requesting healthcare professionals and other Volunteers
- "My Information" pages for managing personal profiles and preferences
- Forums, Bulletin, messaging, and chat rooms to allow participating members to network and exchange information
- User manuals and instructions for technical support

To learn more about iCons in Medicine or to join, visit

www.iconsinmed.org
TECHNICAL REQUIREMENTS FOR REQUESTORS

In order to participate in iConsult, Requestors should have the following:

- PC with 32 bit Microsoft Windows and 5 megabytes of free hard drive space
- Internet connection with Microsoft Internet Explorer version 5, 6, 7 or newer

TOOLS AND FEATURES FOR REQUESTORS

Features of the iConsult computer program include:

- Small file size to enable rapid download
- Easy to install and use
- Compatible with limited or unreliable internet connectivity
- Secure login
- Online consultation form
- Imaging feature allows Requestors to upload digital images, such as X-rays, and add notes to the images for the Volunteer to view
- Ability to attach and send documents
- Encryption and secure socket layer (SSL) connections to enable continuous, secure two-way communication

Requestors also have access to the iCons in Medicine website, which includes:

- Descriptive member directories that allow Requestors to find additional information about iCons in Medicine volunteers or other Requestors
- "My Information" pages for managing profiles and preferences
- Forums, reserves, messaging, and chat rooms allowing Requestors to network and exchange information
- User manuals and instructions for technical support

To learn more about iConsult or to join, visit www.iconsinmed.org
Appendix E

iCon is a program of iCons in Medicine that uses the Internet to connect healthcare providers in remote or medically underserved areas (Requestors) with a network of committed specialty physicians (Volunteers) who volunteer their expertise to provide clinical support. This program expands treatment options for patients who otherwise would not have access to specialty care.

NATIONAL SECRETARIATES

National Secretariats provide oversight to Chapters and Member Organizations within a specific geographic area, usually a country. A National Secretariat may be formed either within an existing entity, such as an academic medical center or major hospital, or as an independent charitable entity established solely for iConsult.

The primary responsibilities of a National Secretariat are to:

- Identify, enroll, and oversee “Member Organizations” - groups of healthcare providers working for non-profit institutions in medically underserved areas who wish to receive teleconsultation services through iConsult
- Identify, enroll, and oversee “Chapters” - groups of medical specialists who volunteer as consultants through the iConsult program
- Serve as a link to international iConsult organizations
- Coordinate iCons in Medicine national activities and participate in regional and international meetings

National Secretariats are recruited through a Request for Applications (RFA) process. They are licensed by iCons in Medicine International and may raise money and receive grants for their work.

To learn more about iConsult or to join, visit www.iconsinmed.org.
Appendix F

http://archive.constantcontact.com/fs033/1102482325007/archive/1102518353612.html

Features include: Members in the News, Program Updates, Membership numbers and directory, Global Health News, Health IT News, Upcoming Medical Meetings, iCon Links, and more.

- **Issues:** 53
- **Update:** Bi-Monthly
- **Readership:** 700+
Appendix G

A blog (weblog) is a website, usually maintained by an individual, with regular entries of commentary, descriptions of events, or other material such as graphics or video. Information on a given Global Health/Health IT topic is posted on four popular blogging websites every two weeks.

- **Update: Bi-Monthly**
- **Average Hits (WordPress):** 15,707 views (total life of blog).
 Between February 2010 and February 2011 - 989 views per month

http://iconsinmedicine.wordpress.com/
http://iconsinmedicine.blogspot.com/
http://iconsinmedicine.tumblr.com/
Facebook is a social networking website where users create a personal profile account and can add friends, send messages, and update statuses. Facebook groups are analogous to clubs in the offline world. Facebook pages function like a profile account, but is specific to a brand, an organization, etc.

Facebook profile account under William K. Smith
http://www.facebook.com/william.smith

Facebook iCon Group
http://www.facebook.com/group.php?gid=55315437969

Facebook iCon Fan Page
Appendix I

http://twitter.com/iCons_in_Med

Twitter is a social networking and microblogging service that enables its users to send and read messages known as “tweets”. Tweets are text-based posts of up to 140 characters displayed on the author’s profile page and delivered to the author’s subscribers who are known as “followers”.

● **Update:** At least once daily
● **Followers:** 2,263
Appendix J

YouTube and Vodpod are video-sharing websites on which users can upload and share videos. CIR, iCons in Medicine and IDRM all have accounts. Below are images of the iCons in Medicine accounts.

Views February 2010-February 2011:
- **CIR:** 17,515
- **iCons in Medicine:** 1,279
- **IDRM:** 1,118
Appendix K

http://www.flickr.com/photos/iconsinmedicine/

Flickr is an image and video hosting website, web services suite, and online community platform.
Appendix L

A blog (weblog) is a website, usually maintained by an individual, with regular entries of commentary, descriptions of events, or other material such as graphics or video. Information on a given Global Health/Health IT topic is posted on four popular blogging websites every two weeks.

- **Update:** Bi-Monthly
- **Total Views (WordPress):** 452 views (total lifetime of blog)
 34 views per month (average)

http://idrm.wordpress.com/

http://idrm.blogspot.com/
Facebook is a social networking website where users create a personal profile account and can add friends, send messages, and update statuses. Facebook groups are analogous to clubs in the offline world. Facebook pages function like a profile account, but is specific to a brand, an organization, etc.

Facebook profile account under William K. Smith (Same as iCon)
http://www.facebook.com/#!/iConsinMedicine?v=wall

Facebook IDRM Group
http://www.facebook.com/group.php?gid=54526648977&ref=ts

Facebook IDRM Fan Page
Appendix N

http://twitter.com/the_IDRM

Twitter is a social networking and microblogging service that enables its users to send and read messages known as "tweets". Tweets are text-based posts of up to 140 characters displayed on the author's profile page and delivered to the author's subscribers who are known as "followers".

- **Update:** At least once daily
- **Followers:** 212
Appendix O

http://www.youtube.com/user/TheIDRM

YouTube is video-sharing websites on which users can upload and share videos.

Views February 2010—February 2011: 1,118
PERSONNEL AND FINANCIAL REPORTS
(Project Staff, Role, and Percent Effort on Project)

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Role on Project</th>
<th>Effort on Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith, William K. Dr.</td>
<td>Principal Investigator</td>
<td>21%</td>
</tr>
<tr>
<td>Casanova, Hector R.</td>
<td>Vice President of Operations</td>
<td>4%</td>
</tr>
<tr>
<td>Coe, Hayward C</td>
<td>Comptroller/Grants Manager</td>
<td>18%</td>
</tr>
<tr>
<td>Ervin, Deborah Lynn</td>
<td>Dir of Marketing and Communications</td>
<td>100%</td>
</tr>
<tr>
<td>Jackson, Kathryn</td>
<td>Communications Officer</td>
<td>100%</td>
</tr>
<tr>
<td>Dave, Krishna</td>
<td>Office Manager</td>
<td>25%</td>
</tr>
<tr>
<td>Demetrios Sapounas</td>
<td>Chief Technology Officer</td>
<td>100%</td>
</tr>
</tbody>
</table>

Cost Elements

<table>
<thead>
<tr>
<th>Cost Elements</th>
<th>Current Period</th>
<th>Year-To-Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSONNEL</td>
<td>295,530.56</td>
<td>1,831,269.75</td>
</tr>
<tr>
<td>FRINGE BENEFITS</td>
<td>86,285.69</td>
<td>446,531.80</td>
</tr>
<tr>
<td>CONSULTANT COSTS (Content Experts, Software & WEB DEVELOPMENT)</td>
<td>86,567.00</td>
<td>530,694.13</td>
</tr>
<tr>
<td>MAJOR EQUIPMENT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MATERIALS, SUPPLIES & CONSUMABLES</td>
<td>14,666.12</td>
<td>99,878.26</td>
</tr>
<tr>
<td>TRAVEL COSTS</td>
<td>7,458.46</td>
<td>159,539.89</td>
</tr>
<tr>
<td>RESEARCH RELATED PATIENT COSTS</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OTHER EXPENSES</td>
<td>51,640.51</td>
<td>263,890.04</td>
</tr>
</tbody>
</table>

SUBTOTAL DIRECT EXPENDITURES 542,148.34 3,331,803.87

TOTAL INDIRECT COSTS FOR THIS BUDGET PERIOD 200,477.97 1,125,843.53

TOTAL INDIRECT COSTS FOR THIS BUDGET 742,626.31 4,457,647.40