Self-Aligned-Gate GaN-HEMTs with Heavily-Doped n^+-GaN Ohmic Contacts to 2DEG

HRL Laboratories, LLC, 3100 Malibu Canyon Road, Malibu, CA 90265-4797, USA
Phone: +1-310-317-5093, Fax: +1-310-317-5485, E-mail: kshinohara@hrl.com

Abstract

We report record DC and RF performance obtained in deeply-scaled self-aligned-gate GaN-HEMTs with heavily-doped n^+-GaN ohmic contacts to two-dimensional electron-gas (2DEG). High density-of-states of three-dimensional (3D) n^+-GaN source near the gate mitigates "source-starvation" resulting in a dramatic increase in a maximum drain current ($I_{d_{\text{max}}}$) and a transconductance (g_m). 20-nm-gate D-mode HEMTs with a 40-nm gate-source (and gate-drain) distance exhibited a record-low R_{on} of 0.23 $\Omega \cdot$mm, a record-high $I_{d_{\text{max}}}$ of >4 A/mm, and a broad g_m curve of >1 S/mm over a wide range of I_{ds} from 0.5 to 3.5 A/mm. Furthermore, 20-nm-gate E-mode HEMTs with an increased L_{sw} of 70 nm demonstrated a simultaneous f_T/f_{max} of 342/518 GHz with an off-state breakdown voltage of 14V.

Introduction

Deeply-scaled E/D-mode GaN-HEMTs with an unprecedented combination of high-frequency and high-breakdown characteristics offer practical advantages in circuit applications such as sub-millimeter-wave power amplifiers, ultra-linear mixers, and increased output power digital-to-analog converters. During the last few years, through innovative device scaling technologies GaN-HEMT cutoff frequencies have been significantly increased - almost doubled - while maintaining Johnson figure of merit ($JFOM$) breakdown performance [1]. It is reported that in deeply-scaled FETs highly-doped source/drain (S/D) can significantly improve device performance by enhancing electron supply in the source [2,3]. Regrown n^+-GaN ohmic contacts have been shown to be one of viable technologies to reduce parasitic access resistances [4,5]. However, much attention has not been paid to an important role of heavily-doped S/D contacts in mitigating "source-starvation" which limits present GaN-HEMT performance. In this paper, we, for the first time, have developed self-aligned-gate GaN-HEMTs with regrown n^+-GaN S/D in direct contact with the 2DEG near the gate, and demonstrate dramatically enhanced DC and RF characteristics in conjunction with engineering of the lateral device dimensions.

Device design

Fig. 1 illustrates a technology cross-section featuring (i) a laterally-scaled self-aligned-gate, (ii) vertically-scaled depletion and enhancement-mode AlN/GaN/AlGaN double-heterojunction (DH) HEMT epitaxial structures as detailed in Fig. 2, and (iii) heavily-doped n^+-GaN ohmic contacts regrown by MBE. A high 2DEG density (n_s) of 1.2(D)/1.1(E)×1013 cm$^{-2}$ and a high electron mobility (μ) of 1200(D)/1250(E) cm2/V·s were measured after surface passivation with SiN. Heavily-Si-doped n^+-GaN ohmic layers (7×1019 cm$^{-3}$, 50 nm) laterally contact to 2DEG in the GaN channel. A Pt/Au gate is then self-aligned to the n^+-GaN ohmic contacts by enhancing electron supply in the source [2,3]. Regrown n^+-GaN ohmic contacts have been shown to be one of viable technologies to reduce parasitic access resistances [4,5]. However, much attention has not been paid to an important role of heavily-doped S/D contacts in mitigating "source-starvation" which limits present GaN-HEMT performance. In this paper, we, for the first time, have developed self-aligned-gate GaN-HEMTs with regrown n^+-GaN S/D in direct contact with the 2DEG near the gate, and demonstrate dramatically enhanced DC and RF characteristics in conjunction with engineering of the lateral device dimensions.

Fig. 1. Deeply-scaled self-aligned-gate double-heterojunction (DH) HEMT with heavily-doped regrown n^+-GaN ohmic contacts to the 2DEG in the GaN channel.

Fig. 2. Vertically-scaled (a) D-mode and (b) E-mode DH-HEMT epitaxial structures.

Fig. 3 compares two regrown n^+-GaN ohmic structures: (a) A regrown n^+-GaN ohmic layer directly contacts to the 2DEG, where electrons are supplied from the 3D n^+-GaN source to the 2DEG near the gate (3D-2D). (b) An n^+-GaN ohmic layer was regrown on top of the (Al)GaN/AlN barrier layers as reported in our previous paper [1], where electron are...
Self-Aligned-Gate GaN-HEMTs with Heavily-Doped n+-GaN Ohmic Contacts to 2DEG

Abstract

We report record DC and RF performance obtained in deeply-scaled self-aligned-gate GaN-HEMTs with heavily-doped n+-GaN ohmic contacts to two-dimensional electron gas (2DEG). High density-of-states of three-dimensional (3D) n+-GaN source near the gate mitigates source-starvation, resulting in a dramatic increase in a maximum drain current ($I_{d_{max}}$) and a transconductance (g_m). 20-nm-gate D-mode HEMTs with a 40-nm gate-source (and gate-drain) distance exhibited a record-low Ron of 0.23 Ω·mm, a record-high $I_{d_{max}}$ of >4 A/mm, and a broad g_m curve of >1 S/mm over a wide range of I_{d} from 0.5 to 3.5 A/mm. Furthermore, 20-nm-gate E-mode HEMTs with an increased L_{sw} of 70 nm demonstrated a simultaneous f_T/f_{max} of 342/518 GHz with an off-state breakdown voltage of 14V.

Subject Terms

supplied from the 2DEG source to the 2DEG channel (2D-2D).

Results and Discussion

An access resistance \(R_{ac} \), defined as a total resistance from the ohmic metal to the edge of the gate, of 0.101 \(\Omega \cdot \text{mm} \) is the lowest value ever reported in GaN-HEMTs (Fig. 4). Resistance components of \(R_{ac} \) are shown in Fig. 4, which were extracted from a TLM test structure, contactless sheet resistance measurement, and dependence of device on-resistance \(R_{on} \) on \(L_g \) (Fig. 5). The regrown interface resistance \(R_{int} \) between the \(n^+ \)-GaN and the 2DEG is only 0.026 \(\Omega \cdot \text{mm} \), reaching its theoretical limit \([-h/(2q^2 n_s^{1/2}) = 0.036 \Omega \cdot \text{mm}] \) [6]. More importantly, this new approach not only reduces \(R_{ac} \) but also increases flexibility in a material choice of GaN-HEMT epi structures since the \(R_{ac} \) is independent of the barrier materials as is the case for the conventional approach. Fig. 6 and Fig. 7 compare DC characteristics of 60-nm D and E-mode HEMTs with 3D-2D and 2D-2D contacts. Reduced \(R_{on} \) by -18\% (-19\%) for D (E)-mode device is a result of the reduced \(R_{ac} \). \(I_{d_{max}} \) is dramatically increased by +34\% (+45\%) for D (E)-mode device due to an increase of \(g_m \) at high \(I_d \). This result clearly illustrates that typical \(g_m \) roll-off at high \(I_d \) observed in previous devices is due to the limited electron supply from the source, i.e., "source-starvation." 20-nm-gate D-mode HEMTs with \(L_{sw} = 40 \) nm exhibited a record-low \(R_{on} \) of 0.23 \(\Omega \cdot \text{mm} \), a record-high \(I_{d_{max}} \) of >4 A/mm, and a broad \(g_m \) curve of >1 S/mm over a wide range of \(I_d \) from 0.5 to 3.5 A/mm (Fig. 8). Fig. 9 shows a peak \(g_m \) of E-mode HEMTs as a function of \(L_g \) for various \(L_{sw} \), indicating that the closer the \(n^+ \)-GaN/2DEG interface is to the gate, the more efficiently electron are supplied from the 3D \(n^+ \)-GaN source. The record-high \(g_m \) of 2.2 S/mm was measured for a device with \(L_g/L_{sw} = 40/50 \) nm.
While the shorter gate-source distance \((L_g)\) enhances the electron supply, the longer gate-drain distance \((L_{gd})\) increases breakdown voltage and reduces output conductance \((g_d)\) and gate-drain capacitance \((C_{gd})\). Off-state breakdown voltage \((BV_{off})\) increased linearly with increasing \(L_{sw}\) with a slope of 3.25 MV/cm, close to the critical field of GaN (~3.4 MV/cm) (Fig. 10). Drain induced barrier lowering (DIBL) for sub-50-nm gate lengths \((L_g)\) improved significantly with increasing \(L_{sw}\) owing to an increased gate to drain electrostatic isolation (Fig. 11), leading to a lower \(g_d\) due to suppression of the "short-channel-effect." A balanced device design with \(L_g/L_{sw} = 20/70\) nm in the E-mode HEMTs resulted in a simultaneous \(f_T/f_{max} = 342/518\) GHz with a \(BV_{off}\) of 14 V. This record-high \(f_{max}\) is attributed to the decreased \(g_d\) and \(C_{gd}\) due to the increased gate-drain distance together with a high \(g_m\) enabled by the new 3D \(n^+\)-GaN source contact to the 2DEG (Fig. 12). Fig. 13 shows good scaling behavior of \(f_T/f_{max}\) with \(L_g\) down to 20 nm. As a result of proportional device scaling and enhanced electron supply in self-aligned-gate...
Fig. 14. Comparison of extrinsic peak g_m vs. V_{th} with the state-of-the-art results reported for GaN-HEMT technology.

Fig. 15. Proportional device scaling and enhanced electron supply in deeply-scaled self-aligned-gate GaN-HEMTs successfully resulted in a record f_T and f_{max} exceeding an average cutoff frequency of 400 GHz.

GaN-HEMTs, enhanced peak g_m in excess of 2 S/mm (Fig. 14) and an average cutoff frequency $[= (f_T f_{max})^{1/2}]$ of >400GHz were obtained (Fig. 15).

Conclusion

Heavily-doped n^+-GaN S/D contacts to the 2DEG in deeply-scaled self-aligned-gate GaN-HEMTs were demonstrated for the first time. The new technology was shown to effectively mitigate “source-starvation,” resulting in a significant enhancement in R_{on}, I_{max}, g_m, and g_m linearity. An R_{on} of 0.23 Ωmm, an I_{max} of >4 A/mm with a broad g_m curve of >1 S/mm over a wide range of V_{gs}, was obtained in 20-nm D-mode HEMTs with $L_{sw} = 40$ nm. In conjunction with lateral device size optimization for a reduced g_d and C_{gd} as well as an increased BV_{gd}, a record f_{T}/f_{max} of 342/518 GHz was obtained in 20-nm HEMTs with a $JFOM$ of 4.8 THz·V.

Acknowledgment

This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) Nitride Electronic NeXt-Generation Technology (NEXT) program under Contract No. HR0011-09-C-0126, program manager Dr. John Albrecht. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

(Approved for Public Release, Distribution Unlimited.)

Reference