Integrity ★ Service ★ Excellence

Systems and Software

06 March 2013

Dr. Kathleen M. Kaplan
AFOSR
Air Force Research Laboratory
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>06 MAR 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. REPORT TYPE</td>
<td></td>
</tr>
<tr>
<td>3. DATES COVERED</td>
<td>00-00-2013 to 00-00-2013</td>
</tr>
<tr>
<td>4. TITLE AND SUBTITLE</td>
<td>Systems and Software</td>
</tr>
<tr>
<td>5a. CONTRACT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5b. GRANT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5c. PROGRAM ELEMENT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5d. PROJECT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5e. TASK NUMBER</td>
<td></td>
</tr>
<tr>
<td>5f. WORK UNIT NUMBER</td>
<td></td>
</tr>
<tr>
<td>6. AUTHOR(S)</td>
<td></td>
</tr>
<tr>
<td>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</td>
<td>Air Force Office of Scientific Research, AFOSR/RTC, 875 N. Randolph, Arlington, VA, 22203</td>
</tr>
<tr>
<td>8. PERFORMING ORGANIZATION REPORT NUMBER</td>
<td></td>
</tr>
<tr>
<td>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</td>
<td></td>
</tr>
<tr>
<td>10. SPONSOR/MONITOR’S ACRONYM(S)</td>
<td></td>
</tr>
<tr>
<td>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</td>
<td></td>
</tr>
<tr>
<td>12. DISTRIBUTION/AVAILABILITY STATEMENT</td>
<td>Approved for public release; distribution unlimited</td>
</tr>
<tr>
<td>13. SUPPLEMENTARY NOTES</td>
<td>Presented at the AFOSR Spring Review 2013, 4-8 March, Arlington, VA.</td>
</tr>
<tr>
<td>14. ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>15. SUBJECT TERMS</td>
<td></td>
</tr>
<tr>
<td>16. SECURITY CLASSIFICATION OF:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
<th>Same as Report (SAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. NUMBER OF PAGES</td>
<td>11</td>
</tr>
<tr>
<td>19a. NAME OF RESPONSIBLE PERSON</td>
<td></td>
</tr>
</tbody>
</table>

Form Approved
OMB No. 0704-0188

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
NAME: Systems and Software

BRIEF DESCRIPTION OF PORTFOLIO:

• Enable quantifiable performance evaluation of critical systems
• Manage environments in order to preserve vital mission functions
• Comprehensively understand distributed effects in large infrastructures to predict global system failures

LIST SUB-AREAS IN PORTFOLIO:

• Composeable Dynamic Models
• Formal Analysis and Verification
• Assessment/Repair of Failure
Current Program Scope

• Composeable Dynamic Models
 – New programming languages or language constructs reduce errors at run-time
 – Domain-specific languages enhance capabilities for code generation

• Dynamic Formal Analysis and Verification
 – Verification of system properties based on formal specifications

• Assessment/Repair of Failure
 – Abstract models of systems and their interactions facilitate automated generation of code

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Scalable Model Checking
C. Tinelli, U. Iowa, C. Barret, NYU

Approach: Formal verification suffers from state space explosion.
Compactly represent logical symbols in scalable nested satisﬁability modulo theory (SMT)

Payoff: More scalable verification to handle large heterogeneous systems

Compact SMT Language

- **Valid:**
 - satisfied by all states in Q

- **Inductive:**
 - \(I(s_0) \models P(s_0) \),
 - \(P(s_n), T(s_n, s_{n+1}) \models P(s_{n+1}) \)

- **k-inductive:**
 - \(I(s_0), T(s_0, s_1), ..., T(s_{k-1}, s_k) \models P(s_0), ..., P(s_k) \),
 - \(T(s_n, s_{n+1}), ..., T(s_{n+k-1}, s_{n+k}), P(s_n), ..., P(s_{n+k}) \models P(s_{n+k+1}) \)

- **Invariant:**
 - satisfied by all reachable states of S
Approach: Heterogeneous and uncertain states characterize system performance across multiple levels of software. Using stochastic models can enable robust characterization for system performance verification.

Payoff: Computationally tractable ways of system performance verification at multiple layers of software including human interaction.

System Performance Model

- Task characteristics
- Communication characteristics
- Cognitive traits

Task Performance Prediction Model

- Metric 1
- Metric N

System Performance Model

- TL = Task load (# enemies)
- MQ = Message quality (% relevant messages)
- WM = Working memory (OSPAN)
- Gaussian noise (fixed std dev)

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Mission Verification
Elbaum, Dwyer U. Neb., Rosenblum

Approach: Develop a language to represent mission scenarios tied to integrated distributed software architecture.

Payoff: Verify global mission properties as function of lower level software constructs for quantifiable fault tolerance in achieving mission objectives
Systems and Software
AFRL Tech Directorate Interest/Coordination

• Information Directorate
 – Systems and Software Producibility
 – Multi-core Computing

• Air Vehicles
 – Flight-critical systems and software
 – Mixed-criticality architectures

• Human Effectiveness
 – Modeling of human-machine systems
 – Meta-information portrayal STTR
 – Robust Decision Making
 – Large Scale Cognitive Modeling/C2WT

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Increased Scale/Integration via DSMLs Anchored in DEVS
(Douglass, 711th HPW/RH)

DEVS (discrete event system specification)
- Formal rigor
- Model reusability
- Interoperability

A discrete event system specification (DEVS) is a mathematical structure (7-tuple)

\[M = \langle X, S, Y, \delta_{\text{int}}, \delta_{\text{ext}}, \lambda, tA \rangle \]

where
- \(X \) is the set of input values
- \(S \) is a set of states
- \(Y \) is the set of output values
- \(\delta_{\text{int}} : S \rightarrow S \) is the internal transition function
- \(\delta_{\text{ext}} : 2^X \times X \rightarrow S \) is the external transition function
- \(\lambda : S \rightarrow Y \) is the output function
- \(tA : S \rightarrow \mathbb{R}_{\geq 0} \) is the time advance function

Domain-Specific Languages
- Tailored for cognitive modeling
- Semantically anchored in DEVS

High-Performance Computing
- Scalable simulation infrastructure
- Exploiting 25 years of DEVS

Navigator
Plans routes from targets to targets under constraints

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Approach: Use parallel processing resources and network infrastructure as means of emulating and detecting system faults
Payoff: Far fewer defects and more detailed assessment of integrated system performance
Collaborations at AFOSR

- **Information Operations and Security**
 - Fundamental software constructs for system security
- **Information Fusion**
 - Signal and sensor processing for integration of large data into systems architectures
- **Complex Networks**
 - Mathematical and statistical methods for network and networked systems
- **Foundations of Information Systems**
 - Measurement and statistical verification for software, network, and hardware
- **Computational Mathematics**
 - Methods of computational modeling of large complex physical processes
- **Dynamic Data Driven Applications Systems**
 - Strategies for real time feedback of data into distributed computational processes
- **Optimization and Discrete Mathematics**
 - Optimization strategies and algorithms for discrete computational processes
- **Dynamics and Control**
 - Dynamical systems theory for assessment of performance of control architectures

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Agency Interactions:

- **OSTP/NITRD Coordinating Group**
 - High Confidence Systems and Software (HCSS)
- **ASDR&E**
 - Software Producibility Initiative
- **NSF**
 - Cyber Physical Systems
- **NASA**
 - V&V of Flight Critical Systems
 - Ames Research Laboratory

Other Funding Agencies

- **ARO**
- **ONR**
- **DARPA**