It is now accepted that algae have enormous potential to generate economically viable and environmentally sustainable liquid fuels that can help mitigate the effects of a diminishing supply of fossil fuel. The achievement of economic biofuel production from any algal species will almost certainly require advanced genetic techniques. Although these tools are available for model algal species they are not readily available for algae that are being identified as potential biofuel production strains. Our work was focused on developing the genetic tools required to enable green algae to become efficient biofuel production strains. Being able to efficiently apply genetic transformation techniques to green algae species will allow us to generate strains that contain ideal traits for maximally efficient fuel production, and will also enable crop protection, improved nutrient utilization, and increased harvesting efficiency, all of which will help drive the economic viability of algal fuel production. Algae have two genomes that are typically transformed: the nuclear genome and the chloroplast genome, and each of these genomes require distinct sets of transforma...
AFOSR Final Performance Report

Project Title: Developing Molecular Genetic Tools to Facilitate Economic Production in Green Algae

Award Number: FA9550-10-1-0052

Start Date: 04/01/2010

Program Manager: Patrick O. Bradshaw, PhD
Air Force Office of Scientific Research
875 North Randolph Street 4027
Arlington VA 22203
email: Patrick.Bradshaw@afosr.af.mil
phone: 703-588-8492

Principal Investigator: Prof. Stephen P. Mayfield
Department of Biological Sciences
University of California San Diego
9500 Gilman Drive # 0368
La Jolla, CA 92093-0368
email: smayfield@ucsd.edu
phone: (858)822-7743
DEVELOPING MOLECULAR GENETIC TOOLS TO FACILITATE ECONOMIC PRODUCTION IN GREEN ALGAE

ABSTRACT

It is now accepted that algae have enormous potential to generate economically viable and environmentally sustainable liquid fuels that can help mitigate the effects of a diminishing supply of fossil fuel. The achievement of economic biofuel production from any algal species will almost certainly require advanced genetic techniques. Although these tools are available for model algal species they are not readily available for algae that are being identified as potential biofuel production strains.

Our work was focused on developing the genetic tools required to enable green algae to become efficient biofuel production strains. Being able to efficiently apply genetic transformation techniques to green algae species will allow us to generate strains that contain ideal traits for maximally efficient fuel production, and will also enable crop protection, improved nutrient utilization, and increased harvesting efficiency, all of which will help drive the economic viability of algal fuel production. Algae have two genomes that are typically transformed: the nuclear genome and the chloroplast genome, and each of these genomes require distinct sets of transformation vectors and protocols. In this proposal we aimed to improve the potential of marine algae by developing genetic tools for chloroplast through the following aims.

COMPLETED WORK

We have successfully met the three aims outlined in our AFOSR funded project (FA9550-09-1-0336). These aims were:

1) Identify regulatory elements of chloroplast genes from algae by functional analysis in the C. reinhardtii chloroplast
2) Develop transformation technologies for the chloroplast of the marine algae Dunaliella tertiolecta
3) Express a recombinant protein at economically viable levels in a candidate production species

In an effort to design what we hoped could be a set of universal algal transformation vectors, we identified highly conserved regions of plastid genomes and explored a number of regulatory regions from both characterized species as well as several marine uncharacterized species, including D. tertiolecta. Genes that were examined included: psbA, tufA, atpA, and psbD. From this work we identified a number of promoter and regulatory regions required for chloroplast gene expression, and designed a transformation strategy for new algal species based on this analysis. We have submitted an article describing this work, entitled “Analysis of Heterologous Regulatory and Coding Regions in Algal Chloroplasts” to the journal Applied Microbiology and Biotechnology.
By examining heterologous promoters and terminators we were able to determine that while high levels of recombinant mRNA could be observed, recombinant protein production was lacking. As a result heterologous regulatory regions appear not to be a viable option for engineering the chloroplast of algae, due mainly to the high degree of species specificity for utilization of 5’ untranslated regions (UTRs) from plastid mRNAs (Figure 1). However, our data do show that heterologous proteins can be produced very well in C. reinhardtii chloroplasts, as long as codon bias is maintained within the coding sequence. Thus we determined that the best approach to achieve reliable expression of transgenes in chloroplasts of new algal species is to use endogenous regulatory regions coupled to coding sequences modified to reflect the codon bias of that species. For transforming the chloroplast of non-sequenced algae species it would be prudent to retrieve the host regulatory sequences along with homologous flanking regions for integration into the plastid genome, and this can be easily done with PCR using conserved primers.

Using the aforementioned endogenous promoter/UTR strategy we have successfully transformed the chloroplast of the marine algae D. tertiolecta. In collaboration with Sapphire Energy we have developed a complete homologous recombination vector for the chloroplast of D. tertiolecta. This vector integrates between the psbH and psbB genes and contains a psbD promoter/UTR driving expression of any gene of interest and an rbcL promoter/UTR driving erythromycin resistance for selection. Using this strategy we engineered expression of several recombinant enzymes in D. tertiolecta chloroplasts, including a xylanase gene from Trichoderma reesei; two homologues of α-galactosidase, one from Lactobaccilus acidophilus and one from T. reesei; a phytase from E. coli, and a phosphatase from C. crescentus (Figure 2). These enzymes were chosen because

<table>
<thead>
<tr>
<th>Strain</th>
<th>Rel. mRNA Accumulation</th>
<th>Doubling Time [hour]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duna</td>
<td>9.04 ±0.72</td>
<td>15.6 ±0.4</td>
</tr>
<tr>
<td>Haema</td>
<td>0.742 ±0.048</td>
<td>0</td>
</tr>
<tr>
<td>Scene</td>
<td>29.1 ±1.4</td>
<td>16.8 ±0.1</td>
</tr>
<tr>
<td>Oedo</td>
<td>1.54 ±0.10</td>
<td>0</td>
</tr>
<tr>
<td>Stige</td>
<td>2.57 ±0.22</td>
<td>0</td>
</tr>
<tr>
<td>Pseud</td>
<td>1.66 ±0.13</td>
<td>0</td>
</tr>
<tr>
<td>Chlor</td>
<td>1.60 ±0.12</td>
<td>0</td>
</tr>
<tr>
<td>Lepto</td>
<td>0.810 ±0.028</td>
<td>0</td>
</tr>
<tr>
<td>Micro</td>
<td>0.158 ±0.003</td>
<td>0</td>
</tr>
<tr>
<td>Pedi</td>
<td>0.739 ±0.068</td>
<td>0</td>
</tr>
<tr>
<td>Syne3</td>
<td>1.06 ±0.12</td>
<td>0</td>
</tr>
<tr>
<td>Chlamy</td>
<td>100 ±7</td>
<td>12.7 ±0.3</td>
</tr>
</tbody>
</table>

Fig. 1 psbA mRNA accumulation, photosynthetic growth rates and D1 protein accumulation of strains carrying heterologous psbA promoters and 5’ UTRs. **a** Relative psbA mRNA accumulation quantified by qPCR. Photosynthetic growth rates in HSM media. **b** Anti-D1 Western blot. 15 µg of total protein were loaded in each well. The AtpB band is shown as a loading control.
these are valuable industrial enzymes already marketed from bacterial production systems, and thus are potential co-products from algae grown for biofuel production. Both xylanase and α-galactosidase are essential components for the breakdown of complex carbohydrates from cellulosic material, thus these enzymes can potentially be used to produce sugars from cellulose for ethanol fermentation. In addition, we have shown improved production of xylanase by modifying the enzyme to increase expression levels, and we have expressed a thermo-stable variant of the enzyme.

A manuscript entitled “Production of recombinant enzymes in the marine alga Dunaliella tertiolecta” has been submitted to the journal Algal Research. This manuscript describes the basic D. tertiolecta transformation system, and the production of industrial enzymes at levels potentially viable for commercial production in this marine biofuel production strain. Figure 2 shows a comparison of production in D. tertiolecta relative to the model algae, C. reinhardtii. We observed that recombinant protein accumulation and enzymatic activity levels are similar and in some cases better for D. tertiolecta produced proteins (Figure 2 and Table 1).

Table 1: Recombinant Enzyme Activity

<table>
<thead>
<tr>
<th></th>
<th>D. Tertiolecta (psbD promoter)</th>
<th>C. reinhardtii (psbD promoter)</th>
<th>C. reinhardtii (psbA promoter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylanase (Trichoderma reesi)</td>
<td>57.79 ± 10.04 U/mg</td>
<td>49.19 ± 9.28 U/mg</td>
<td>276.58 ± 34.92 U/mg</td>
</tr>
<tr>
<td>b-Mannanase (Aspergillus sulphureus)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>α-Galactosidase (Lactobacillus acidophilus)</td>
<td>480 ± 340 mU/mg</td>
<td>0</td>
<td>1.7 ± 1 mU/mg</td>
</tr>
<tr>
<td>α-Galactosidase (Trichoderma reesi)</td>
<td>980 ± 200 mU/mg</td>
<td>10 ± 2 mU/mg</td>
<td>580 ± 260 mU/mg</td>
</tr>
<tr>
<td>Phytase (Eschericia coli)</td>
<td>180 ± 10 mU/mg</td>
<td>0</td>
<td>170 ± 8 mU/mg</td>
</tr>
<tr>
<td>Phosphatase (Caulobacter crescentus)</td>
<td>2.1 ± 0.2 mU/mg</td>
<td>0</td>
<td>4.4 ± 0.7 mU/mg</td>
</tr>
</tbody>
</table>
CONCLUSIONS

From this work we have learned that mRNA accumulation is less tightly regulated than protein accumulation and thus, endogenous 5'-UTRs are appear to be crucial for the production of proteins. Using this knowledge we successfully engineered the biofuel production candidate marine green algae *Dunaliella tertiolecta* and produced several protein at levels equal to or exceeding levels achieved in *C. reinhardtii*.

We aim to later expand the repertoire of proteins expressed in *D. tertiolecta*, particularly with regard to modification of lipid production, and additionally work towards developing efficient transformation and recombinant protein production in other algae species. The work outlined here also sets the basis for future work on improving protein production and developing a universal heterologous or synthetic set of promoters/UTRs to allow facile and robust genetic modification of production algae strains.

Publications and manuscripts resulting from AFOSR funding