Wireless Connectivity of Swarms in Presence of Obstacles

Joel Esposito
US Naval Academy

Thomas Dunbar
Naval Postgraduate School
1. REPORT DATE
MAY 2006

2. REPORT TYPE

3. DATES COVERED
00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Wireless Connectivity of Swarms in Presence of Obstacles

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
United States Naval Academy, Department of Weapons and Systems Engineering, Annapolis, MD, 21402

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES 22

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Motivation

\[\text{EDGE} = \text{Range} + \text{Line of Sight} \]
Problem Statement

Given:
- N mobile holonomic robots
- Workspace, W
- Initial positions, q^{init}
- Final Positions, q^{final}
Problem Statement

Given:
- N mobile holonomic robots
- Workspace, W
- Initial positions, q^{init}
- Final Positions, q^{final}
- Critical communication graph, $C^{*} \subseteq G$
 (EDGE = Range + Line-of-sight)
Problem Statement

Given:
- N mobile holonomic robots
- Workspace, W
- Initial positions, q^{init}
- Final Positions, q^{final}
- Critical communication graph, $C^* \subseteq G$ (EDGE = Range + Line-of-sight)

Problem:
Design a distributed control law which achieves final position while preserving all critical edges of G (i.e range and LOS)
Problem Statement

Given:
- N mobile holonomic robots
- Workspace, W
- Initial positions, q^{init}
- Final Positions, q^{final}
- Critical communication graph, $C^* \subseteq G$
 (EDGE = Range + Line-of-sight)

Problem:
Design a distributed control law which achieves final position while preserving all critical edges of G (i.e. range and LOS)
Problem Statement

Given:

- N mobile holonomic robots
- Workspace, W
- Initial positions, \(q^{\text{init}} \)
- Final Positions, \(q^{\text{final}} \)
- Critical communication graph, \(C^* \subseteq G \) (EDGE = Range + Line-of-sight)

Problem:

Design a distributed control law which achieves final position \textbf{while} preserving all critical edges of G (i.e range and LOS)
Problem Statement

Given:
- N mobile holonomic robots
- Workspace, W
- Initial positions, q^{init}
- Final Positions, q^{final}
- Critical communication graph, $C^* \subseteq G$
 (EDGE = Range + Line-of-sight)

Problem:
Design a distributed control law which achieves final position while preserving all critical edges of G (i.e. range and LOS).

\[
\mathbf{\dot{q}_i = u_i}
\]
Obvious Infeasibility

Start and goal in different connected components of W

Cycles in different homoptic equivalence classes
Related work

<table>
<thead>
<tr>
<th>Formations:</th>
<th>Flocks:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fixed relative pose</td>
<td>• Constr. rel. pose</td>
</tr>
<tr>
<td>• Leader</td>
<td>• Distributed</td>
</tr>
<tr>
<td>• Swarm-wide objective</td>
<td>• Swarm-wide objective</td>
</tr>
</tbody>
</table>

{Desai, Kumar, Fierro}

<table>
<thead>
<tr>
<th>Closely Related Works:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Maintaining network connectivity</td>
<td></td>
</tr>
<tr>
<td>• Multi-hops networks</td>
<td></td>
</tr>
<tr>
<td>• Obstacle free?</td>
<td></td>
</tr>
</tbody>
</table>

{Spanos, Murray; Zavlanos Pappas, Bullo, Cortes, Notarstefano}

{Reynolds, Reif, Bishop, Tanner, Pappas, Moore, Jadabaie, Passiano, Olfati-Saber, Murray}
Approach: Potential Functions

1. Range:
 \[\phi (\text{cm}^2/\text{sec}) \]
 distance to other robot (cm)

2. Line of Sight:

3. Go To Goal:
 Navigation function
 [Rimon & Kodischek]
Addition of Potentials is Dangerous!

Range

Line of Sight

Go-to goal

Parallel Comp Algorithm
IF exists $\nabla \phi_i$ such that
$(\nabla \phi_i \times \nabla \phi_j) > 0 \lor (\nabla \phi_i \times \nabla \phi_j) < 0, \forall j \neq i$

Then select \vec{V} so that
$- \left[\frac{\partial \phi_j}{\partial x}, \frac{\partial \phi_j}{\partial y} \right] \cdot [v_x, v_y] \leq 0$

ELSE
Infeasible!
Discard some $\nabla \phi_i$

Low Level Control: Final Velocity
Parallel Composition
controller: concept

Goal Potential

[Esposito Kumar 2002]
Parallel Composition
controller: concept
Parallel Composition controller: concept
Parallel Composition controller: concept

Efficient: Computing directions is $O(P^2)$ (all pairs of cross products)

Complete: Generates solution if feasible. If infeasible, algorithm is conclusive.

Stability: Common Lyapunov function.
Validation
Completeness: Is the composition always feasible?
A Necessary Condition

Neighbors must select paths in same (straight line) homotopy class!

- A connected swarm cannot “split” an obstacle
- **No distributed, global solution !!!**
Conjecture: Feasible, iff initial conditions are not “split” by saddle stable manifolds

1. Any feasible path is a loop homotopic to trivial loop
2. must cross stable manifold an even number of times,
3. requires increasing potential function
Conjecture: Feasible, iff initial conditions are not "split" by saddle stable manifolds

1. Potential peaks in dimension along edge (range violated)
2. Sign of derivative transverse to edge changes >=2 times (LOS violated)
3. Turns out there is no local condition for a stable manifold? Future work....
Swarm Wireless Connectivity w/ Obstacles

Joel Esposito
US Naval Academy

Thomas Dunbar
Naval Postgraduate School

frame 1

frame 2

frame 3

frame 4

goal