LONG-TERM GOALS

The long-term goal of the research is to increase the physical understanding of acoustic propagation in continental shelf and slope environments in the 50-4000 Hz band. This includes both the physics of the seabed and the coupling to physical mechanisms in the water column in complex range- and azimuth-dependent littoral waveguides.

OBJECTIVES

There were two main objectives of the current research. The first objective was to develop and test a new coupled-mode approach that can serve as the basis for an advanced seabed attenuation analysis of broadband propagation data. The second objective was to apply the coupled mode approach to investigate the physics of scattering from a rough seabed surface.

APPROACH

A MATLAB numerical algorithm\(^1\) was constructed for a two-way integral equation coupled mode approach that was originally programmed in FORTRAN.\(^2,3\) The MATLAB algorithm includes a more efficient numerical method to compute the range-dependent mode coupling matrices.\(^4,5\) Then, the MATLAB algorithm was modified to explicitly compute the forward and backward going coupled amplitudes, as discussed in Ref. 6. Next, the modal power flow within the trapped spectrum, into the continuum, and into the backward propagating modal spectrum was examined using the master equation from statistical mechanics, as discussed by Dozier and Tappert\(^7\) and Colosi and Morozov.\(^8\)

The propagation and scattering theory parallels Ref. 6. The 2-D coupled mode equations of dimension \(2N\) for the forward and backward modal amplitudes (\(R^\circ(r) = [R_1^c, R_2^c, ..., R_N^c, R_N^e, R_N^o]\) and \(R^o(r) = [R_{N+1}^o, R_{N+2}^o, ..., R_{2N}^o]\)) in cylindrical coordinates are

\[
\begin{align*}
\frac{d}{dr} R^\circ(r) &= J_{\text{int}}^\circ(r, r') R^\circ(r') + J_{\text{ext}}^\circ(r) R^\circ(r) + J_{\text{in}}^\circ(r), \\
\frac{d}{dr} R^o(r) &= J_{\text{int}}^o(r, r') R^o(r') + J_{\text{ext}}^o(r) R^o(r) + J_{\text{in}}^o(r),
\end{align*}
\]
1. REPORT DATE
2012

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Acoustic Propagation in Continental Shelf Break and Slope Environments

5a. CONTRACT NUMBER
-

5b. GRANT NUMBER
-

5c. PROGRAM ELEMENT NUMBER
-

5d. PROJECT NUMBER
-

5e. TASK NUMBER
-

5f. WORK UNIT NUMBER
-

6. AUTHOR(S)
-

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Applied Research Laboratories The University of Texas at Austin PO Box 8029 Austin, TX 78713

8. PERFORMING ORGANIZATION REPORT NUMBER
-

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
-

10. SPONSOR/MONITOR’S ACRONYM(S)
-

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
-

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
-

15. SUBJECT TERMS
-

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
SAR

18. NUMBER OF PAGES
6

19a. NAME OF RESPONSIBLE PERSON
-

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
\[R_n^e(r) = \Gamma_n^e(r) + \int_0^r r' G_n^e(r, r') \sum_{m=1}^{N} C_{m:n}(r') R_m^e(r') \, dr' + \int_r^\infty r' G_n^e(r, r') \sum_{m=N+1}^{2N} C_{m:n}(r') R_m^e(r') \, dr' \]
\[R_n^o(r) = \Gamma_n^o(r) + \int_0^r r' G_n^o(r, r') \sum_{m=1}^{N} C_{m:n}(r') R_m^o(r') \, dr' + \int_r^\infty r' G_n^o(r, r') \sum_{m=N+1}^{2N} C_{m:n}(r') R_m^o(r') \, dr'. \]

where

\[\Gamma_n^e(r) = \int_0^r r' G_n^e(r, r') \rho_n(r') \, dr' \]
\[\Gamma_n^o(r) = \int_r^\infty r' G_n^o(r, r') \rho_n(r') \, dr'. \]

\(\rho_n \) is the modal source function for the \(n \)th mode, and \(C_{m:n} \) is the mode coupling matrix operator. \(N \) is the total number of modes, including both trapped and leaky modes. \(G_n^o \) and \(G_n^e \) are the Green’s functions that satisfy

\[\left[\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + k_n^2(r) \right] G_n(r, r') = -\frac{\delta(r-r')}{r}, \]

where \(k_n(r) \) is the horizontal wavenumber eigenvalue for the \(n \)th mode at range \(r \). When \(R^o \) is neglected in Eq. 1, the result is a one-way equation for \(R^e \).

Having a solution to Eq. 1 permits the modal power flow to be calculated. Following Dozier and Tappert, one can, using the Born approximation and neglecting backscatter, write a coupled diffusion equation (called the master equation) for the modal amplitudes

\[\frac{\partial}{\partial r} \langle |R_n(r)|^2 \rangle = \sum_m C_{mn} \langle |R_m(r)|^2 - |R_n(r)|^2 - 2\alpha |R_n(r)|^2 \rangle, \]

where an attenuation term has been added, as discussed by Colosi and Morozov. We will show the results of constructing \(\frac{\partial}{\partial r} \langle |R_n(r)|^2 \rangle \) (LHS of Eq. 3) and \(\sum_m C_{mn} \langle |R_m(r)|^2 - |R_n(r)|^2 - 2\alpha |R_n(r)|^2 \rangle \) (RHS of Eq. 3) from both the full two-way solution and the approximate one-way solution to Eq. 1. If the RHS is a good approximation to the LHS of Eq. 3, then one might expect to observe, in the limit of small attenuation, an equal partitioning of modes from the scattering.

WORK COMPLETED

The work completed in FY12 included the application of the split integral equation coupled mode methodology to quantify the modal power flow for selected seabed roughness realizations. A potential important discovery was that for a seabed roughness characterized by a relatively small correlation length the energy lost from the trapped modes to the continuum and backscattering can be less than the energy saved by a transfer of energy within the trapped spectrum to the lower order modes with smaller
attenuation. The nature of this type of seabed scattering can cause the modal energy spectrum not to be evenly distributed as would be predicted by a master equation approach from statistical physics.

RESULTS

Selected numerical computations from the IECM approach are presented to illustrate scattering mechanisms resulting from a rough seabed. The background waveguide is 50 m deep with a stratified water sound speed profile (SSP) over an infinite half-space. The SSP has a thermocline depth at about 20 m. The geoacoustic parameter values describing the bottom half-space are 1645 m/s, 2.0 g/cm³, and 0.4 dB/λ for the sediment compressional sound speed, the density, and the attenuation, respectively.

The maximum (computational) range in the waveguide is 10 km, and the source is located at \(r = 0 \) m and depth 10 m. The roughness wavenumber power spectrum employed to generate a 1-D rough seabed realization is

\[
P(k) = \frac{K_L h^2}{\pi(K_L^2 + k^2)^{\gamma/2}}.
\]

where \(h, K_L, \gamma, \) and \(k \) are the rms roughness height, the roll-off wavenumber given by the reciprocal of the roughness correlation length, the scattering exponent, and the spatial wavenumber, respectively.

For the current study scattering effects were computed at \(\gamma = 2.0 \) and \(h = 0.5 \) m with \(K_L \) varying from 0.0025 1/m to 0.1 1/m. For the numerical computations the roughness power spectrum is employed to generate a rough seabed for \(3.0 \, \text{km} < r < 7.0 \, \text{km} \), and in the regions \(0.0 \, \text{km} < r < 3.0 \, \text{km} \) and \(7.0 \, \text{km} < r < 10.0 \, \text{km} \) the waveguide is range-invariant.

Figure 1 shows \(|R_n(r)| \) (adjusted for cylindrical spreading) obtained from the full solution of the two-way coupled integral equations for an acoustic frequency of 200 Hz. For this waveguide and frequency there are 5 trapped modes and 8 continuum (leaky) modes for a total of 13 modes. The energy in the trapped modes is clearly shown to scatter into both the continuum modes for \(3.0 \, \text{km} < r < 7.0 \, \text{km} \) and into the backward propagating modes (modes 14-26 on the vertical axis).

Figure 2 shows \(\Delta(K_L) \) where \(\Delta \) is defined as the 2-way depth-integrated transmission loss (DITL) minus the adiabatic (no mode coupling) DITL at 10 km. \(\Delta \) becomes negative at about \(K_L = 0.06 \) 1/m and continues to decrease for increasing \(K_L \). An examination of the modal amplitudes showed that more energy was being scattered into mode 3 than into the continuum and into backscatter. The distance between interference peaks for modes 3 and 4 is \(\text{ID}_{34} = 2\pi/|\text{Re}(k_3) - \text{Re}(k_4)| \approx 70 \) m. For small \(K_L \), \(\text{ID}_{34} \) is small compared to \(1/K_L \). As \(K_L \) increases the spatial correlation length decreases and becomes on the order of \(\text{ID}_{34} \) and the interference length for other modal combinations within the trapped spectrum. More generally, when the modal interference distance is small compared to \(1/K_L \) the large number of modal interference cycles over a correlation length allow for a significant transfer of energy between these modes to occur. Such scattering will be favored over pairs of modes that have a larger ID value. However, as \(K_L \) increases the correlation distance decreases and the preference for scattering into the continuum from the trapped spectrum diminishes. To establish the uncertainty in Fig. 2, the coupled mode equations were solved for 20 roughness realizations for selected \(K_L \) values. The result was that \(\sigma = 0.76 \) at \(K_L = 0.1 \) 1/m and \(\sigma = 0.48 \) at \(K_L = 0.018 \) 1/m.
Figure 3a shows $\partial / \partial r \langle | R_n(r) |^2 \rangle$, where the modal amplitudes were those used to construct Fig. 1. Figure 3b shows $\partial / \partial r \langle | R_n(r) |^2 \rangle$ computed with the RHS of Eq. 3. A comparison of Figs. 3a and 3b suggests that the RHS of Eq. 3 overestimates the amount of acoustic intensity radiated into the continuum; however, the RHS of Eq. 3 underestimates the amount of energy transferred into backscatter. Some of the differences between Figs. 3a and 3b may be ascribed to the inclusion of backward propagation into the RHS of Eq. 3, which is neglected in the original derivation of Eq. 3 by Dozier and Tappert. Figure 3b suggests an equal partitioning of modes (trapped and continuum) whereas Fig. 3a clearly suggests that equal partitioning is not occurring.

Figure 4 is the same as Fig. 3, except the one-way approximation to Eq. 1 was used to compute the modal amplitudes. The one-way approximation is more consistent with the approximations used to derive Eq. 3, namely, the neglect of the backscattered acoustic field. Although one observes qualitative agreement of Figs. 4a and 4b, equal partitioning of modes in Fig. 4a occurs to a lesser extent than in Fig. 4b. One might make the tentative conclusion that the RHS of Eq. 3, based on a Born-like approximation, does not adequately capture the physics of scattering for seabed roughness having a small correlation length as compared to modal interference lengths in the trapped spectrum. The relatively smaller correlation lengths can inhibit energy from being transferred from the trapped to the continuum, which in turn inhibits equal partitioning of modes.

The above are only tentative conclusions and require additional study of how to properly apply the \textit{master} equation for waveguides that exhibit strong variability.

\textbf{FIGURE 1. Modal amplitudes versus range.}
FIGURE 2. $\Delta (K_I)$ for $h=0.5\ m$.

FIGURE 3. Modal power flow predicted by two-way solution in (a) LHS of Eq. 3 and (b) RHS of Eq. 3.

FIGURE 4. Modal power flow predicted by one-way solution in (a) LHS of Eq. 3 and (b) RHS of Eq. 3.
IMPACT/APPLICATIONS

One potential impact of this research is that these studies may assist in understanding how to optimally combine advanced propagation models (non-separable and 3-D) and information inference methods as one proceeds to study ocean waveguides with increasing complexity and inhomogeneity.

TRANSITIONS

The combined study of statistical inference and the effects of seabed scattering is expected to relate propagation statistics to physical mechanisms on continental shelf and slope environments. The knowledge of such statistics and their relationship to the physics of the propagation may be useful for sonar applications in continental shelf and slope environments.

RELATED PROJECTS

Related research projects include applying maximum entropy to the statistical inference of values for seabed geoacoustic and scattering parameters from measured data.

REFERENCES

PUBLICATIONS