Award Number: W81XWH-10-1-0491

TITLE: M Current-Based Therapies for Nerve Agent Seizures

PRINCIPAL INVESTIGATOR: Jaideep Kapur, MD PhD

CONTRACTING ORGANIZATION:
University of Virginia,
Charlottesville, VA 22904-4195

REPORT DATE: July 2012

TYPE OF REPORT: Revised Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: (Check one)

X Approved for public release; distribution unlimited

☐ Distribution limited to U.S. Government agencies only; report contains proprietary information

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
4. TITLE AND SUBTITLE
M current Based Therapies for Nerve agent Seizures

6. AUTHOR(S)
Jaideep Kapur, Jian Li Sun, Terry Zhang, Marko Todorovic

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia, Charlottesville, VA 22908

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702-5012

14. ABSTRACT
This is a proposal to develop novel, mechanism-based therapies for the treatment of organophosphate (OP) nerve agent-induced seizures. We proposed to study the effects of organophosphates on intrinsic excitability of principal hippocampal neurons. We tested the hypothesis that cholinergic stimulation enhances excitatory synaptic transmission and increases excitability (Aims 1 & 2). We have completed experiments 1.1-1.4 and 2.1-2.2 as proposed for years 1 & 2 of this study and experimental results supported the hypothesis. A manuscript describing these results is now published online: Modulation of Schaffer-collateral CA1 glutamatergic synaptic transmission by M-type potassium channels. J Physiol. 2012 doi: 10.1113/jphysiol.2012.235820. Third goal was to test whether drugs that open M channels terminate status epilepticus induced by an organophosphate and cholinergic agonist (Li/Pilocarpine). Two models of organophosphate-induced seizures were characterized and published: Characterization of status epilepticus induced by two organophosphates in rats. Epilepsy Res. http://dx.doi.org/10.1016/j.eplepsyres.2012.04.014. Experiments reveal M channel opener flupirtine terminates refractory status epilepticus in two models.

15. SUBJECT TERMS
Seizures, status epilepticus, Cholinergic, M Current, Synaptic transmission.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Body</td>
<td>5</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>16</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>16</td>
</tr>
<tr>
<td>Conclusion</td>
<td>16</td>
</tr>
<tr>
<td>References</td>
<td>17</td>
</tr>
<tr>
<td>Appendices</td>
<td>23</td>
</tr>
<tr>
<td>PDF of reprints</td>
<td></td>
</tr>
</tbody>
</table>
Introduction:
This is a proposal to develop novel, mechanism-based therapies for the treatment of organophosphate (OP) nerve agent-induced seizures. The primary goal of this proposal is to test two interrelated hypotheses: 1) Cholinergic nerve agents cause neuronal hyper-excitability by inhibiting M/KCNQ2/3 potassium channels. 2) Cholinergic seizures can be blocked by drugs that can open potassium channels mediating M currents. These hypotheses will be tested by accomplishing three aims. **Aim 1)** To test whether modulation of M channel modulators (antagonists and openers) glutamatergic transmission on CA1 pyramidal neurons and dentate granule cells. **Aim 2)** To characterize the effects of M current enhancers on excitability and bursting of CA1 pyramidal neurons. **Aim 3)** To test anticonvulsant action of three M-Channel openers in cholinergic overstimulation-induced status epilepticus.

Body:
We proposed to study the effects of organophosphates and muscarinic agonists on glutamatergic transmission, and on intrinsic excitability of principal hippocampal neurons to test the hypothesis that cholinergic stimulation enhances excitatory synaptic transmission and increases excitability (Aims 1 & 2). We have completed experiments 1.1-1.4 and 2.1-2.2 as proposed for years 1 & 2 of this study and experimental results supported the hypothesis.

Materials and methods

Slice preparation
All studies were performed according to protocols that were approved by the University of Virginia Animal Use and Care Committee, and the US Army Medical Research and Material Command Animal Care and Use Review Office (ACURO). Adult male (175-250 g) Sprague-Dawley rats were anesthetized with isoflurane prior to decapitation, which was followed by quick removal of the brain. The removed brains were then sectioned to 300 μm slices using a Leica VT 1200 slicer (Leica Microsystems, Wetzlar, Germany) in ice-cold oxygenated slicing solution. The solution contained (in mM): 120 sucrose, 65.5 NaCl, 2 KCl, 1.1 KH2PO4, 25 NaHCO3, 10 D-glucose, 1 CaCl2, and 5 MgSO4. The slices were then incubated for at least one hour at 32 °C in oxygenated ACSF that contained (in mM): 127 NaCl, 2 KCl, 1.1 KH2PO4, 25.7 NaHCO3, 10 D-glucose, 2 CaCl2, and 1.5 MgSO4; the osmolarity in the chamber was 290–300 mOsm. After incubation, the slices were transferred to the recording chamber on the stage of an Olympus Optical BX51 microscope (Olympus, Tokyo). Unless otherwise stated, all chemicals were obtained from Sigma (St. Louis, MO).

Whole-cell recording
Whole-cell patch-clamp recordings were performed under infrared differential interference contrast microscopy (Olympus); a 40× water-immersion objective was used to visually identify CA1 and CA3 pyramidal neurons. The slices were continuously perfused with ACSF solution that was saturated with 95% O2 and 5% CO2 at room temperature. Patch electrodes (final resistances, 3–5 MΩ) were pulled from borosilicate glass (Sutter Instruments, Novato, CA) on a horizontal Flaming-Brown microelectrode puller (Model P-97, Sutter Instruments). For voltage-clamp recordings, the electrode tips were filled with a filtered internal recording solution that consisted of the following components (in mM): 117.5 CsMeSO4, 10 HEPES, 0.3 EGTA, 15.5 CsCl, and 1.0 MgCl2; the pH was 7.3 (with CsOH), and the osmolarity was 310 mOsm. The electrode shank contained (in mM) 4 ATP Mg2+ salt, 0.3 GTP Na+ salt, and 5 QX-314. For current-clamp recording, the pipette solution contained the following (in mM): 135 K-gluconate, 2.5 NaCl, 10 HEPES, 0.5 EGTA, 4.0 MgATP, 0.4 NaGTP, 0.1 CaCl2; the pH was 7.3, and the osmolarity was 310 mOsm.
Neurons were voltage clamped at -60 mV using a PC-505B amplifier (Warner Instruments, Hamden, CT). Electrode capacitance was electronically compensated. Access resistance was continuously monitored, and if the series resistance increased by 20% at any time, the recording was terminated. Currents were filtered at 2 kHz, digitized using a Digidata 1322 digitizer (Molecular Devices, Sunnyvale, CA), and acquired using Clampex 10.2 software (Molecular Devices).

Spontaneous excitatory postsynaptic currents (sEPSCs) were recorded from CA1 pyramidal neurons after blocking the GABAA receptors with the antagonist picrotoxin (50 μM). In preliminary experiments, a combination of 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX) and 2-amino-5-phosphonovaleric acid (APV) blocked all EPSCs. Miniature EPSCs (mEPSCs) were recorded by blocking action potentials with 1 μM TTX (Alomone labs, Jerusalem, Israel). All drugs were bath-applied via a peristaltic pump.

Data analysis

The offline digitized data were analyzed with MiniAnalysis (Synaptosoft, Decatur, GA) and Clampfit 10.2 (Molecular Devices). To detect sEPSCs and mEPSCs, a detection threshold was set at three times the root mean square (RMS) of the baseline noise. After detection, the frequency and peak amplitude of EPSCs from individual neurons were analyzed. Each detected event from the 20- to 30-min recording session was visually inspected to remove false detections. The Kolmogorov-Smirnov (K-S) test was used to compare amplitudes and inter-event intervals for continuously recorded EPSCs. The input resistance of CA3 neuron under current-clamp recording was analyzed by comparing the slope of current-voltage relationship and measured directly by Clampfit 10.2 at the peak of membrane potentials. The event frequency and amplitude drug effects were compared using a paired Student’s t-test with a significance level of p < 0.05. Data values were expressed as means ± SEM unless otherwise noted.

Results

An M1 muscarinic agonist increases mEPSC frequency in CA1 neurons

Previous studies suggested that muscarinic receptor activation increased presynaptic glutamate release from perforant path to dentate granule cells (Kozhemyakin et al., 2010). In the present study, we investigated the effect of the M1 muscarinic receptor agonist McN-A-343 on glutamate release recorded from Schaffer collateral-CA1 synapses. Application of McN-A-343 (10 µM) increased the frequency of mEPSCs that were recorded from CA1 pyramidal neurons by 69.89 ± 8.28 % (0.12 ± 0.03 Hz vs. 0.21 ± 0.05 Hz; n = 7, p < 0.01), but it did not change their amplitudes (16.51 ± 1.14 pA vs. 16.79 ± 1.47 pA; n = 7, p = 0.38, Fig. 1A,B). McN-A-343 caused a significant leftward shift in the cumulative distribution of the inter-event intervals but had no effect on the cumulative distribution of the amplitudes of the mEPSCs (K-S test, Fig. 1C,D). This suggested that the activation of M1 receptors increased action potential-independent glutamate release from the presynaptic terminals of Schaffer collateral-CA1 synapses.

M-channels regulate presynaptic glutamate release in CA1 neurons

Cholinergic M1 receptor activation inhibits M-channels (Bernheim et al., 1992; Brown & Adams, 1980; Marrion et al., 1989), so we tested whether M-channels regulate glutamate release in these synapses. Blocking M-channels increased the frequency of sEPSCs. After
recording sEPSCs for 10 min, M-channel blocker XE991 (10 µM) was applied for 10 min, and it increased the frequency of sEPSCs by 147.56 ± 18.21 % (0.11 ± 0.03 Hz vs. 0.30 ± 0.01 Hz, n = 7, p < 0.01) but did not affect their amplitudes (16.91 ± 0.92 pA vs. 16.65 ± 0.80 pA, n = 7, p = 0.50). Blocking M-channels caused a significant leftward shift in the cumulative distribution of sEPSCs inter-event intervals but had no effect on the cumulative distribution of their amplitudes (K-S test, data not shown). These data suggested that M-channels modulate action potential-dependent glutamate release from Schaffer collateral CA1 pyramidal neuron synapses.

To study whether the effect of XE991 on release was action potential-independent, its effect on mEPSCs was studied. XE991 (10 µM) increased the frequency of mEPSCs by 82.21 ± 7.36 % (0.13 ± 0.02 Hz vs. 0.22 ± 0.03 Hz, n = 8, p < 0.01) but had no effect on their amplitudes (17.70 ± 1.26 pA vs. 18.10 ± 1.27 pA, n = 8, p = 0.30, Fig. 2A). XE991 also caused a significant leftward shift in the cumulative distribution of the mEPSC inter-event intervals (Fig. 2B) but had no effect on the cumulative distribution of their amplitudes (Fig. 2C). The frequency of mEPSCs kept increasing after 10 min of XE991 application. The slices were perfused with ACSF to washout the drug effect. The mEPSC frequency remained elevated for 50 min of washing and returned to baseline at 90 min (data not shown).

The effect of XE991 on mEPSC frequency was confirmed by applying linopirdine (10 µM), which also blocks M-channels. Linopirdine increased the frequency of mEPSCs by 68.22 ± 6.05 % (0.12 ± 0.01 Hz vs. 0.21 ± 0.03 Hz, n = 6, p < 0.01) but had no effect on their amplitudes (15.35 ± 1.13 pA vs. 15.78 ± 0.94 pA, n = 6, p = 0.23). It also caused a significant leftward shift in the cumulative distribution of the mEPSC inter-event intervals (Fig. 3A). These results suggested that the inhibition of M-channel current enhances the frequency of mEPSCs.

Flupirtine (20 µM), an M-channel opener, decreased mEPSC frequency by 25.50 ± 8.04 % compared to baseline (0.41 ± 0.08 Hz vs. 0.27 ± 0.04 Hz, n = 8, p < 0.01). Flupirtine caused a significant rightward shift in the cumulative distribution of the inter-event intervals of mEPSCs (Fig. 3B). These data suggested that M-channels are capable of modulating neurotransmitter release independent from action potentials.

To confirm that the effect M1 agonist was mediated by M channels, we incubated the slice with XE991 for 25 min. After 5 min baseline recording in XE991-containing medium, McN-A-343 was applied, and its effect was blocked. Overall, McN-A-343 did not change the frequency of mEPSCs (baseline 0.53 ± 0.07 Hz, McN-A-343 0.56 ± 0.08 Hz; n = 7, p = 0.38). In 2 cells, there was a modest (< 10 %) increase in frequency but the cumulative frequency plot of inter-event intervals from these cells was not shifted (Fig 3C). This result suggested blocking M-channels prevented McN-A-343 enhancement of mEPSC frequency.

Calcium influx through voltage-gated calcium channels underlies the effect of XE991 on mEPSC frequency

Calcium plays a critical role in neurotransmitter release. The increase in mEPSC frequency caused by the application of XE991 could be due to Ca2+ release from intracellular stores or the entry of extracellular Ca2+. First, we tested whether release from intracellular stores plays a role in the effect of XE991. Release from intracellular calcium stores was blocked by incubating the slice with 2.5 µM thapsigargin for 20 min. The effect of M channel blocker XE991 (10 µM) was not affected. XE991 increased the frequency of mEPSCs by 83.88 ± 17.22 % (Fig 4A), which is comparable to the effect of XE991 without thapsigargin incubation (82.21 ± 7.36 %, n = 8, p < 0.01); it significantly left shifted the cumulative distribution of inter-event
intervals (n = 9, p < 0.01, Fig 4B). This result suggested that intracellular store release does not contribute to the enhancement of M channel inhibition on mEPSCs frequency.

Therefore, we tested whether the effect of XE991 on the frequency of mEPSCs was dependent on extracellular Ca2+ by recording mEPSCs in a calcium-free medium. The effect of XE991 on mEPSCs was eliminated in ACSF that lacked calcium. Application of XE991 neither changed the frequency of mEPSCs (0.13 ± 0.02 Hz vs. 0.12 ± 0.01 Hz, n = 8, p = 0.30, Fig. 4C) nor shifted the cumulative distribution of the inter-event intervals of mEPSCs (Fig. 4D). These data suggested that the effect of XE991 on spontaneous glutamate release was dependent on the influx of Ca2+.

We also studied the effect of McN-A-343 in a calcium-free medium. The McN-A-343 enhancement of mEPSCs was blocked in calcium-free medium (baseline, 0.40 ± 0.08 Hz, McN-A-343, 0.41 ± 0.07 Hz, n = 7, p = 0.36). There was no significant shift on the cumulative distribution of inter-event intervals of mEPSCs (data not shown). This suggested that the effect of M1 receptor activation on the frequency of mEPSC is largely mediated by increasing calcium influx from extracellular space.

To test whether Ca2+ enters Schaffer collateral terminals by activation of presynaptic voltage-gated calcium channels due to M-channel inhibition, we studied the effect of P/Q- and N-type calcium channel blockers on the XE991-mediated enhancement of mEPSC frequency. These two channels are expressed in the presynaptic terminals of Schaffer-collaterals (Qian & Noebels, 2000; Wheeler et al., 1994). Slices were incubated with either ω-agatoxin TK (200 nM) or ω-conotoxin GVIA (1 µM) (Peptides International, Louisville, KY) for 15 min prior data collection. In the presence of ω-agatoxin TK, which blocks P/Q-type calcium channels, the XE991-mediated enhancement of mEPSC frequency was prevented in approximately half of the cells that were studied. In 5 out of 9 neurons, the application of XE991 did not increase the frequency of mEPSCs (0.23 ± 0.08 Hz vs. 0.20 ± 0.06 Hz, p = 0.46, Fig. 5A,C). In the other 4 CA1 pyramidal neurons, XE991 still significantly increased the frequency of mEPSCs (0.16 ± 0.03 Hz vs. 0.31 ± 0.07 Hz, p < 0.05, Fig. 5B,D). Blocking N-type channels with ω-conotoxin GVIA also prevented the effect of XE991 on the frequency of mEPSCs in half of the CA1 pyramidal neurons from which recordings were made. In 4 of 8 neurons, the effect of XE991 was eliminated (0.33 ± 0.05 Hz vs. 0.34 ± 0.04 Hz, p = 0.47, Fig. 6A,C). In the other 4 neurons, XE991 significantly increased the frequency of mEPSCs (0.24 ± 0.04 Hz vs. 0.43 ± 0.07 Hz, p < 0.05, Fig. 6B,D).

Next, we applied the blockers of two channels simultaneously. Slices were incubated in ω-agatoxin TK and ω-conotoxin GVIA for 25-40 min, and after 5 min baseline recording, XE991 was applied. The mean frequency was not significantly increased (baseline, 0.78 ± 0.08 Hz, XE991, 0.82 ± 0.09 Hz; n = 8, p = 0.08, Fig 7A), and there was no significant shift of cumulative distribution of inter-event intervals for each cell and pooled data (Fig 7B). This result suggested the enhancement of the frequency of mEPSCs by XE991 was mediated by calcium influx though P/Q- and N-type calcium channels.

McN-A-343 and XE991 depolarize and increase action potential firing in CA3 neurons

The aforementioned data suggested that inhibition of M-channels resulted in the depolarization of presynaptic terminals of the CA3 pyramidal neuron, which then activated P/Q- or N-type calcium channels, thereby causing calcium influx and ultimately leading to increased glutamate release. We tested the effect of M-channels on the membrane properties of CA3 pyramidal neurons. To study the effects of McN-A-343 and XE991 on CA3 pyramidal neurons,
current-clamp recordings of the membrane potentials were obtained from neurons in slices from juvenile rats (24-30 28 days old). McN-A-343 significantly depolarized CA3 neurons and increased the frequency of action potential firing (0.17 ± 0.08 Hz vs. 2.16 ± 0.72 Hz, n = 6, p < 0.01) of CA3 pyramidal neurons (Fig. 8A,C). To measure the membrane potential more accurately, action potentials were blocked by TTX (1 µM). Application of McN-A-343 depolarized CA3 pyramidal neuron membrane potentials from -61.39 ± 1.49 mV to -49.00 ± 1.78 mV (n = 7, p < 0.01, Fig. 8B,D).

XE991 had similar effect to that of McN-A-343. It increased the action potential firing frequency (0.42 ± 0.17 Hz vs. 0.79 ± 0.20 Hz, n = 9, p < 0.01, Fig. 9A,D) and depolarized CA3 pyramidal neurons (-61.32 ± 2.45 mV vs. -52.62 ± 2.43 mV, n = 10, p < 0.05, Fig. 9B,E). Furthermore, and consistent with these findings, the M-channel opener flupirtine (20 µM) hyperpolarized CA3 neurons (-58.02 ± 1.61, vs. -62.97 ± 1.36, n = 7, p < 0.01) (Fig. 9C,F).

To test whether the inhibition of M-channels increases membrane input resistance in CA3 pyramidal neurons, current-voltage (I-V) relationships were studied. Current was injected from -40 pA to 15 pA in 5 pA steps. Exposure to McN-A-343 shifted the I-V curve to a more negative voltage membrane potentials with negative current injection steps. The slope of the I-V curve increased from 1.40 to 1.97, which suggested an increase in input resistance due to the presence of McN-A-343 (Fig. 10A, n = 6). McN-A-343 increased the input resistance from 156.43 ± 17.51 to 228.07 ± 17.16 (? megaohm)(n = 6, p < 0.01). Exposure to XE991 had an effect on membrane input resistance that was similar to that of exposure to McN-A-343 in CA3 pyramidal neurons. The slope of the I-V curve increased from 1.22 to 1.75, suggesting increased input resistance in the presence of XE991 (Fig. 10B, n = 7). XE991 increased the input resistance from 129.75 ± 8.63 to 194.53 ± 17.92 (n = 7, p < 0.01). These results suggested that the M1 agonist McN-A-343 and the M-channel blocker XE991 close M-type potassium channels in CA3 pyramidal neurons.

Discussion

The present study found that M1 muscarinic activation potentiated glutamate release and that inhibiting M-channels had a similar effect. The application of M-channel blockers increased the frequency of sEPSCs and mEPSCs but had no effect on their amplitudes; the application of an M1 muscarinic receptor agonist had a similar effect to that of the M-channel blockers. The effect of XE991 was dependent on Ca2+ influx through P/Q- and N-type calcium channels. Both the blocking of M-channels and the activation of M1 receptors depolarized CA3 pyramidal neurons. These results suggest that M1 receptor activation inhibits M-type potassium channels and depolarizes CA3 neurons. This causes an influx of Ca2+ through presynaptic voltage-dependent calcium channels and increase spontaneous glutamate release to CA1 neurons. This study demonstrates that M-channels modulate action-potential-independent neurotransmitter release from presynaptic terminals in Schaffer collateral-CA1 pyramidal neuron synapses. These actions occur in addition to the effects on cell soma and axon initial segment, resulting from increased membrane resistance.

M1 receptor agonists and M-channel blockers increase presynaptic glutamate release

In the present study, McN-A-343, a selective agonist for M1 receptors, significantly increased the frequency of mEPSCs but had no effect on their amplitudes, which suggests that M1 receptor activation increases presynaptic action potential-independent glutamate release from the Schaffer collaterals. These results are consistent with results from other studies about muscarinic potentiation of glutamatergic transmission in the hippocampus.
M1 is the predominant muscarinic receptor in the hippocampus (accounting for approximately 60% of all muscarinic receptors in the hippocampus), whereas M2 and M4 are less abundant (approximately 20%) (Volpicelli & Levey, 2004). The muscarinic agonist carbachol has been associated with increases in presynaptic glutamate release in cultured rat hippocampal neurons and dentate granule cells in slices (Bouron & Reuter, 1997; Kozhemyakin et al., 2010). An M1 agonist has been shown to cause the potentiation of N-methyl-D-aspartate (NMDA) receptor currents in CA1 hippocampal pyramidal neurons (Marino et al., 1998). The activation of muscarinic receptors induces a long-lasting synaptic enhancement at Schaffer collaterals both in vivo and in vitro via an increase in the postsynaptic release of calcium stored in the endoplasmic reticulum (Fernández de Sevilla et al., 2008). A recent study that combined calcium imaging with two-photon laser glutamate uncaging suggests that M1 receptor activation increases glutamate synaptic potentials and Ca2+ transients in CA1 pyramidal neurons (Giessel & Sabatini, 2010).

Muscarinic M1 (or at some sites M3 or possibly M5) receptor activation inhibits the M-channel (Brown & Passmore, 2009), which was first named in the 1980s (Brown & Adams, 1980; Constanti & Brown, 1981). Immunochemical studies suggest that M-channels are highly expressed in the axon initial segments of neurons (Chung et al., 2006; Pan et al., 2006; Rasmussen et al., 2007). Thus, M-channels are very important for tuning the firing rates and excitability of various neurons (Gu et al., 2005; Shah et al., 2008; Shen et al., 2005; Yue & Yaari, 2004). Interestingly, M-channel activity also affects the release of neurotransmitters from superior cervical ganglion (SCG) neurons and hippocampal synaptosomes (Hernandez et al., 2008; Martire et al., 2004).

Our findings in the current study suggest that M-channels modulate action-potential-independent neurotransmitter release from the presynaptic terminals of the Schaffer collaterals. M-channels are active at the resting membrane potential (Constanti & Brown, 1981) and are expressed in presynaptic terminals (Chung et al., 2006; Cooper et al., 2001; Garcia-Pino et al., 2010). The presynaptic potentiation effect of the M-channel blocker XE991 was reversed over a long period of time. This might be due to its binding kinetics. The dissociation of linopirdine, an analogue of XE991, is slow and begins after 60 min (Wolff et al., 2005).

M1 receptor agonist and M-channel blocker depolarize CA3 neurons

An M1 agonist and an M-channel blocker depolarized CA3 pyramidal neurons. This finding is consistent with the location and function of the receptor in these neurons. The M1 receptor is the most commonly expressed muscarinic receptor in the hippocampus in both the pyramidal neuron layer and the stratum radiatum of the CA3 and CA1 regions (Tayebati et al., 2002). A comparable slow, muscarinic receptor-dependent depolarization can be evoked in pyramidal neurons by the direct electrical stimulation of cholinergic afferents in the hippocampus (Cole & Nicoll, 1983; Madison et al., 1987; Segal, 1988; Morton & Davies, 1997; Pitler & Alger, 1990) or medial septal nucleus in a septo-hippocampal slice (Cobb & Davies, 2005). The medial septal nucleus provides the major source of cholinergic innervations to the hippocampus (Dutar et al., 1995) and presents a direct synaptic input to both principal neurons and interneurons (Frotscher & Léránth, 1985; Léránth & Frotscher, 1987).

Muscarinic acetylcholine receptors modulate several ionic conductances in addition to the M-current, including IAHP (the Ca2+-activated K+ current that is responsible for slowing action potential discharges) and Ileak (the background leak current) (Halliwell, 1990). Activation of mACHRs also potentiates two mixed cation currents (Ih, the hyperpolarization-activated cation current; and Icat, the Ca2+-dependent non-specific cation current) (Colino & Halliwell,
1993; Halliwell, 1990) and the N-methyl-D-aspartate (NMDA) receptor (Markram & Segal, 1990). This may explain why, in our study, the M1 agonist McN-A-343 had a stronger depolarization effect than the M-channel blocker XE991 in CA3 pyramidal neurons.

Muscarinic receptor and intracellular calcium level

Current study suggested that M1 receptor activation depolarizes presynaptic membrane and activates voltage-gated calcium channel to increase intracellular calcium level and neurotransmitter release by inhibition of M-channels. Previous studies suggested that muscarinic stimulation inhibits voltage-gated calcium channels (Qian & Saggau, 1997; Toselli et al., 1989). However these studies did not classify the subtype of muscarinic receptor that mediates this effect. It was reported that the inhibitory effect of muscarinic receptor activation on calcium channels was mediated by M4 subtype in rat sympathetic neurons (Bernheim et al., 1992) and by M2 subtype in rat magocellular cholinergic basal forebrain neurons (Allen & Brown, 1993). There is no report to suggest that M1 subtype muscarinic receptor inhibits calcium channels.

Muscarinic receptors activate inositol 1,4,5-trisphosphate (IP3) receptor to trigger calcium release from endoplasmic reticulum (ER) stores in CA1 pyramidal neurons, and appears to be action potential independent (Power & Sah, 2002). Other study suggested this effect is mediated by M1 receptor (Fernández de Sevilla et al., 2008). Role of these stores in enhancing synaptic release remains uncertain. Although spontaneous transmitter release (in the absence of action potentials) is largely mediated by calcium release from internal stores (Emptage et al., 2001), our study suggest the modulation of spontaneous transmitter release could be mediated by calcium influx though voltage-gated calcium channels.

Overall, this study demonstrated that M1 muscarinic receptor activation inhibits M-type potassium channels, thereby increasing excitatory glutamate neurotransmitter release from the presynaptic terminals of CA3 neurons by increasing the rate of calcium influx through voltage-dependent calcium channels. This effect of M1 receptor activation could contribute to the generation of seizures.

Third goal was to test whether drugs that open M channels would terminate status epilepticus induced by an organophosphate and cholinergic agonist (Li/Pilocarpine). Two models of organophosphate-induced seizures were characterized and published in the Journal Epilepsy Research. A copy of the paper is attached (appendix). The abstract follows.

Materials and Methods
Surgery
All procedures on animals were performed according to a protocol approved by the institutional Animal Care and Use Committee. Adult male Sprague-Dawley rats (Taconic) weighing 175-300g were housed with food and water ad libitum. The animals were anesthetized with ketamine (50 mg/kg) and xylazine (10 mg/kg) for implantation. For animals undergoing intrahippocampal infusion, a bipolar electrode was implanted in the left ventral hippocampus (AP -5.3, ML -4.9, DV -5.0 to dura; incisor bar -3.3). A guide cannula (Plastics One, Roanoke, VA) was implanted into the right ventral hippocampus (AP -5.8, ML +4.6, DV -2.5 from dura; incisor bar -3.3), alongside a second bipolar electrode. A teflon coated 0.01 inch diameter stainless-steel wire positioned near the frontal sinus served as a ground electrode. For animals undergoing peripheral injection studies, three supra-dural cortical electrodes were placed over the cortex. In both procedures, the electrodes were inserted into a strip connector and then secured to the skull with dental acrylic as previously described (Lothman et al., 1988).
Intrahippocampal Infusion
Following a 1 week recovery, animals were connected via a cable to a data acquisition system (Stellate systems). Paraoxon was suspended in 4% hydroxypropyl-B-cyclodextrin (Sigma, St. Louis, MO). An injection needle connected to a 0.1 mL Hamilton syringe and driven by an infusion pump (KD scientific, Portland, OR) was back filled with paraoxon and inserted such that it extended 3 mm below the end of the cannula guide. Paraoxon was then infused at a rate of either 0.5 L/min or 1 L/min for a total volume of 20 L. EEG and video monitoring began 10 minutes prior to paraoxon infusion and continued for 24 hours after infusion completion.

EEG recordings were subsequently reviewed for the presence of seizures as well as SE. Seizures were characterized by the appearance of high frequency (>2 Hz), rhythmic spike wave discharges with amplitudes at least three times that of the baseline EEG. Animals were considered to have SE if there was continuous epileptiform activity for 30 min, during which spike frequencies were more than 2 Hz, and spike amplitude was at least 3 times the background. Behavioral seizures were scored according to the Racine scale (Racine, 1972).

Peripheral injection
EEG recording was initiated prior to administration of 2 mg/kg atropine (Sigma, St. Louis, MO) and 50 mg/kg 2 pralidoxime (2-PAM) iodide (Sigma, St. Louis, MO) intraperitoneally. After 30 minutes, DFP (Sigma, St. Louis, MO) or paraoxon (Chem Service, West Chester, PA) was injected subcutaneously (SC). In some experiments animals were given 10 mg/kg diazepam 10 minutes or 30 minutes after onset of continuous SE activity. A non-diazepam injected group served as controls. 2-PAM and atropine were both dissolved in solution within one hour of injection. DFP and paraoxon were both mixed into cold saline immediately prior to injection. Animals were monitored via EEG and video for 24 hours following organophosphate injection. Epileptiform activity was monitored and defined as follows. Seizures were defined as the appearance of high frequency (>2 Hz), rhythmic spike wave discharges with amplitudes at least 3 times that of the baseline EEG. The criterion for the onset of SE was the occurrence of continuous seizure activity for 10 minutes, during which spike frequencies do not drop below 2 Hz. The end of SE was characterized by non-uniform spike frequencies that remained lower than 1 Hz. EEG data was polled every 10 minutes after the onset of SE to determine SE termination during a 5 hour interval after SE began.

Immunohistochemistry for Fluorojade and NeuN
The procedures of tissue preparation were described in detail previously (Sun et al., 2004; Sun et al., 2007). Briefly, animals were anesthetized with an overdose of pentobarbitone sodium and perfused through the ascending aorta with 50-100 ml 0.9% NaCl followed by 350-450 ml 4% paraformaldehyde in 0.1 M phosphate buffer (PB, pH 7.4). Brains were removed and post-fixed in the same fixative for 2 hours at 4°C. Brains were frozen by immersion in -70°C isopentane. Coronal sections from the anterior block were cut at 40 µm to collect dorsal sections.

In order to stain for NeuN and Fluoro-Jade B, immunohistochemical technique was modified as described previously (Jakab and Bowyer, 2002; Sun et al., 2007). Sections were incubated for 48 hours at 4°C in the anti-NeuN primary antibody mouse anti-NeuN, (diluted at 1:200, Millipore) followed by incubation with a secondary antibody conjugated to Alexa Fluor 594 (5 g/ml; molecular probes) for 60 minutes at room temperature. Sections were wet-mounted on glass slides, air-dried at 50°C for 15 minutes, and stained with Fluoro-Jade B. The slides were immersed in distilled water for 1 minute and oxidized in a 0.006% solution of KMnO4 for 5 minutes. After rinsing in distilled water twice for 30 seconds, sections were stained for 10 minutes in a 0.0003% solution of Fluoro-Jade B in 0.1% acetic acid. Finally, sections were rinsed in distilled water, air-dried, and cleared with xylene.
Results
Seizures and SE caused by paraoxon infusion
Infusion of 100 nmol paraoxon into the hippocampus caused electrographic seizures in 2/9 (22.2%) animals tested. None of the animals had seizures lasting beyond the end of infusion and 2 animals displayed intermittent seizures during paraoxon infusion which were not self-sustaining. No change in baseline EEG, and no behavioral seizures occurred in the remaining 7 animals (figure 11 A).

Infusion of 200 nmol paraoxon into the hippocampus caused electrographic seizures in 43/52 (82.7%) animals tested. In 32 animals seizures lasted beyond the end of infusion (61.5%) and 11 animals displayed intermittent seizures during paraoxon infusion which were not self-sustaining, and did not continue through the end of infusion (figure 11B). There was no change in baseline EEG in remaining 9 animals. These animals did not display behavioral characteristics indicative of seizure activity.

Among animals with seizures lasting beyond paraoxon infusion, two distinct types of electrographic seizure activity occurred: intermittent and continuous seizures. Intermittent seizures, which occurred in 18 animals, frequently appeared first in the paraoxon infusion site in the right hippocampus, and then spread to the contra-lateral (left) hippocampus(Figure 11C). Seizures consisted of rhythmic high frequency spike wave discharges that evolved in frequency and amplitude. There were brief periods of suppression of activity between seizures.

Continuous seizures occurred in 14 animals following paraoxon infusion, and these consisted of sustained bilateral discharges of repetitive spike patterns evolving over time (Fig. 11D). Continuous electrographic seizures started at approximately 15 minutes post infusion, and persisted for 4-18 hours. These prolonged self-sustaining seizures constituted SE. Paraoxon-induced SE was further confirmed upon observation of behavioral seizures. Animals experiencing SE exhibited freezing, staring, blinking, and hyper-exploratory movement, as well as wet-dog shaking movements for 4-18 hours.

Infusion of 300 nmol paraoxon into the hippocampus caused electrographic seizures in 10/11 (90.9%) of animals tested. The seizures in all of these animals continued beyond the end of infusion in form of SE with behavioral seizures ranging from 2-5 on the Racine scale. The majority of animals in SE (7) died of respiratory arrest, several of these exhibited symptoms of peripheral cholinergic stimulation, including muscle contractions and fasciculations. The remaining 3 animals survived, exhibiting seizures that lasted long beyond the end of infusion. Only 1 animal receiving paraoxon 300 nM infusion displayed neither behavioral characteristics indicative of seizure activity, nor EEG seizure activity (9.0%).

The location of the cannula was confirmed by sectioning the hippocampus. In many animals, the cannula and electrode tracts were localized by sectioning the brain in the plane of the electrode. In other animals, immunohistochemistry for neuronal stain Neun and staining for neurodegeneration dye fluorojade J, was performed 3 days after SE caused by infusion of paraoxon. The site of infusion was at the ventricular border the CA3 layer of the hippocampus, (figure 2 A). Fluorojade positive neurons were present in CA1 and CA3 regions and of the hippocampus and the subiculum (figure 2 B,C). Occasional Fluorojade positive cells were present in the hilus.

Peripheral injection of Paraoxon
Preliminary experiments were performed to optimize the model. Paraoxon (0.35 mg/kg) administered by the intra-peritoneal route caused widespread muscle contractions, fasciculations, rare tonic convulsions, respiratory arrest and death in all four animals tested. Pretreatment of animals with scopolamine (4 mg/kg) protected against peripheral and systemic effects of paraoxon (n = 4 animals). Subsequently oxime reactivator 2-PAM and muscarinic antagonist atropine was combined with peripheral paraoxon administration. In preliminary
experiments we tested other doses of these agents and confirmed that most optimal doses were used.
Paraoxon (1 mg/kg) was administered SC to 23 animals 30 minutes after pre-treatment with 2 mg/kg atropine and 50 mg/kg 2-PAM and prolonged seizures were observed. SE occurred in 17 of the 23 animals (74%) with animals displaying a combination of chewing, head-bobbing, single and bilateral limb clonus and rearing, leading to constant full body tremors. In 3 animals there was no effect from the OP injection and 3 animals died from respiratory arrest without any seizures.
In these animals electrographic seizures either started as continuous long lasting seizures or evolved from discrete seizures to continuous seizures (Figure 13, panel control). The mean time for the onset of first electrographic seizure in animals treated with paraoxon was 6m 4s ± 42s. The first seizure was also the onset or continuous EEG activity in 29% (5/17) of the animals studied. In 7 of the 18 animals, a discrete electrographic seizure lasting 30-60 seconds was the first electrographic seizure, followed by a prolonged period of suppression. This was followed by the onset of continuous electrographic seizure activity. The remaining 35% (6/17) progressed from discrete seizure continuous EEG with a period of brief suppression (10-30 seconds) between 30-60 second seizure bursts. The mean time for onset of continuous electrographic seizure activity after paraoxon injection was 10m 3s ± 1m. At the onset of continuous EEG seizure activity, electrographic spiking occurred at a rate of 2-4 Hz, and frequency increased to 4-8 Hz within 10 minutes of onset.
One group of animals (n=6) was left untreated after the onset of continuous seizures. One animal died 2h 45m after the onset of continuous seizures. The mean SE duration was 10h 15m ± 1h 42m in the remaining five animals, ranging from 7-17 hours. The SE ended with the frequency of epileptiform activity falling below 1 Hz in all 5 of the animals within 18 hours of onset.
A group of animals (n =6) in paraoxon induced SE was treated with 10 mg/kg diazepam ten minutes after the onset of continuous seizure activity (Figure 13, middle panel). Diazepam terminated continuous seizures at this time point (Figure 14, middle panel). In two of these animals, SE was terminated within the first 10 minutes of treatment (figure 14). In these animals, spike frequency dropped from 4-6 Hz to 0 and baseline EEG was restored. Seizures did not recur. In two animals SE ended 90 -150 minutes after onset (figure 14). The spike frequency gradually dropped from 4-6 Hz with poly-spikes to single spikes with a frequency of less than 1 Hz (figure 3). All animals were seizure free by seven hours. There was no mortality within 24 hours.
Animals (n =5) treated with 10 mg/kg of diazepam 30 minutes after continuous EEG activity also responded to treatment, with (60%) becoming seizure free within 10 minutes of treatment (figure 3 right panel). Only one of the five animals was still having seizures 70 minutes after continuous seizures began, and continuous seizures lasted for 12 hours (figure 14). No animal in this group died during the 24 hour period.
DFP
Preliminary experiments were performed to optimize DFP model of SE. Rats that were pretreated with 1 mg/kg atropine 30 minutes and then given 1.25 mg/kg DFP SC (n=4) all died from respiratory arrest, whereas 50% of rats pretreated with 1 mg/kg atropine and 25 mg/kg 2-PAM (n=4) survived and exhibited prolonged seizure activity. Higher DFP dose of 1.5 mg/kg combined with a pretreatment of larger doses of atropine (2 mg/kg) and 2-PAM (50 mg/kg) caused death in 2 animals. These observations and previously published data suggested that 1.25 mg/kg DFP SC in cold saline with a pretreatment of 2 mg/kg atropine and 50 mg/kg 2-PAM were likely to produce SE in animals.
This combination was used to study DFP induced SE, and it caused continuous seizure activity and SE in 15 out of 19 (79%) of the animals studied, with the remainder dying of respiratory
arrest. Animals in SE group exhibited a combination of chewing, head-bobbing, single and bi-limb clonus and rearing, leading to constant full body tremors and SE. The mean time to first EEG seizure in this group was 21m 43s ± 3m 25s. In 7 of 15 animals, the first electrographic seizure was also the onset of continuous seizure activity. In 7 other animals, seizure progression went from periods of discrete seizures, separated by normal EEG followed by seizures lasting 10 to 30 seconds with periods of suppression, after which seizures merged into continuous epileptiform activity. In one animal, a brief discrete seizure was followed by continuous seizure activity. Continuous epileptiform activity started at a frequency of 2 Hz and accelerated to 4-6 Hz within ten minutes. The latency to the development of continuous electrographic activity was 24m 41s ± 3m 48s after DFP injection.

In 5 animals left untreated after the DFP induced SE, 3 survived to 5 hours after continuous seizure onset and the remaining died. Seizures stopped in one animal 4.5 hours after the onset of continuous seizure activity, while the other two displayed electrographic seizures which lasted for more than 8 hours.

DFP induced seizures were much more resistant to diazepam treatment when given at 30 minutes than when treated at 10 minutes (Figures 15,16). Three out of the five rats (60%) given diazepam after 10 minutes after continuous EEG activity demonstrated rapid drop in spike wave discharge frequency and amplitude with return of baseline EEG; the remaining two out of five animals (40%) continued to have seizures for more than 5 hours. No animal in this group died within the 24 hour after SE onset.

Diazepam given 30 minutes after the start of continuous EEG activity did not stop SE within 60 and 120 minutes after onset of SE in any of the 5 animals tested (Figures 15, 16). First termination of SE in these animals first occurred 2.5 hours after treatment injection, with 60% (3/5) of rats coming out of SE within the first 5 hours of diazepam injection (Figure 6). In addition, while treatment at 30 minutes did eventually terminate SE, this termination was marked by appearance arrhythmic spikes and the baseline EEG was not restored in any animal.

We have characterized SE induced by two different organophosphates, intrahippocampal infusion of paraoxon and peripheral injection of DFP or paraoxon following treatment of 2-PAM and atropine. Peripheral injection of OP agents has a higher incidence of producing self-sustaining seizures, while intrahippocampal infusion has the benefit of not requiring pretreatment with 2-PAM and atropine.

Treatment of status epilepticus (Experiment 3.1, 3.2): We tested whether the action of M-Channel opener flupirtine in cholinergic over-stimulation-induced status epilepticus. Last year we reported that flupirtine alone is ineffective in terminating Lithium/Pilocarpine induced status epilepticus. However, a combination of flupirtine and diazepam terminated status epilepticus. We then tested the efficacy of flupirtine in terminating DFP induced status epilepticus. DFP-induced status epilepticus is of importance because it is induced by an organophosphate, which is a choline-esterase inhibitor. Flupirtine alone was effective in 80% of animals, in 2 hours (figure 17 red line). However, a combination of flupirtine and diazepam were effective in rapidly terminating refractory status epilepticus. Status epilepticus was terminated in all animals within 30 minutes (figure 17 blue line,). The results are displayed in figure in the appendix. We are preparing a manuscript to report these results.

We have also tested the efficacy of retigabine (Potiga), which is another M channel opener in lithium pilocarpine model. We tested doses 1, 2, 4, 35 and 75 mg/ Kg alone and they were ineffective in terminating status epilepticus. The drug was not effective either when combined with 10 mg/Kg diazepam.
Finally in a related project we found that AMPA type glutamate receptor are modified during status epilepticus. This work was published in Annals of Neurology and supported by NIH grants.

Key Research Accomplishments:
- We demonstrated that muscarinic stimulation causes enhanced synaptic transmission at Schaffer collateral CA1 pyramidal neuron synapses in the hippocampus.
- We developed two models of organophosphate induced seizures and status epilepticus.
- We tested potassium channel opener flupirtine in an organophosphate model and found it to be effective in terminating status epilepticus when combined with diazepam.

REPORTABLE OUTCOMES

Conclusions:
These studies demonstrate that muscarinic stimulation of hippocampal neurons increases their excitability and enhances neurotransmitter release at Schaffer collateral-CA1 synapses. This enhancement occurs by inhibition of M-type (KCNQ2/3) potassium channels. Drugs that open M-type potassium channels can counter the effect of muscarinic stimulation in hippocampal slices. Drugs that open M-type channels were effective in terminating organophosphate-induced status epilepticus.

Future plans: As proposed in the original application aims 1 & 2, we will extend these studies to perforant path-dentate granule cell synapse in the hippocampus. We will also test whether another M channel opener terminates status epilepticus.
References

Appendices
Figure 1-17 & PDF reprints of two publications

Figure 1. M1 muscarinic agonist increased the frequency of mEPSCs recorded from CA1 pyramidal neurons. A, Representative traces of mEPSCs recorded from CA1 pyramidal neurons before (left) and after (right) the application of 10 μM McN-A-343. B, Representative averaged traces of mEPSCs before (black) and during (grey) the application of McN-A-343 along with the overlay of the two traces. C and D, Cumulative probability plots of mEPSC frequency (C) and amplitude (D) obtained by pooling data from 7 neurons before (solid lines) and after (dotted lines) application of McN-A-343.
Figure 2. M-channel blocker XE991 increased mEPSC frequency in CA1 neurons. A, Representative mEPSC recordings obtained from a CA1 pyramidal neuron before (left) and after (right) the application of 10 μM XE991. B and C, Cumulative probability plots of mEPSC frequency (C) and amplitude (D) obtained by pooling data from 8 neurons before (solid lines) and after (dotted lines) the application of XE991.
Figure 3. The effect of linopirdine and flupirtine, and the occlusion of XE991 to the effect of McN-A-343 on mEPSC in CA1 neurons. A, and B, Cumulative probability plots of mEPSC frequency by pooling data from neurons before (solid lines) and after (dotted lines) the application of linopirdine (A), flupirtine (B). C, Cumulative probability plot of mEPSC frequency by pooling data from neurons before (solid lines) and after (dotted lines) the application of McN-A-343 after 25 min incubation in XE991.
Figure 4. The effect of XE991 on mEPSC frequency was eliminated in calcium-free ACSF. A and C, Representative mEPSC recordings obtained from a CA1 pyramidal neuron before (top) and after (bottom) the application of 10 μM XE991 after 20 min incubation in thapsigargin (2.5 μM) (A) or in calcium-free ACSF (C). B and D, Cumulative probability plots of the frequency of mEPSCs obtained by pooling data from 8 neurons before (solid lines) and after (dotted lines) the application of XE991 in thapsigargin incubation (B) or in calcium-free ACSF (D).
Figure 5. P/Q-type calcium channel blocker on the effect of XE991 on mEPSC frequency. A and B, Representative mEPSC recordings obtained from a CA1 pyramidal neuron in which the blocking of P/Q-type of calcium channels by 200 nM ω-agatoxin TK did (A) or did not (B) prevent the effect of 10 μM XE991. The left panels include data from recordings in the presence of ω-agatoxin TK before the application of XE991, and the right panels include data from recordings after the application of XE991. C and D, Cumulative probability plots of mEPSC frequency obtained by pooling data from CA1 pyramidal neurons before (solid lines) and after (dotted lines) the application of XE991 in the presence of ω-agatoxin TK that did (C) or did not prevent (D) the effect of XE991.
Figure 6. N-type calcium channel blocker on the effect of XE991 on mEPSC frequency.

A and B, Representative mEPSC recordings obtained from a CA1 pyramidal neuron in which the blocking of N-type calcium channels by \(\omega \)-conotoxin GVIA (1 \(\mu \)M) did (A) or did not (B) prevent the effects of 10 \(\mu \)M XE991. Data in the left panels are from recordings in the presence of \(\omega \)-conotoxin GVIA before the application of XE991, and data in the right panels are from recordings after the application of XE991. C and D, Cumulative probability plots of mEPSC frequency obtained by pooling data from CA1 pyramidal neurons before (solid lines) and after (dotted lines) the application of XE991 in the presence of \(\omega \)-conotoxin GVIA that did (C) or did not (D) prevent the effect of XE991.
Figure 7 Combination of P/Q- and N-type calcium channel blockers on the effect of XE991 on mEPSC frequency.

A, Representative mEPSC recordings obtained from a CA1 pyramidal neuron in the presence of both \(\omega\)-agatoxin TK and \(\omega\)-conotoxin GVIA before the application of XE991 (top), and after the application of XE991 (bottom). B, Cumulative probability plots of mEPSC frequency obtained by pooling data from CA1 pyramidal neurons before (solid lines) and after (dotted lines) the application of XE991 in the presence of \(\omega\)-agatoxin TK and \(\omega\)-conotoxin GVIA.
Figure 8. M1 agonist McN-A-343 depolarized and increased action potential firing in CA3 pyramidal neurons. A, Representative traces of the membrane potential of a CA3 pyramidal neuron before, during, and after a wash of McN-A-343. Note the profound depolarization and the repetitive action potentials. B. A representative trace of the depolarizing effect of McN-A-343 on the membrane potential of a CA3 pyramidal neuron with action potentials blocked by TTX (1 µM). C and D, Quantification of the effect of McN-A-343 on the firing frequency (C) and membrane potential (D) of CA3 pyramidal neurons (means ± SEM).
Figure 9. M-channel blocker and opener on membrane potential and action potential firing in CA3 pyramidal neurons. A, Representative effect of XE991 on the membrane potential of CA3 pyramidal neurons. B and C, Representative recordings of the effects of XE991 (B) and flupirtine (C) on the membrane potential of CA3 pyramidal neurons in the presence of TTX (1 µM). D, Quantification of the effect of XE991 on the firing frequency of CA3 pyramidal neurons (means ± SEM). E and F, Quantification of the effect of XE991 (E) and flupirtine (F) on the membrane potential of CA3 pyramidal neurons (means ± SEM).
Figure 10. McN-A-343 and XE991 increased input resistance in CA3 neurons. A, (top) Representative recordings of current injections from -40 pA (in 5 pA steps) before (left) and after (right) the application of McN-A-343, (bottom) I-V relationship before (open circles) and after (filled circle) the application of McN-A-343 in CA3 neurons (n = 6). B, (top) Representative recordings of current injections from -40 pA (in 5 pA steps) before (left) and after (right) the application of XE991, (bottom) I-V relationship before (open circles) and after (filled circles) the application of XE991 in CA3 neurons (n = 7).
Figure 11) Seizures caused by intra-hippocampal infusion of the organophosphate paraoxon. A) displays % fraction of animals having seizures in response to 100 nmols (n= 9), 200 nmols (n= 52) and 300 nmols (n= 11) of intra-hippocampal paraoxon. B) A pie chart of four responses to 200 nmols paraoxon infused in the hippocampus: no seizures, seizures during infusion, intermittent post infusion seizures and continuous post infusion seizures. C) Displays EEG recordings from right (R) and left (L) hippocampus showing intermittent seizures following infusion of 200 nmol paraoxon solution into the right hippocampus. A seizure begins in the right hippocampus, spreads to the left hippocampus and ends several second later (middle two traces), and soon thereafter another seizure begins and spreads to the left hippocampus. D) Displays a continuous electrographic seizures occurring in right and left hippocampi, note faster time base. The seizure consists of continuous spike-wave discharges.
Figure 12) Images of hippocampal sections from animals that had prolonged seizures following intra-hippocampal paraoxon administration, which were stained for neuronal injury stain FluoroJade B (green) and neuronal marker NeuN (red). A) A low magnification image of the hippocampus showing drug infusion site close to the CA3 region of the hippocampus. B) A section of the hippocampus displaying green fluorojade positive CA3, CA1 pyramidal neurons and neurons in the subiculum. C) A higher magnification image of Fluorojade positive neurons in the CA3 region of the hippocampus.
Figure 13) EEG recordings from hippocampi of animals given paraoxon subcutaneously after injection of atropine and 2-PAM. Left panel shows samples of recording from an animal in SE. Note continuous electrographic seizures for 4 hours with evolving morphology and frequency. Middle panel (10 minute treatment) shows EEG from an animal treated with diazepam 10 minutes after the onset of continuous electrographic seizures. Seizures were terminated promptly and animals stayed seizure free. Right panel (30 minute treatment) shows onset of continuous seizures and their termination when diazepam was administered 30 minutes after the onset of continuous electrographic seizures.

<table>
<thead>
<tr>
<th>No Treatment</th>
<th>10 Minute Treatment</th>
<th>30 Minute Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Baseline</td>
<td>Baseline</td>
</tr>
<tr>
<td>Onset of continuous seizures</td>
<td>Onset of continuous seizures</td>
<td>Onset of continuous seizures</td>
</tr>
<tr>
<td>1 hour</td>
<td>1 hour</td>
<td>1 hour</td>
</tr>
<tr>
<td>4 hours</td>
<td>4 hours</td>
<td>4 hours</td>
</tr>
<tr>
<td>100 µV, 1 sec</td>
<td>100 µV, 1 sec</td>
<td>100 µV, 1 sec</td>
</tr>
</tbody>
</table>
Figure 14) Time-course of SE induced by peripheral paraoxon injection in three groups: no further treatment, diazepam given 10 minutes after the onset of continuous seizures (Blue line) or 30 minutes after the onset of continuous seizures (Red line). In this study, 23 animals were studied, 17 developed continuous seizures, 6 were left untreated (control), 6 received diazepam 10 minutes after the onset of continuous seizures, and 5 received diazepam 30 minutes after the onset of continuous electrographic seizures. Diazepam effectively terminated SE in similar proportion of animals regardless of time of treatment (inset bar charts).
Figure 15) SE induced by peripheral injection of DFP and response to diazepam treatment. Samples of recording from an animal in SE show continuous electrographic seizures for 4 hours. Recordings an animal treated with diazepam 10 minutes after the onset of continuous electrographic seizures (Middle panel, 10 minute treatment) demonstrate prompt termination of SE. When diazepam was administered 30 minutes after the onset of continuous electrographic seizures (Right panel 30 minute treatment) SE continued with only a mild suppression of amplitude of spikes but continued high frequency spike-wave discharges (1 hour) and complex poly-spike-wave rhythmic discharges (4 hour).
Figure 16) Time-course of SE induced by peripheral DFP injection in three groups: no further treatment, diazepam given 10 minutes after the onset of continuous seizures (Blue line) or 30 minutes after the onset of continuous seizures (Red line). Continuous seizures developed in 15 of 19 animals treated with DFP, and 5 were left untreated (control), 5 each were treated diazepam 10 or 30 minutes after the onset of continuous electrographic seizures. Diazepam effectively terminated SE in animals treated 10 minutes after the onset of continuous electrographic seizure but not in animals treated 30 minutes (inset bar charts).
Figure 17. This demonstrates the Time-course of termination of status epilepticus (SE) following treatment with saline (controls), flupirtine 50 mg/Kg alone (red line) and flupirtine 50 mg/Kg combined with diazepam. Note that M channel opener flupirtine is more effective when combined with diazepam.
M-type potassium channels modulate Schaffer collateral–CA1 glutamatergic synaptic transmission

Jianli Sun and Jaideep Kapur

Department of Neurology, University of Virginia, Health Sciences Center, Charlottesville, VA 22908-0394 USA

Key points

- M-type potassium channels play a key role in modulating neuronal excitability. However, the effects of M-channel activation on synaptic transmission are poorly understood.
- This study found that an M1 receptor agonist and M-channel blockers increased action potential-independent glutamate release at Schaffer collateral–CA1 pyramidal neuron synapses in acute hippocampus slices.
- This enhancement was dependent on Ca\(^{2+}\) influx from extracellular space but not intracellular calcium stores.
- Inhibition of M-channels results in the depolarization of CA3 pyramidal neurons and activated presynaptic voltage-gated P/Q- and N-type calcium channels, which in turn causes Ca\(^{2+}\) influx and increased glutamate release.
- Thus, M1 muscarinic agonists modulate action potential-independent glutamatergic synaptic transmission in the hippocampus by inhibition of presynaptic M-channels.

Abstract

Previous studies have suggested that muscarinic receptor activation modulates glutamatergic transmission. M-type potassium channels mediate the effects of muscarinic activation in the hippocampus, and it has been proposed that they modulate glutamatergic synaptic transmission. We tested whether M1 muscarinic receptor activation enhances glutamatergic synaptic transmission via the inhibition of the M-type potassium channels that are present in Schaffer collateral axons and terminals. Miniature excitatory postsynaptic currents (mEPSCs) were recorded from CA1 pyramidal neurons. The M1 receptor agonist, NcN-A-343, increased the frequency of mEPSCs, but did not alter their amplitude. The M-channel blocker XE991 and its analogue linopirdine also increased the frequency of mEPSCs. Flupirtine, which opens M-channels, had the opposite effect. XE991 did not enhance mEPSCs frequency in a calcium-free external medium. Blocking P/Q- and N-type calcium channels abolished the effect of XE991 on mEPSCs. These data suggested that the inhibition of M-channels increases presynaptic calcium-dependent glutamate release in CA1 pyramidal neurons. The effects of these agents on the membrane potentials of presynaptic CA3 pyramidal neurons were studied using current clamp recordings; activation of M1 receptors and blocking M-channels depolarized neurons and increased burst firing. The input resistance of CA3 neurons was increased by the application of McN-A-343 and XE991; these effects were consistent with the closure of M-channels. Muscarinic activation inhibits M-channels in CA3 pyramidal neurons and its efferents – Schaffer collateral, which causes the depolarization, activates voltage-gated calcium channels, and ultimately elevates
the intracellular calcium concentration to increase the release of glutamate on CA1 pyramidal neurons.

Abbreviations M1, muscarinic type 1; mEPSCs, miniature excitatory postsynaptic currents; CNQX, 6-cyano-7-nitroquinoxaline-2,3-dione; K-S, Kolmogorov–Smirnov; NcN-A-343, (4-hydroxy-2-butynyl)-1-trimethylammonium-3-chlorocarbaminate chloride; sEPSC, spontaneous excitatory postsynaptic current; XE-991,10,10-bis(4-pyridylmethyl)-9(10H)-anthracenone.

Introduction

Muscarinic acetylcholine receptors (mAChRs) are seven-transmembrane-domain G protein-coupled receptors (GPCRs) that are widely expressed throughout the central nervous system. The M1 subtype is the predominant mAChR in the cortex, hippocampus, striatum and thalamus (Langmead et al. 2008). Muscarinic receptor activation has distinct effects on glutamatergic transmission in different neurons. It inhibits glutamatergic transmission in magnocellular neurons of the basal forebrain (Sim & Griffith, 1996), along with neurons in the basolateral amygdala (Yajeya et al. 2008), striatum (Higley et al. 2009) and spinal cord (Zhang et al. 2007). In the CA3 region of the hippocampus, muscarinic activation inhibits associational-commissural synaptic transmission via presynaptic calcium channel inhibition; however, it enhances mossy fibre–CA3 pyramidal neuron synaptic transmission (Vogt & Regehr, 2001). The activation of muscarinic receptors induces a long-lasting synaptic enhancement at Schaffer collateral–CA1 pyramidal neuron synapses by increasing the release of calcium from postsynaptic endoplasmic reticulum stores both in vivo and in vitro (Fernández de Sevilla et al. 2008). Muscarinic activation also enhances glutamatergic transmission in dentate granule cells (Kozhemyakin et al. 2010). M1 muscarinic receptor activation also inhibits M-type potassium channels (Brown & Adams, 1980; Marrion et al. 1989; Bernheim et al. 1992). M-type potassium channels belong to the K7 (KCQN) K⁺ channel family (Wang et al. 1998; Selyanko et al. 2002). M-channels activate at a subthreshold membrane potential and do not inactivate, so they generate a steady voltage-dependent outward current near the resting membrane potential (Constanti & Brown, 1981; Delmas & Brown, 2005). Mutations of the KCNQ2 and KCNQ3 genes cause benign familial neonatal convulsions (BFNC) (Biervert et al. 1998; Jentsch, 2000). The expression of KCNQ channels increases during early development in rodent hippocampus (Shah et al. 2002; Geiger et al. 2006; Weber et al. 2006; Safinulina et al. 2008), but the expression of KCNQ2 and KCNQ3 has different developmental pattern in human brain (Kanaumi et al. 2008). It has been suggested that the highest density of KCNQ2 and KCNQ3 immunoreactivity in the CA1 region is in the axon initial segments, where action potentials are generated and the Kv7 channels co-localize with Na⁺ channels via binding to ankyrin G. This localization allows M-channels to powerfully limit neuronal excitability (Devaux et al. 2004; Chung et al. 2006; Pan et al. 2006) and therefore function as a ‘brake’ on repetitive firing and play a key role in regulating the excitability of various central and peripheral neurons (Yue & Yaari, 2004; Gu et al. 2005; Shen et al. 2005; Brown & Randall, 2009). Other studies have suggested that M-channels are expressed in presynaptic terminals (Cooper et al. 2001; Chung et al. 2006; Garcia-Pino et al. 2010). Physiological studies have suggested that M-channels regulate the release of neurotransmitters. Drugs that block or open M-channels can regulate presynaptic fibre volley and the evoked EPSPs recorded from CA1 pyramidal neurons (Vervaekte et al. 2006). M-channel blocking by XE991 increases the release of noradrenaline, and retigabine, an M-channel opener, decreases noradrenaline release in cultured sympathetic neurons (Hernandez et al. 2008). These drugs also regulate neurotransmitter release from hippocampal synaptosomes (Martire et al. 2004) and cultured hippocampal neurons (Peretz et al. 2007). However, the mechanism by which M-channels regulate neurotransmitter release remains unclear. The current study demonstrates that both M1 muscarinic activation and M-channel inhibition enhance action-potential-independent glutamate release in Schaffer collateral–CA1 pyramidal neuron synapses. This action appears to be dependent on the depolarization of CA3 pyramidal neurons and the activation of voltage-gated calcium channels.

Methods

Slice preparation

All studies were performed according to protocols that were approved by the University of Virginia Animal Use and Care Committee, and the US Army Medical Research and Material Command Animal Care and Use Review Office (ACURO). Adult male (175–250 g) Sprague–Dawley rats were anaesthetized with isoflurane...
prior to decapitation, which was followed by quick removal of the brain. The removed brains were then sectioned to 300 μm slices using a Leica VT 1200 slicer (Leica Microsystems, Wetzlar, Germany) in ice-cold oxygenated slicing solution. The solution contained the following (in mM): 120 sucrose, 65.5 NaCl, 2 KCl, 1.1 KH₂PO₄, 25 NaHCO₃, 10 D-glucose, 1 CaCl₂, and 5 MgSO₄. The slices were then incubated for at least 1 h at 32°C in oxygenated ACSF that contained (in mM): 127 NaCl, 2 KCl, 1.1 KH₂PO₄, 25.7 NaHCO₃, 10 D-glucose, 2 CaCl₂, and 1.5 MgSO₄; the osmolarity in the chamber was 290–300 mosmol l⁻¹. After incubation, the slices were transferred to the recording chamber on the stage of an Olympus Optical BX51 microscope (Olympus, Tokyo, Japan). Unless otherwise stated, all chemicals were obtained from Sigma-Aldrich (St Louis, MO, USA).

Whole-cell recording

Whole-cell patch-clamp recordings were performed under infrared differential interference contrast microscopy (Olympus); a 40× water-immersion objective was used to visually identify CA1 and CA3 pyramidal neurons. The slices were continuously perfused with ACSF solution that was saturated with 95% O₂ and 5% CO₂ at room temperature. Patch electrodes (final resistances, 3–5 MΩ) were pulled from borosilicate glass (Sutter Instruments, Novato, CA, USA) on a horizontal Flaming-Brown microelectrode puller (Model P-97, Sutter Instruments). For voltage-clamp recordings, the electrode tips were filled with a filtered internal recording solution that consisted of the following components (in mM): 117.5 CsMeSO₄, 10 Hepes, 0.3 EGTA, 15.5 CsCl, and 1.0 MgCl₂; the pH was 7.3 (with CsOH), and the osmolarity was 310 mosmol l⁻¹. The electrode shank contained (in mM) 4 Mg-ATP salt, 0.3 Na-GTP salt, and 5 QX-314. For current-clamp recording, the pipette solution contained the following (in mM): 135 potassium gluconate, 2.5 NaCl, 10 Hepes, 0.5 EGTA, 4.0 Mg-ATP, 0.4 Na-GTP, 0.1 CaCl₂; the pH was 7.3, and the osmolarity was 310 mosmol l⁻¹. Neurons were voltage clamped at −60 mV using a PC-505B amplifier (Warner Instruments, Hamden, CT, USA). Electrode capacitance was electronically compensated. Access resistance was continuously monitored, and if the series resistance increased by 20% at any time, the recording was terminated. Currents were filtered at 2 kHz, digitized using a Digidata 1322 digitizer (Molecular Devices, Sunnyvale, CA, USA), and acquired using Clampex 10.2 software (Molecular Devices). Spontaneous excitatory postsynaptic currents (sEPSCs) were recorded from CA1 pyramidal neurons after blocking the GABA_A receptors with the antagonist picrotoxin (50 μM). In preliminary experiments, a combination of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 2-amino-5-phosphonovaleric acid (APV) blocked all EPSCs. Miniature EPSCs (mEPSCs) were recorded by blocking action potentials with 1 μM TTX (Alomone labs, Jerusalem, Israel). All drugs were bath-applied via a peristaltic pump.

Data analysis

The offline digitized data were analysed with Mini-Analysis (Synaptosoft, Decatur, GA, USA) and Clampfit 10.2 (Molecular Devices). To detect sEPSCs and mEPSCs, a detection threshold was set at three times the root mean square (RMS) of the baseline noise. After detection, the frequency and peak amplitude of EPSCs from individual neurons were analysed. Each detected event from the 20–30 min recording session was visually inspected to remove false detections. The Kolmogorov–Smirnov (K-S) test was used to compare amplitudes and inter-event intervals for continuously recorded EPSCs. The input resistance of CA3 neuron under current-clamp recording was analysed by comparing the slope of current–voltage relationship and measured directly by Clampfit 10.2 at the peak of membrane potentials. The drug effects were compared using a paired Student’s t test with a significance level of P < 0.05. Data are expressed as means ± SEM unless otherwise noted.

Results

An M1 muscarinic agonist increases mEPSC frequency in CA1 neurons

Previous studies suggested that muscarinic receptor activation increased presynaptic glutamate release from perforant path to dentate granule cells (Kozhemyakin et al. 2010). In the present study, we investigated the effect of the M1 muscarinic receptor agonist McN-A-343 on glutamate release recorded from Schaffer collateral–CA1 synapses. Application of McN-A-343 (10 μM) increased the frequency of mEPSCs that were recorded from CA1 pyramidal neurons by 69.89 ± 0.05 Hz; n = 7, P < 0.01), but it did not change their amplitudes (16.51 ± 1.14 pA vs. 16.79 ± 1.47 pA; n = 7, P = 0.38, Fig. 1A and B). McN-A-343 caused a significant leftward shift in the cumulative distribution of the inter-event intervals but had no effect on the cumulative distribution of the amplitudes of the mEPSCs (K-S test, Fig. 1C and D). This suggested that the activation of M1 receptors increased action potential-independent glutamate release from the presynaptic terminals of Schaffer collateral–CA1 synapses.
M-channels regulate presynaptic glutamate release in CA1 neurons

Cholinergic M1 receptor activation inhibits M-channels (Brown & Adams, 1980; Marrion et al. 1989; Bernheim et al. 1992), so we tested whether M-channels regulate glutamate release in these synapses. Blocking M-channels increased the frequency of sEPSCs. After recording sEPSCs for 10 min, M-channel blocker XE991 (10 μM) was applied for 10 min, and it increased the frequency of sEPSCs by 147.56 ± 18.21% (0.11 ± 0.03 Hz vs. 0.30 ± 0.01 Hz, n = 7, P < 0.01), but did not affect their amplitudes (16.91 ± 0.92 pA vs. 16.65 ± 0.80 pA, n = 7, P = 0.50). Blocking M-channels caused a significant leftward shift in the cumulative distribution of sEPSC inter-event intervals but had no effect on the cumulative distribution of their amplitudes (K-S test, data not shown). These data suggested that M-channels modulate action potential-dependent glutamate release from Schaffer collateral–CA1 pyramidal neuron synapses. To study whether the effect of XE991 on release was action potential independent, its effect on mEPSCs was studied.

XE991 (10 μM) increased the frequency of mEPSCs by 82.21 ± 7.36% (0.13 ± 0.02 Hz vs. 0.22 ± 0.03 Hz, n = 8, P < 0.01), but had no effect on their amplitudes (17.70 ± 1.26 pA vs. 18.10 ± 1.27 pA, n = 8, P = 0.30, Fig. 2A). XE991 also caused a significant leftward shift in the cumulative distribution of the mEPSC inter-event intervals (Fig. 2B), but had no effect on the cumulative distribution of their amplitudes (Fig. 2C). The frequency of mEPSCs kept increasing after 10 min of XE991 application. The slices were perfused with ACSF to wash out the drug effect. The mEPSC frequency remained elevated for 50 min of washing and returned to baseline at 90 min (data not shown). The effect of XE991 on mEPSC frequency was confirmed by applying linopirdine (10 μM), which also blocks M-channels. Linopirdine increased the frequency of mEPSCs by 68.22 ± 6.05% (0.12 ± 0.01 Hz vs. 0.21 ± 0.03 Hz, n = 6, P < 0.01) but had no effect on their amplitudes (15.35 ± 1.13 pA vs. 15.78 ± 0.94 pA, n = 6, P = 0.23). It also caused a significant leftward shift in the cumulative distribution of the mEPSC inter-event intervals (Fig. 3A). These results suggested that the inhibition of M-channel current enhances the frequency of mEPSCs. Flupirtine (20 μM), an M-channel opener, decreased mEPSC frequency by 25.50 ± 8.04% compared to baseline (0.41 ± 0.08 Hz vs. 0.27 ± 0.04 Hz, n = 8, P < 0.01). Flupirtine caused a significant rightward shift in the cumulative distribution of the inter-event intervals of mEPSCs (Fig. 3B). These data suggested that M-channels are capable of modulating neurotransmitter release.
release independent from action potentials. To confirm that the effect of M1 agonist was mediated by M-channels, we incubated the slice with XE991 for 25 min. After 5 min baseline recording in XE991-containing medium, McN-A-343 was applied, and its effect was blocked. Overall, McN-A-343 did not change the frequency of mEPSCs (baseline 0.53 ± 0.07 Hz, McN-A-343 0.56 ± 0.08 Hz; n = 7, P = 0.38). In two cells, there was a modest (<10%) increase in frequency but the cumulative frequency plot of inter-event intervals from these cells was not shifted (Fig. 3C). This result suggested blocking M-channels prevented McN-A-343 enhancement of mEPSC frequency.

Calcium influx through voltage-gated calcium channels underlies the effect of XE991 on mEPSC frequency

Calcium plays a critical role in neurotransmitter release. The increase in mEPSC frequency caused by the application of XE991 could be due to Ca\(^{2+}\) release from intracellular stores or the entry of extracellular Ca\(^{2+}\). First, we tested whether release from intracellular stores plays a role in the effect of XE991. Release from intracellular calcium stores was blocked by incubating the slice with 2.5 \(\mu\)M thapsigargin for 20 min. The effect of M-channel blocker XE991 (10 \(\mu\)M) was not affected. XE991 increased the frequency of mEPSCs by 83.88 ± 17.22% (Fig. 4A), which is comparable to the effect of XE991 without thapsigargin incubation (82.21 ± 7.36%, n = 8, P < 0.01); it significantly left shifted the cumulative distribution of inter-event intervals (n = 9, P < 0.01, Fig. 4B). This result suggested that intracellular store release does not

Figure 3. The effect of linopirdine and flupirtine, and the occlusion of XE991 to the effect of McN-A-343 on mEPSC in CA1 neurons

A, and B, cumulative probability plots of mEPSC frequency by pooling data from neurons before (continuous lines) and after (dotted lines) the application of linopirdine (A), flupirtine (B). C, cumulative probability plots of mEPSC frequency by pooling data from neurons before (continuous lines) and after (dashed lines) the application of McN-A-343 after 25 min incubation in XE991.

Figure 4. The effect of XE991 on mEPSC frequency was eliminated in calcium-free ACSF

A and C, representative mEPSC recordings obtained from a CA1 pyramidal neuron before (top) and after (bottom) the application of 10 \(\mu\)M XE991 after 20 min incubation in thapsigargin (2.5 \(\mu\)M) (A) or in calcium-free ACSF (C). B and D, cumulative probability plots of the frequency of mEPSCs obtained by pooling data from 8 neurons before (continuous lines) and after (dashed lines) the application of XE991 in thapsigargin incubation (B) or in calcium-free ACSF (D).
These two channels are expressed in the presynaptic terminals of the CA3 pyramidal neuron, which then activate P/Q- or N-type calcium channels, thereby causing calcium influx and ultimately leading to increased glutamate release. We tested the effect of M-channels on spontaneous glutamate release. We tested the effect of M1 receptor activation on the frequency of mEPSC by recording mEPSCs in a calcium-free medium. To test whether Ca$^{2+}$ enters Schaffer collateral terminals by activation of presynaptic voltage-gated calcium channels due to M-channel inhibition, we studied the effect of McN-A-343 in a calcium-free medium (baseline, 0.40 ± 0.08 Hz, McN-A-343, 0.41 ± 0.07 Hz, n = 7, P = 0.36). There was no significant shift on the cumulative distribution of inter-event intervals of mEPSCs (data not shown). This suggested that the effect of M1 receptor activation on the frequency of mEPSC is largely mediated by increasing calcium influx from extracellular space. To test whether Ca$^{2+}$ enters Schaffer collateral terminals by activation of presynaptic voltage-gated calcium channels due to M-channel inhibition, we studied the effect of P/Q- and N-type calcium channel blockers on the XE991-mediated enhancement of mEPSC frequency. These two channels are expressed in the presynaptic terminals of Schaffer collaterals (Wheeler et al. 1994; Qian & Noebels, 2000). Slices were incubated with either ω-agatoxin TK (200 nM) or ω-conotoxin GVIA (1 μM) (Peptides International, Louisville, KY, USA) for 15 min prior to data collection. In the presence of ω-agatoxin TK, which blocks P/Q-type calcium channels, the XE991-mediated enhancement of mEPSC frequency was prevented in approximately half of the cells that were studied. In 5 out of 9 neurons, the application of XE991 did not increase the frequency of mEPSCs (0.23 ± 0.08 Hz vs. 0.20 ± 0.06 Hz, P = 0.46, Fig. 5A and C). In the other four CA1 pyramidal neurons, XE991 still significantly increased the frequency of mEPSCs (0.16 ± 0.03 Hz vs. 0.31 ± 0.07 Hz, P < 0.05, Fig. 5B and D). Blocking N-type channels with ω-conotoxin GVIA also prevented the effect of XE991 on the frequency of mEPSCs in half of the CA1 pyramidal neurons from which recordings were made. In 4 of 8 neurons, the effect of XE991 was eliminated (0.33 ± 0.05 Hz vs. 0.34 ± 0.04 Hz, P = 0.47, Fig. 6A and C). In the other four neurons, XE991 significantly increased the frequency of mEPSCs (0.24 ± 0.04 Hz vs. 0.43 ± 0.07 Hz, P < 0.05, Fig. 6B and D).

Next, we applied the blockers of two channels simultaneously. Slices were incubated in ω-agatoxin TK and ω-conotoxin GVIA for 25–40 min, and after 5 min baseline recording, XE991 was applied. The mean frequency was not significantly increased (baseline, 0.78 ± 0.08 Hz, XE991, 0.82 ± 0.09 Hz; n = 8, P = 0.08, Fig. 7A), and there was no significant shift of cumulative distribution of inter-event intervals for each cell and pooled data (Fig. 7B). This result suggested the enhancement of the frequency of mEPSCs by XE991 was mediated by calcium influx though P/Q- and N-type calcium channels.

McN-A-343 and XE991 depolarize and increase action potential firing in CA3 neurons

The aforementioned data suggested that inhibition of M-channels resulted in the depolarization of presynaptic terminals of the CA3 pyramidal neuron, which then activated P/Q- or N-type calcium channels, thereby causing calcium influx and ultimately leading to increased glutamate release. We tested the effect of M-channels on spontaneous glutamate release.
the membrane properties of CA3 pyramidal neurons. To study the effects of McN-A-343 and XE991 on CA3 pyramidal neurons, current-clamp recordings of the membrane potentials were obtained from neurons in slices from juvenile rats (24–28 days old). McN-A-343 significantly depolarized CA3 neurons and increased the frequency of action potential firing \((0.17 \pm 0.08 \text{ Hz vs } 2.16 \pm 0.72 \text{ Hz}, n = 6, P < 0.01) \) of CA3 pyramidal neurons (Fig. 8A and C). To measure the membrane potential more accurately, action potentials were blocked by TTX \((1 \mu M)\). Application of McN-A-343 depolarized CA3 pyramidal neuron membrane potentials from \(-61.39 \pm 1.49 \text{ mV to } -49.00 \pm 1.78 \text{ mV} \) \((n = 7, P < 0.01, \text{ Fig. } 8B \text{ and } D)\).

XE991 had similar effect to that of McN-A-343. It increased the action potential firing frequency \((0.42 \pm 0.17 \text{ Hz vs } 0.79 \pm 0.20 \text{ Hz}, n = 9, P < 0.01, \text{ Fig. } 9A \text{ and } D)\) and depolarized CA3 pyramidal neurons \((-61.32 \pm 2.45 \text{ mV vs. } -52.62 \pm 2.43 \text{ mV, } n = 10, P < 0.05, \text{ Fig. } 9B \text{ and } E)\). Furthermore, and consistent with these findings, the M-channel opener flupirtine \((20 \mu M)\) hyperpolarized CA3 neurons \((-58.02 \pm 1.61 \text{ mV, vs. } -62.97 \pm 1.36 \text{ mV, } n = 7, P < 0.01) \) (Fig. 9C and F).

To test whether the inhibition of M-channels increases membrane input resistance in CA3 pyramidal neurons, current–voltage \((I–V)\) relationships were studied. Current was injected from \(-40 \text{ pA to } 15 \text{ pA in 5 pA steps. Exposure}

![Figure 6](image-url)
Figure 6. N-type calcium channel blocker on the effect of XE991 on mEPSC frequency

A and B, representative mEPSC recordings obtained from a CA1 pyramidal neuron in which the blocking of N-type calcium channels by \(\omega\)-conotoxin GVIA \((1 \mu M)\) did (A) or did not (B) prevent the effects of 10 \(\mu M\) XE991. Data in the left panels are from recordings in the presence of \(\omega\)-conotoxin GVIA before the application of XE991, and data in the right panels are from recordings after the application of XE991. C and D, cumulative probability plots of mEPSC frequency obtained by pooling data from CA1 pyramidal neurons before (continuous lines) and after (dashed lines) the application of XE991 in the presence of \(\omega\)-conotoxin GVIA that did (C) or did not (D) prevent the effect of XE991.

![Figure 7](image-url)
Figure 7. Combination of P/Q- and N-type calcium channel blockers on the effect of XE991 on mEPSC frequency

A, representative mEPSC recordings obtained from a CA1 pyramidal neuron in the presence of both \(\omega\)-agatoxin TK and \(\omega\)-conotoxin GVIA before the application of XE991 (top), and after the application of XE991 (bottom). B, cumulative probability plots of mEPSC frequency obtained by pooling data from CA1 pyramidal neurons before (continuous lines) and after (dashed lines) the application of XE991 in the presence of \(\omega\)-agatoxin TK and \(\omega\)-conotoxin GVIA.
to McN-A-343 shifted the $I–V$ curve to a more negative membrane potentials with negative current injections. The slope of the $I–V$ curve increased from 140 MΩ to 197 MΩ (Fig. 10A, $n = 6$). McN-A-343 increased the input resistance from 156.43 ± 17.51 MΩ to 228.07 ± 17.16 MΩ ($n = 6$, $P < 0.01$) analysed by Clampfit. Exposure to XE991 had an effect on membrane input resistance that was similar to that of exposure to McN-A-343 in CA3 pyramidal neurons. The slope of the $I–V$ curve increased from 122 MΩ to 175 MΩ ($n = 6$, $P < 0.01$) analysed by Clampfit. These results suggested that the M1 agonist Mcn-A-343 and the M-channel blocker XE991 close M-type potassium channels in CA3 pyramidal neurons.

Discussion

The present study found that M1 muscarinic activation potentiated glutamate release and that inhibiting M-channels had a similar effect. The application of M-channel blockers increased the frequency of sEPSCs and mEPSCs but had no effect on their amplitudes; the application of an M1 muscarinic receptor agonist had a similar effect to that of the M-channel blockers. The effect of XE991 was dependent on Ca$^{2+}$ influx through P/Q- and N-type calcium channels. Both the blocking of M-channels and the activation of M1 receptors depolarized CA3 pyramidal neurons. These results suggest that M1 receptor activation inhibits M-type potassium channels and depolarizes CA3 neurons. This causes an influx of Ca$^{2+}$ through presynaptic voltage-dependent calcium channels and increase spontaneous glutamate release to CA1 neurons. This study demonstrates that M-channels modulate action-potential-independent neurotransmitter release from presynaptic terminals in Schaffer collateral–CA1 pyramidal neuron synapses. These actions occur in addition to the effects on cell soma and axon initial segment, resulting from increased membrane resistance.

M1 receptor agonists and M-channel blockers increase presynaptic glutamate release

In the present study, McN-A-343, a selective agonist for M1 receptors, significantly increased the frequency of mEPSCs but had no effect on their amplitudes, which
suggests that M1 receptor activation increases presynaptic action potential-independent glutamate release from the Schaffer collaterals. These results are consistent with results from other studies about muscarinic potentiation of glutamatergic transmission in the hippocampus. M1 is the predominant muscarinic receptor in the hippocampus (accounting for approximately 60% of all muscarinic receptors in the hippocampus), whereas M2 and M4 are less abundant (approximately 20%) (Volpicelli & Levey, 2004). The muscarinic agonist carbachol has been associated with increases in presynaptic glutamate release in cultured rat hippocampal neurons and dentate granule cells in slices (Bouron & Reuter, 1997; Kozhemyakin et al. 2010). An M1 agonist has been shown to cause the potentiation of N-methyl-D-aspartate (NMDA) receptor currents in CA1 hippocampal pyramidal neurons (Marino et al. 1998). The activation of muscarinic receptors induces a long-lasting synaptic enhancement at Schaffer collaterals both in vivo and in vitro via an increase in the postsynaptic release of calcium stored in the endoplasmic reticulum (Fernández de Sevilla et al. 2008). A recent study that combined calcium imaging with two-photon laser glutamate uncaging suggests that M1 receptor activation increases glutamate synaptic potentials and Ca$^{2+}$ transients in CA1 pyramidal neurons (Giessel & Sabatini, 2010). Muscarinic M1 (or at some sites M3 or possibly M5) receptor activation inhibits the M-channel (Brown & Passmore, 2009), which was first named in the 1980s (Brown & Adams, 1980; Constanti & Brown, 1981). Immunochemical studies suggest that M-channels are highly expressed in the axon initial segments of neurons (Chung et al. 2006; Pan et al. 2006; Rasmussen et al. 2007). Thus, M-channels are very important for tuning the firing rates and excitability of various neurons (Yue & Yaari, 2004; Shen et al. 2005; Gu et al. 2005; Shah et al. 2008). Interestingly, M-channel activity also affects the release of neurotransmitters from superior cervical ganglion (SCG) neurons and hippocampal synaptosomes (Martire et al. 2004; Hernandez et al. 2008). Our findings in the current study suggest that M-channels modulate action potential-independent neurotransmitter release from the presynaptic terminals of the Schaffer collaterals. M-channels are active at the resting membrane potential (Constanti & Brown, 1981) and are expressed in presynaptic terminals (Cooper et al. 2001; Chung et al. 2006; Garcia-Pino et al. 2010). The presynaptic potentiation effect of the M-channel blocker XE991 was reversed over a long period of time. This might be due to its binding kinetics. The dissociation of linopirdine, an analogue of XE991, is slow and begins after 60 min (Wolff et al. 2005).

M1 receptor agonist and M-channel blocker depolarize CA3 neurons

An M1 agonist and an M-channel blocker depolarized CA3 pyramidal neurons. This finding is consistent with the location and function of the receptor in these neurons. The M1 receptor is the most commonly expressed muscarinic receptor in the hippocampus in both the pyramidal neuron layer and the stratum radiatum of the CA3 and CA1 regions (Tayebati et al. 2002). A comparable slow, muscarinic receptor-dependent depolarization can be evoked in pyramidal neurons by the direct electrical stimulation of cholinergic afferents in the hippocampus (Cole & Nicoll, 1983; Madison et al. 1987; Segal, 1988; Pitler & Alger, 1990; Morton & Davies, 1997) or medial septal nucleus in a septo-hippocampal slice (Cobb...
& Davies, 2005). The medial septal nucleus provides the major source of cholinergic innervations to the hippocampus (Dutar et al. 1995) and presents a direct synaptic input to both principal neurons and interneurons (Frotscher & Léranth, 1985; Léranth & Frotscher, 1987). Muscarinic acetylcholine receptors modulate several ionic conductances in addition to the M-current, including I_{AHP} (the Ca$^{2+}$-activated K$^+$ current that is responsible for slowing action potential discharges) and I_{leak} (the background leak current) (Halliwell, 1990). Activation of mACHRs also potentiates two mixed cation currents (I_h, the hyperpolarization-activated cation current; and I_{cat}, the Ca$^{2+}$-dependent non-specific cation current) (Halliwell, 1990; Colino & Halliwell, 1993) and the N-methyl-D-aspartate (NMDA) receptor (Markram & Segal, 1990). This may explain why, in our study, the M1 agonist McN-A-343 had a stronger depolarization effect than the M-channel blocker XE991 in CA3 pyramidal neurons.

Muscarinic receptor and intracellular calcium level

Current study suggested that M1 receptor activation depolarizes presynaptic membrane and activates voltage-gated calcium channel to increase intracellular calcium level and neurotransmitter release by inhibition of M-channels. Previous studies suggested that muscarinic stimulation inhibits voltage-gated calcium channels (Toselli et al. 1989; Qian & Saggau, 1997). However these studies did not classify the subtype of muscarinic receptor that mediates this effect. It was reported that the inhibitory effect of muscarinic receptor activation on calcium channels was mediated by M4 subtype in rat sympathetic neurons (Bernheim et al. 1992) and by M2 subtype in rat magnocellular cholinergic basal forebrain neurones (Allen & Brown, 1993). There is no report to suggest that M1 subtype muscarinic receptor inhibits calcium channels.

Muscarinic receptors activate inositol 1,4,5-trisphosphate (IP$_3$) receptor to trigger calcium release from endoplasmic reticulum (ER) stores in CA1 pyramidal neurons, and appears to be action potential independent (Power & Sah, 2002). Another study suggested this effect is mediated by M1 receptor (Fernández de Sevilla et al. 2008). The role of these stores in enhancing synaptic release remains uncertain. Although spontaneous transmitter release (in the absence of action potentials) is largely mediated by calcium release from internal stores (Emptage et al. 2001), our study suggests the modulation of spontaneous transmitter release could be mediated by calcium influx though voltage-gated calcium channels.

Overall, this study demonstrated that M1 muscarinic receptor activation inhibits M-type potassium channels, thereby increasing excitatory glutamate neurotransmitter release from the presynaptic terminals of CA3 neurons by increasing the rate of calcium influx through voltage-dependent calcium channels. This effect of M1 receptor activation could contribute to the generation of seizures.

References

Author contributions

J.S. and J.K. designed the study. J.S. performed the experiments and analysed the data. J.S. and J.K. interpreted the data, drafted and revised the article.

Acknowledgements

This study was supported by peer reviewed Medical Research Program of the Department of Defense PR 093963 and NINDS (NIH) RO1 NS 40337.
Characterization of status epilepticus induced by two organophosphates in rats

Marko S. Todorovic, Morgan L. Cowan, Corrinee A. Balint, Chengsan Sun, Jaideep Kapur*

Department of Neurology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA

Received 10 August 2011; received in revised form 8 April 2012; accepted 17 April 2012

Summary Organophosphates (OPs) inhibit the enzyme cholinesterase and cause accumulation of acetylcholine, and are known to cause seizures and status epilepticus (SE) in humans. The animal models of SE caused by organophosphate analogs of insecticides are not well characterized. SE caused by OPs paraoxon and diisopropyl fluorophosphate (DFP) in rats was characterized by electroencephalogram (EEG), behavioral observations and response to treatment with the benzodiazepine diazepam administered at various stages of SE. A method for SE induction using intrahippocampal infusion of paraoxon was also tested. Infusion of 200nmol paraoxon into the hippocampus caused electrographic seizures in 43/52 (82.7%) animals tested; and of these animals, 14/43 (30%) had self-sustaining seizures that lasted 4–18h after the end of paraoxon infusion. SE was also induced by peripheral subcutaneous injection of diisopropyl fluorophosphate (DFP, 1.25mg/kg) or paraoxon (1.00mg/kg) to rats pretreated with atropine (2mg/kg) and 2-pralidoxime (2-PAM, 50mg/kg) 30min prior to OP injection. SE occurred in 78% paraoxon-treated animals and in 79% of DFP-treated animals. Diazepam (10mg/kg) was administered 10min and 30min after the onset of continuous EEG seizures induced by paraoxon and it terminated SE in a majority of animals at both time points. DFP-induced SE was terminated in 60% animals when diazepam was administered 10min after the onset of continuous EEG seizure activity but diazepam did not terminate SE in any animal when it was administered 30min after the onset of continuous seizures. These studies demonstrate that both paraoxon and DFP can induce SE in rats but refractoriness to diazepam is a feature of DFP induced SE.

© 2012 Elsevier B.V. All rights reserved.

Introduction

Status epilepticus (SE) is a neurological emergency characterized by recurrent or continuous self-sustaining seizures. SE can contribute to morbidity, sustained neuronal injury and contribute to mortality (Fujikawa et al., 2000; Fujikawa, 2005). Understanding mechanisms of SE in humans is a
particular challenge because patients have to be treated promptly and underlying neurological insult contributes to the pathology. Animal models have been used to understand the pathophysiology of SE and test novel therapies (Chen et al., 2007; Wasterlain et al., 1993). Current animals models of SE are based on chemical stimulation of cholinergic system by muscarinic agonists such as pilocarpine, agonists of glutamate receptors such as kainate and electrical stimulation of limbic structures (Turski et al., 1983; Honchar et al., 1983; Lothman et al., 1981, 1989; Mazarati et al., 1998b). However, there are few instances of these toxins causing human SE.

Organophosphates (OPs) are potent inhibitors of the enzyme cholinesterase, and several of these cause SE in humans and experimental animals. OPs such as parathion and malathion are used as insecticides and there are numerous reports of SE in humans induced by these insecticides (Garcia et al., 2003; Hoffmann and Papendorf, 2006). Extremely potent OPs, such as soman, sarin and VX are also used as nerve agents for chemical warfare and in civilian terrorist attacks, and they cause SE (McDonough and Shih, 1997; Morita et al., 1995; Nozaki et al., 1995). However, OP nerve agents sarin, soman, VX, etc. are restricted use chemicals and SE induced by these agents has been studied in defense labs. Therefore, acceptable surrogate OP agents must be used for civilian research to understand the mechanisms, pathophysiology and treatment of OP induced SE.

Several organophosphates are available for civilian use including diisopropyl fluorophosphate (DFP), paraoxon, chlorfenvinphos or dichlorvos. Chlorfenvinphos does not appear to cause seizures, and dichlorvos primarily causes fatalities by central respiratory depression (Bird et al., 2003; Graelwicz et al., 1989). On the other hand DFP and paraoxon models have been made to study neuropathology, drug response and calcium homeostasis neuropathology associated with OPs (Deshpande et al., 2010; Harrison et al., 2004; Kadriu et al., 2011; Li et al., 2011; Zaja-Milatovic et al., 2009; Zhu et al., 2010). However, these studies did not characterize the evolution SE with EEG. Thus the time to initiation of seizures, duration of seizures and their EEG characteristics remain unknown. Furthermore, they did not test responsiveness to benzodiazepines, such as diazepam. Benzodiazepines are the mainstay of treatment of seizures and OP induced seizures (Aldredge et al., 2001; Treiman et al., 1998; Treiman, 2007). These drugs fail in 35–45% of cases and better treatments are needed.

We characterized SE induced by paraoxon and DFP by means of EEG and behavior. We also characterized the response to treatment with benzodiazepine diazepam at various stages of SE.

Materials and methods

Surgery

All procedures on animals were performed according to a protocol approved by the institutional Animal Care and Use Committee. Adult male Sprague-Dawley rats (Taconic) weighing 175–300 g were housed with food and water ad libitum. The animals were anesthetized with ketamine (50 mg/kg) and xylazine (10 mg/kg) for implantation. For animals undergoing intrahippocampal infusion, a bipolar electrode was implanted in the left ventral hippocampus (AP −5.3, ML −4.9, DV −5.0 to dura; incisor bar −3.3). A guide cannula (Plastics One, Roanoke, VA) was implanted into the right ventral hippocampus (AP −5.8, ML +4.6, DV −2.5 from dura; incisor bar −3.3), alongside a second bipolar electrode. A teflon coated 0.01 inch diameter stainless-steel wire positioned near the frontal sinus served as a ground electrode. For animals undergoing peripheral injection studies, three supra-dural cortical electrodes were placed over the cortex. In both procedures, the electrodes were inserted into a strip connector and then secured to the skull with dental acrylic as previously described (Lothman et al., 1988).

Intrahippocampal infusion

Following a 1 week recovery, animals were connected via a cable to a data acquisition system (Stellate Systems). Paraoxon was suspended in 4% hydroxypropyl-B-cyclodextrin (Sigma, St. Louis, MO). An injection needle connected to a 0.1 mL Hamilton syringe and driven by an infusion pump (KD Scientific, Portland, OR) was back filled with paraoxon and inserted such that it extended 3 mm below the end of the cannula guide. Paraoxon was then infused at a rate of either 0.5 μL/min or 1 μL/min for a total volume of 20 μL. EEG and video monitoring began 10 min prior to paraoxon infusion and continued for 24 h after infusion completion.

EEG recordings were subsequently reviewed for the presence of seizures as well as SE. Seizures were characterized by the appearance of high frequency (>2 Hz), rhythmic spike wave discharges with amplitudes at least three times that of the baseline EEG. Animals were considered to have SE if there was continuous epileptiform activity for 30 min, during which spike frequencies were more than 2 Hz, and spike amplitude was at least 3 times the background. Behavioral seizures were scored according to the Racine scale (Racine, 1972).

Peripheral injection

EEG recording was initiated prior to administration of 2 mg/kg atropine (Sigma, St. Louis, MO) and 50 mg/kg 2 pralidoxime (2-PAM) iodide (Sigma, St. Louis, MO) intraperitoneally. After 30 min, DFP (Sigma, St. Louis, MO) or paraoxon (Chem Service, West Chester, PA) was injected subcutaneously (SC). In some experiments animals were given 10 mg/kg diazepam 10 min or 30 min after onset of continuous SE activity. A non-diazepam injected group served as controls. 2-PAM and atropine were both dissolved in solution within 1 h of injection. DFP and paraoxon were both mixed into cold saline immediately prior to injection. Animals were monitored via EEG and video for 24 h following organophosphate injection.

Epileptiform activity was monitored and defined as follows. Seizures were defined as the appearance of high frequency (>2 Hz), rhythmic spike wave discharges with amplitudes at least 3 times that of the baseline EEG. The criterion for the onset of SE was the occurrence of continuous seizure activity for 10 min, during which spike frequencies do not drop below 2 Hz. The end of SE was characterized by non-uniform spike frequencies that remained lower than

Please cite this article in press as: Todorovic, M.S., et al., Characterization of status epilepticus induced by two organophosphates in rats. Epilepsy Res. (2012), http://dx.doi.org/10.1016/j.eplepsyres.2012.04.014
Characterization of status epilepticus induced by two organophosphates in rats

1 Hz. EEG data was polled every 10 min after the onset of SE to determine SE termination during a 5 h interval after SE began.

Immunohistochemistry for Fluorojade and NeuN

The procedures of tissue preparation were described in detail previously (Sun et al., 2004, 2007). Briefly, animals were anesthetized with an overdose of pentobarbital sodium and perfused through the ascending aorta with 50–100 mL 0.9% NaCl followed by 350–450 mL 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). Brains were removed and post-fixed in the same fixative for 2 h at 4 °C. Brains were frozen by immersion in −70 °C isopentane. Coronal sections from the anterior block were cut at 40 μm to collect dorsal sections.

In order to stain for NeuN and Fluoro-Jade B, immunohistochemical technique was modified as described previously (Jakab and Bowyer, 2002; Sun et al., 2007). Sections were incubated for 48 h at 4 °C in the anti-NeuN primary antibody mouse anti-NeuN (diluted at 1:200, Millipore), followed by incubation with a secondary antibody conjugated to Alexa Fluor 594 (5 μg/mL; molecular probes) for 60 min at room temperature. Sections were wet-mounted on glass slides, air-dried at 50 °C for 15 min, and stained with Fluoro-Jade B. The slides were immersed in distilled water for 1 min and oxidized in a 0.006% solution of KMnO₄ for 5 min. After rinsing in distilled water twice for 30 s, sections were stained for 10 min in a 0.0003% solution of Fluoro-Jade B in 0.1% acetic acid. Finally, sections were rinsed in distilled water, air-dried, and cleared with xylene.

Results

Seizures and SE caused by paraoxon infusion

Infusion of 100 nmol paraoxon into the hippocampus caused electrographic seizures in 2/9 (22.2%) animals tested. None of the animals had seizures lasting beyond the end of infusion and 2 animals displayed intermittent seizures during paraoxon infusion which were not self-sustaining. No change in baseline EEG, and no behavioral seizures occurred in the remaining 7 animals (Fig. 1A).
Infusion of 200 nmol paraaxon into the hippocampus caused electrographic seizures in 43/52 (82.7%) animals tested. In 32 animals seizures lasted beyond the end of infusion (61.5%) and 11 animals displayed intermittent seizures during paraaxon infusion which were not self-sustaining, and did not continue through the end of infusion (Fig. 1B). There was no change in baseline EEG in remaining 9 animals. These animals did not display behavioral characteristics indicative of seizure activity.

Among animals with seizures lasting beyond paraaxon infusion, two distinct types of electrographic seizure activity occurred: intermittent and continuous seizures. Intermittent seizures, which occurred in 18 animals, frequently appeared first in the paraaxon infusion site in the right hippocampus, and then spread to the contra-lateral (left) hippocampus (Fig. 1C). Seizures consisted of rhythmic high frequency spike wave discharges that evolved in frequency and amplitude. There were brief periods of suppression of activity between seizures.

Continuous seizures occurred in 14 animals following paraaxon infusion, and these consisted of sustained bilateral discharges of repetitive spike patterns evolving over time (Fig. 1D). Continuous electrographic seizures started at approximately 15 min post infusion, and persisted for 4–18 h. These prolonged self-sustaining seizures constituted SE. Paraaxon-induced SE was further confirmed upon observation of behavioral seizures. Animals experiencing SE exhibited freezing, staring, blinking, and hyper-exploratory movement, as well as wet-dog shaking movements for 4–18 h.

Infusion of 300 nmol paraaxon into the hippocampus caused electrographic seizures in 10/11 (90.9%) of animals tested. The seizures in all of these animals continued beyond the end of infusion in form of SE with behavioral seizures ranging from 2 to 5 on the Racine scale. The majority of animals in SE (7) died of respiratory arrest, several of these exhibited symptoms of peripheral cholinergic stimulation, including muscle contractions and fasciculations. The remaining 3 animals survived, exhibiting seizures that lasted long beyond the end of infusion. Only 1 animal receiving paraaxon 300 nM infusion displayed neither behavioral characteristics indicative of seizure activity, nor EEG seizure activity (9.0%).

The location of the cannula was confirmed by sectioning the hippocampus. In many animals, the cannula and electrode tracts were localized by sectioning the brain in the plane of the electrode. In other animals, immunohistochemistry for neuronal stain Neun and staining for neuro-degeneration dye Fluorojade J, was performed 3 days after SE caused by infusion of paraaxon. The site of infusion was at the ventricular border the CA3 layer of the hippocampus (Fig. 2A). Fluorojade positive neurons were present in CA1 and CA3 regions and of the hippocampus and the subiculum (Fig. 2B and C). Occasional Fluorojade positive cells were present in the hilus.

Peripheral injection of paraaxon

Preliminary experiments were performed to optimize the model. Paraaxon (0.35 mg/kg) administered by the intraperitoneal route caused widespread muscle contractions, fasciculations, rare tonic convulsions, respiratory arrest and death in all four animals tested. Pretreatment of animals with scopolamine (4 mg/kg) protected against peripheral and systemic effects of paraaxon (n = 4 animals). Subsequently, based on the work of Deshpande et al. (2010) oxime reactivator 2-PAM and muscarinic antagonist atropine was combined with peripheral paraaxon administration. In preliminary experiments we tested other doses of these agents and confirmed that most optimal doses were used.

Paraaxon (1 mg/kg) was administered SC to 23 animals 30 min after pre-treatment with 2 mg/kg atropine and 50 mg/kg 2-PAM and prolonged seizures were observed. SE occurred in 17 of the 23 animals (74%) with animals displaying a combination of chewing, head-bobbing, single and bilateral limb clonus and rearing, leading to constant full body tremors. In 3 animals there was no effect from the OP injection and 3 animals died from respiratory arrest without any seizures.

Figure 2 Images of hippocampal sections from animals that had prolonged seizures following intra-hippocampal paraaxon administration, which were stained for neuronal injury stain Fluoro-Jade B (green) and neuronal marker NeuN (red). (A) A low magnification image of the hippocampus showing drug infusion site close to the CA3 region of the hippocampus. (B) A section of the hippocampus displaying green Fluorojade positive CA3, CA1 pyramidal neurons and neurons in the subiculum. (C) A higher magnification image of Fluorojade positive neurons in the CA3 region of the hippocampus.
Characterization of status epilepticus induced by two organophosphates in rats

Figure 3 EEG recordings from hippocampi of animals given paraaxon subcutaneously after injection of atropine and 2-PAM. Left panel shows samples of recording from an animal in SE. Note continuous electrographic seizures for 4 h with evolving morphology and frequency. Middle panel (10 min treatment) shows EEG from an animal treated with diazepam 10 min after the onset of continuous electrographic seizures. Seizures were terminated promptly and animals stayed seizure free. Right panel (30 min treatment) shows onset of continuous seizures and their termination when diazepam was administered 30 min after the onset of continuous electrographic seizures.

In these animals electrographic seizures either started as continuous long lasting seizures or evolved from discrete seizures to continuous seizures (Fig. 3, panel control). The mean time for the onset of first electrographic seizure in animals treated with paraaxon was 6 min 4 s ± 42 s. The first seizure was also the onset or continuous EEG activity in 29% (5/17) of the animals studied. In 7 of the 18 animals, a discrete electrographic seizure lasting 30–60 s was the first electrographic seizure, followed by a prolonged period of suppression. This was followed by the onset of continuous electrographic seizure activity. The remaining 35% (6/17) progressed from discrete seizure continuous EEG with a period of brief suppression (10–30 s) between 30 and 60 s seizure bursts. The mean time for onset of continuous electrographic seizure activity after paraaxon injection was 10 min 3 s ± 1 min. At the onset of continuous EEG seizure activity, electrographic spiking occurred at a rate of 2–4 Hz, and frequency increased to 4–8 Hz within 10 min of onset.

One group of animals (n = 6) was left untreated after the onset of continuous seizures. One animal died 2 h 45 min

Figure 4 Time-course of SE induced by peripheral paraaxon injection in three groups: no further treatment, diazepam given 10 min after the onset of continuous seizures (blue line) or 30 min after the onset of continuous seizures (red line). In this study, 23 animals were studied, 17 developed continuous seizures, 6 were left untreated (control), 6 received diazepam 10 min after the onset of continuous seizures, and 5 received diazepam 30 min after the onset of continuous electrographic seizures. Diazepam effectively terminated SE in similar proportion of animals regardless of time of treatment (inset bar charts).

Please cite this article in press as: Todorovic, M.S., et al., Characterization of status epilepticus induced by two organophosphates in rats. Epilepsy Res. (2012), http://dx.doi.org/10.1016/j.eplepsyres.2012.04.014
after the onset of continuous seizures. The mean SE duration was 10 h 15 min ± 1 h 42 min in the remaining five animals, ranging from 7 to 17 h. The SE ended with the frequency of epileptiform activity falling below 1 Hz in all 5 of the animals within 18 h of onset.

A group of animals (n = 6) in paraoxon induced SE was treated with 10 mg/kg diazepam 10 min after the onset of continuous seizure activity (Fig. 3, middle panel). Diazepam terminated continuous seizures at this time point (Fig. 4, middle panel). In two of these animals, SE was terminated within the first 10 min of treatment (Fig. 4). In these animals, spike frequency dropped from 4—6 Hz to 0 and baseline EEG was restored. Seizures did not recur. In two animals SE ended 90—150 min after onset (Fig. 4). The spike frequency gradually dropped from 4 to 0 Hz with poly-spikes to single spikes with a frequency of less than 1 Hz (Fig. 3). All animals were seizure free by 7 h. There was no mortality within 24 h.

Animals (n = 5) treated with 10 mg/kg of diazepam 30 min after continuous EEG activity also responded to treatment, with 60% becoming seizure free within 10 min of treatment (Fig. 3, right panel). Only one of the five animals was still having seizures 70 min after continuous seizures began, and continuous seizures lasted for 12 h (Fig. 4). No animal in this group died during the 24 h period.

DFP

Preliminary experiments were performed to optimize DFP model of SE. Rats that were pretreated with 1 mg/kg atropine 30 min and then given 1.25 mg/kg DFP SC (n = 4) all died from respiratory arrest, whereas 50% of rats pretreated with 1 mg/kg atropine and 25 mg/kg 2-PAM (n = 4) survived and exhibited prolonged seizure activity. Higher DFP dose of 1.5 mg/kg combined with a pretreatment of larger doses of atropine (2 mg/kg) and 2-PAM (50 mg/kg) caused death in 2 animals. These observations and previously published data suggested that 1.25 mg/kg DFP SC in cold saline with a pretreatment of 2 mg/kg atropine and 50 mg/kg 2-PAM were likely to produce SE in animals.

This combination was used to study DFP induced SE, and it caused continuous seizure activity and SE in 15 out of 19 (79%) of the animals studied, with the remainder dying of respiratory arrest. Animals in SE group exhibited a combination of chewing, head-bobbing, single and bi-limb clonus and rearing, leading to constant full body tremors and SE. The mean time to first EEG seizure in this group was 21 min 43 s ± 3 min 25 s. In 7 of 15 animals, the first electrographic seizure was also the onset of continuous seizure activity. In 7 other animals, seizure progression went from periods of discrete seizures, separated by normal EEG followed by seizures lasting 10—30 s with periods of suppression, after which seizures merged into continuous epileptiform activity. In one animal, a brief discrete seizure was followed by continuous seizure activity. Continuous epileptiform activity started at a frequency of 2 Hz and accelerated to 4—6 Hz within 10 min. The latency to the development of continuous electrographic activity was 24 min 41 s ± 3 min 48 s after DFP injection.

In 5 animals left untreated after the DFP induced SE, 3 survived to 5 h after continuous seizure onset and the remaining died. Seizures stopped in one animal 4 h 5 h after the onset of continuous seizure activity, while the other two displayed electrographic seizures which lasted for more than 8 h.

DFP induced seizures were much more resistant to diazepam treatment when given at 30 min than when

Please cite this article in press as: Todorovic, M.S., et al., Characterization of status epilepticus induced by two organophosphates in rats. Epilepsy Res. (2012), http://dx.doi.org/10.1016/j.eplepsyres.2012.04.014
Characterization of status epilepticus induced by two organophosphates in rats

treated at 10 min (Figs. 5 and 6). Three out of the five rats (60%) given diazepam after 10 min after continuous EEG activity demonstrated rapid drop in spike wave discharge frequency and amplitude with return of baseline EEG; the remaining two out of five animals (40%) continued to have seizures for more than 5 h. No animal in this group died within the 24 h after SE onset.

Diazepam given 30 min after the start of continuous EEG activity did not stop SE within 60 and 120 min after onset of SE in any of the 5 animals tested (Figs. 5 and 6). First termination of SE in these animals first occurred 2.5 h after treatment injection, with 60% (3/5) of rats coming out of SE within the first 5 h of diazepam injection (Fig. 6). In addition, while treatment at 30 min did eventually terminate SE, this termination was marked by appearance arrhythmic spikes and the baseline EEG was not restored in any animal.

Discussion

We have characterized SE induced by two different organophosphates, intrahippocampal infusion of paroxon and peripheral injection of DFP or paraxon following treatment of 2-PAM and atropine. Peripheral injection of OP agents has a higher incidence of producing self-sustaining seizures, while intrahippocampal infusion has the benefit of not requiring pretreatment with 2-PAM and atropine.

Direct injection of 200 nmol paroxon into the hippocampus caused self-sustaining seizures without killing animals due to peripheral poisoning, but animals given 300 nmol paroxon began to display peripheral OP poisoning effects and the majority of these animals did not survive. The mechanism of these peripheral effects is unknown, but they closely resembled those seen in preliminary trials when paraxon was given IP without any pretreatment. Compared to peripheral dosing of paroxon, intrahippocampal injections produced seizures less likely to become self-sustaining SE. Furthermore this model is cumbersome requiring cannula implantation and slow drug infusion. DFP was not tested using this method because of inconsistent development SE using intra-hippocampal infusion of paraxon.

The volume of paroxon infusion into the hippocampus was somewhat large (20 μL). However there are previous reports where 20 μL drug volume was infused into the hippocampus (Modol et al., 2011). Another study found that intracranial pressure was not increased by 10 μL infusion into the hippocampus (Drabek et al., 2011). Finally, in a previously published study we have infused up to 40 μL of saline into the hippocampus, and this did not cause seizures (Williamson et al., 2004).

In the case of both DFP and paroxon given peripherally, both 2-PAM and atropine were required to prevent mortality due to respiratory arrest. A 30 min pretreatment was decided on instead of treatment immediately after OP injection in order to minimize the effects on seizure activity of these agents. This allowed us to better understand the effects of diazepam given at various time points during SE. 2-PAM reactivates the enzyme cholinesterase, which does not penetrate the blood brain barrier. OPs inhibit the enzyme choline acetyl-transferase by acting as substrates for the enzyme and causing its phosphorylation rather than acetylation caused by natural substrate acetylcholine. The phosphorylated enzyme is stable and can no longer deacetylate acetylcholine. Oximes such as PAM dephosphorylate the enzyme and reaktivate it (Jokanovic and Stojiljkovic, 2006).

The methods for peripheral OP poisoning described above more accurately mimic those used for high dose pilocarpine experiments, allowing comparison with these models. The onset of continuous EEG seizure activity, which corresponds to EEG stage III as described by Treiman et al. (1990), was found to be a better marker of treatment refractoriness than behavioral seizures in the lithium-pilocarpine model of SE (Wang et al., 2009). The time of treatment was based on the onset of continuous seizure activity, because this most closely correlates with the time at which SE becomes refractory to diazepam.

Please cite this article in press as: Todorovic, M.S., et al., Characterization of status epilepticus induced by two organophosphates in rats. Epilepsy Res. (2012), http://dx.doi.org/10.1016/j.eplepsres.2012.04.014
Both DFP and paraaxon are OPs, which increase concentration of acetylcholine levels in the brain rapidly by inhibiting its breakdown by the enzyme cholinesterase (Shih and McDonough, 1997). This elevation in acetylcholine levels is likely to activate muscarinic and nicotinic receptors in the hippocampus (Harrison et al., 2004; Kozhemyakin et al., 2010). It was recently suggested that muscarinic receptor activation by paraaxon causes increased release of glutamate from presynaptic terminals (Kozhemyakin et al., 2010). In vitro models of recurrent bursting suggest that increased presynaptic release (frequency of EPSC) can contribute to the development of neuronal synchrony and seizures (Mangan and Kapur, 2004; Traub and Dingledine, 1990).

DFP-induced SE became resistant to treatment with diazepam as SE progressed. This phenomenon has been described previously in SE induced by electrical stimulation, pilocarpine, lithium-pilocarpine and soman (Jones et al., 2002; Kapur and Macdonald, 1997; Mazarati et al., 1998a; Shih et al., 1999). However, the paraaxon model for SE does not exhibit the same phenomenon, making it less suitable as a surrogate for military OP poisoning studies. The current recommendation of 2-PAM, atropine and diazepam as a treatment for OP poisoning is incomplete because of the time dependent nature of its treatment. These studies demonstrate the importance of finding novel methods for dealing with and treating victims of OP poisoning.

Previous studies of seizures caused by organophosphate cholinesterase inhibitors have largely been carried out in defense labs using agents such as sarin VX and other nerve agents (McDonough and Shih, 1997). However, organophosphate poisoning needs to be studied in civilian research laboratories because organophosphate pesticide poisoning afflicts civilians and civilian populations can be targets of nerve agent attacks. A World Health Organization report suggested that there were more than 2 million cases of accidental or intentional organophosphate poisoning in the world each year (Jeyaratnam, 1990). Development of DFP and paraaxon models can lead to better treatments for OP poisoning.

Acknowledgments

The research is supported by the CounterACT Program, National Institutes of Health Office of the Director, and the National Institute Neurological Disorders and Stroke, Grant Numbers NIH-NINDS U01 NS58204 and RO1 NS040337 and also by the Department of Defense grant PR093963.

References

Fujikawa, D.G., 2005. Prolonged seizures and cellular injury: understanding the connection. Epilepsy Behav. 7 (Suppl. 3), S3–S11.

Please cite this article in press as: Todorovic, M.S., et al., Characterization of status epilepticus induced by two organophosphates in rats. Epilepsy Res. (2012), http://dx.doi.org/10.1016/j.eplepsyres.2012.04.014
Characterization of status epilepticus induced by two organophosphates in rats

Please cite this article in press as: Todorovic, M.S., et al., Characterization of status epilepticus induced by two organophosphates in rats. Epilepsy Res. (2012), http://dx.doi.org/10.1016/j.eplepsyres.2012.04.014