Reputations and Games

Sampath Kannan
Department of Computer and Information Science
University of Pennsylvania
June 10 2010
ONR MURI Meeting
Reputations and Games

University of Pennsylvania, Computer and Information Science, 3451 Walnut St, Philadelphia, PA, 19104

Approved for public release; distribution unlimited

Same as Report (SAR)

9
Reputation – A game-theoretic view

• Need repeated (pair-wise) interactions between agents = repeated games

• What does an agent do in a game? She plays a (mixed) strategy ... which may change over time, depending on opponent, etc.

• Her “reputation” should be a function of this time-varying mixed strategy.
Repeated vs One-Shot Game: Example

• Prisoner’s Dilemma

<table>
<thead>
<tr>
<th></th>
<th>Defect</th>
<th>Cooperate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defect</td>
<td>-6</td>
<td>-1</td>
</tr>
<tr>
<td>Cooperate</td>
<td>-9</td>
<td>-2</td>
</tr>
</tbody>
</table>

Payoffs to row player; Symmetrically to column player

• Game-theorists talk about “type” of player – defecting type or cooperating type
• Reputation: inferred type of a player based on repeated observation
To study value of reputation manager...

- Consider a 2-player game:
- Assume player Alice plays Bob repeatedly
- New twist: A does not know the payoff matrix
- Instead she must balance exploration and exploitation to minimize regret
- Exploration: A seeks to learn new matrix entries
- Exploitation: A seeks to profit from known entries
- Regret: A’s lost payoff compared to the situation where she knows the matrix to start with
If A knew B’s type …

- In zero-sum games she can identify her optimal strategies and learn payoffs for them with very little regret - $O(n)$ regret where n is the number of strategies available to her. (This is best possible!)
- If instead she doesn’t know B’s type, best we can do currently is $O(n^2)$ regret. Probably can’t be beaten in general.
- Thus in this model, a reputation manager makes a big difference!
More ways RMs can help

- Use player’s behavior to estimate distribution of their types and their utilities for various outcomes.
- If we assume a Bayesian prior on types, then we can design mechanisms [Z. Huang and Bei] that
 - Cause players to tell the truth about their types
 - Produce approximately optimal social welfare in some important resource allocation problems
- Reputation managers can give us these Bayesian priors
More on Zhiyi-Bei result

• Mechanism design in Bayesian model for many optimization problems:
 – Combinatorial resource allocation
 – Submodular maximization

• These problems are known to be difficult to solve even approximately in worst-case model

• But in the Bayesian model (realized by having a reputation manager) there are good approximate solutions
Future Work

• Explore other possible definitions of reputation in the game-theoretic context
 – Altruism: Each player has an altruism parameter a that corresponds to their reputation
 – Player gets payoff which is their own + $a \times (\text{everybody else’s})$
 – Player’s reputation is a and must be discovered

• In games with multiple equilibria: reputation is a way of describing which equilibrium a player prefers.
Conclusions

- Game-theoretic frameworks can be used in two stages of our Trust Management infrastructure:
 - Defining and computing reputations
 - Making decisions based on these reputations
- While problems are still challenging, intractable problems assuming a worst-case adversary, could become tractable in this game-theoretic setting
- To use this idea one needs a more complete set of models for adversaries seeking to optimize their own objective functions