LONG-TERM GOALS

Our long term goal is a quantitative, mechanistic and predictive understanding of the dynamics of bubbles and bubble populations in marine sediments. We believe that this information can be used to improve and test acoustic backscatter models for sediments and to better understand the ebullitive flux of methane, an important “greenhouse gas”, to the atmosphere.

OBJECTIVES

The overall objective of our work is to understand bubble growth and rise in natural marine sediments. In the first phase of our study (to mid-2003) we demonstrated that bubbles grow and rise in sediments by the mechanism of fracture. The second (current) phase has aimed to develop methods to measure the mechanical parameters that control the fracture of soft sediment; these parameters, i.e., Young’s modulus, E, the critical stress intensity factor, K1c, Poisson’s ratio, ν, etc., are not routine measurements and geo-scientists have not developed means for their in situ measurement. These parameters are needed to solve our evolving model of bubble growth.

APPROACH

1) Mechanical Properties. In Linear Elastic Fracture Mechanics (LEFM), the geotechnical properties that fully determine fracture strength and the size and shape of resulting cracks are the critical stress intensity factor, K1c, Young’s modulus, E, and the Poisson ratio, ν. In laboratory studies we have determined the magnitudes of K1c and E for some samples collected at our study site in Cole Harbor, Nova Scotia, and have reported these in Johnson et al. (2002). Unfortunately, our laboratory methods for determining K1C and E do not provide sufficient detail to understand the variability of these properties on desired length scales. In addition, we are concerned about the effect of sediment sampling on the physical properties that mediate bubble growth and rise. Consequently we have instituted a field program that is focused on measuring the relevant physical properties in situ. To do this we have developed a sediment instrument package for use in the near shore and are fitting this
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
30 SEP 2005

2. REPORT TYPE

3. DATES COVERED
00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
The Mechanics of Bubble Growth and Rise in Sediments

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Dalhousie University, Department of Oceanography, Halifax, Nova Scotia B3H 4J1, Canada, ,

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
code 1 only

14. ABSTRACT
Our long term goal is a quantitative, mechanistic and predictive understanding of the dynamics of bubbles and bubble populations in marine sediments. We believe that this information can be used to improve and test acoustic backscatter models for sediments and to better understand the ebullitive flux of methane, an important greenhouse gas?, to the atmosphere.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES 6

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
package with probes for measuring fracture strength (the critical stress intensity factor, K_{IC}),
temperature, porosity (through measuring conductivity), Young’s modulus, and methane partial
pressure. Where possible we are ground-truthing the field measurements with laboratory measurements
on samples collected from our field sites. This ground-truthing is especially important for
demonstrating the accuracy of new probe designs such as our in situ K_{IC} and methane probes. This
work is being directed by Bruce Johnson, with help from our two new PhD students, Mark Barry and
Chris Algar.

2) Bubble growth. Because we were not able to view (visually) bubble formation in sediments during
gas injection, we have been unable to confirm that LEFM is the appropriate model for bubble growth.
Consequently we have formed a collaboration with researchers at NRL that allows us to use their high-
resolution CT scanner. This has meant that in order to inject gas into sediments for CT scanner
imaging we needed to build an automatic injector that fits the NRL CT scanner. This injector provides
a highly controlled gas injection rate and at the same time measures the pressure in the bubble
with micro-bar precision. Given this injector, we will take CT scans of bubbles at various stages of
growth in samples of muddy sediment. These samples will be chosen to represent a broad range of
properties that mediate bubble growth (E, v, K_{IC}). From these CT scan images we will measure
bubble aspect ratio and bubble volume, and then, from the aspect ratio, the pressure/ bubble volume
record and the measured physical properties of the sediment, we can determine if LEFM applies. The
CT work is being directed by Bernard Boudreau, with the help of PhD students Mark Barry and Chris
Algar, and the collaboration of Allen Reed and Yoko Furukawa at NRL.

WORK COMPLETED

Ground-truthing of field measurements showed that the K_{IC} probe works well in sediments with low
sand content, but with higher sand content the measurements can be as much as an order of magnitude
too high. Consequently, we have re-engineered the K_{IC} probe to provide accurate measurements in a
wider range of sediment types, e.g., ranging from muddy sediments to sediment with a high sand
content. We have also developed a novel methane probe. Both probes are now being tested and will
be incorporated into our sediment instrument package for use in the field.

We have completed a second series of CT scan measurements and are interpreting these images in
terms of model predictions.

RESULTS

1) Mechanical Properties. Laboratory measurements with the K_{IC} probe showed that results for
muddy sediments are consistent with K_{IC} values determined from bubble growth. However,
anomally high results were obtained in sandy sediments. Both theory and CAT-scan images
(Boudreau et al. 2005) indicate that bubbles that grow in sand tend to be spherical and do not grow by
fracture. Yet measurements of K_{IC} with the probe in sandy sediments were as much as an order of
magnitude higher than measurements in muds. We have re-engineered the probe to operate in an
extensional mode rather than in compression, and have obtained results for K_{IC} that are more
consistent with bubble growth behavior. For example, measurements with the extensional probe in
muddy sediments have given results for K_{IC} that range from about 2×10^{-4} to 4.5×10^{-4} MN m$^{-3/2}$ –
results that compare favorably with 2.3×10^{-4} MN m$^{-3/2}$ to 5.5×10^{-4} MN m$^{-3/2}$ reported for
sediments from the same site and from interpretation of Eckernford Bay bubble images (Johnson et
Measurements in sand give results that are about an order of magnitude lower, i.e., $2.3 \times 10^{-5} \text{ MN m}^{-3/2}$.

2) **Bubble Growth in a CT.** CT images of bubbles grown in the NRL CT scanner have provided us with a broader base of information on bubble growth mechanics which in turn has led to a better understanding of the meaning of the record of bubble internal pressure. These images have also provided evidence for how growing bubbles respond when they encounter pre-existing fractures and solid objects such as shell fragments (figure 1).

Figure 1: 3D reconstructions of CT-scans of gas bubbles injected into sediments. Gold color represents gas, Red is the capillary tip and green represents shells or higher density regions. Bubble volumes and aspect ratios are a: 878 mm3 and 0.028, respectively, b: 2,719 mm3 and 0.032 and c: 501 mm3 and 0.038. [Three sets of images are shown (a-c). Each set shows a front view and a side view. In all three sets the front view shows an irregular shaped gas inclusion and a side view in which the bubble is much thinner. Images a and b show bubbles that have grown around shell fragments and c shows a bubble that has grown without any solid obstruction.]
Interpretation of CT scan results has shown that bubble aspect ratios follow LEFM predictions. In LEFM theory bubble aspect ratio is determined by the sediment physical properties K_{lc}, E, and ν. Measurement of these properties for a sediment sample for which CT scans were used to image a growing bubble indicates that the bubble aspect ratios follow predictions of LEFM (figure 2).

Figure 2: CT scan measurements of bubble aspect ratios during bubble growth compared to predictions based on LEFM. Red and blue lines represent error bars for measurements on two different bubbles. Solid line is predicted aspect ratio from LEFM. [The results of CT scan measurements are well described by the curve of predicted aspect ratios.]

IMPACT/APPLICATIONS

Our results may prove to me highly significant to acoustic seafloor imaging and estimates of seafloor stability.

RELATED PROJECTS

In collaboration with Peter Jumars (Univ. Maine), and his PhD student Kelley Dorgan, we have been applying the results of our bubble-mechanics work to the problem of the burrowing of infauna. This related project is groundbreaking in that it has identified a new and efficient mode of movement for burrowing organisms; one that takes far less energy that has been supposed in the past.
We have 1 published paper in this reporting period: