Bio-Response Operational Testing & Evaluation (BOTE) Project

November 16, 2011

Chris Russell
Program Manager
Chemical & Biological Defense Division
Science & Technology Directorate
1. REPORT DATE
16 NOV 2011

2. REPORT TYPE
Final

3. DATES COVERED
01 Oct 2011 - 16 Nov 2011

4. TITLE AND SUBTITLE
Wide Area Recovery and Resiliency Program (WARRP) Presentation - Bio-Response Operational Test and Evaluation (BOTE) Project

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
McConkey, Katrina

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Cubic Corporation 2280 Historic Decatur Road, Suite 200 San Diego, CA 92106

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Lori Miller Department of Homeland Security Science and Technology Directorate Washington, DC 20538

10. SPONSOR/MONITOR’S ACRONYM(S)
DHS

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
3.2.2

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
This presentation covered an overview of the Bio-Response Operational Test and Evaluation (BOTE) project, its objectives, the technical approach, and its impact.

15. SUBJECT TERMS
WARRP, BOTE

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
11

19a. NAME OF RESPONSIBLE PERSON
Outline

- Program Overview
- Objectives
- Technical Approach
 - Phase I
 - Phase II
- Impact & Transition
- Summary
Overview

- **Goal:** Execute biological incident response roles and responsibilities from public health and law enforcement response through environmental (remediation) response, in an operational setting

- **BOTE project is an interagency effort involving six federal agencies:**
 - Environmental Protection Agency (EPA)
 - Department of Homeland Security (DHS)
 - Department of Energy (DOE)
 - Department of Defense (DoD)
 - Federal Bureau of Investigation (FBI)
 - Centers for Disease Control and Prevention (CDC)

- **BOTE is jointly managed by the EPA and DHS, and divided into two distinct phases:**
 - Phase 1: Field-level decontamination assessment (Apr-May, 2011)
 - Phase 2: Interagency biological threat exercise (Sep 2011)
Objective 1: Decontamination
Conduct field-level studies to evaluate the performance of three select decontamination methods and associated protocols

Objective 2: Sampling
Develop, execute, & evaluate a sampling plan designed to measure relative decontamination efficacies of three decontamination methods

Objective 3: Cost Analysis
Conduct an cost analysis of three decontamination methods based on Log Kill results, measurable costs, and “downtime” of structure

Objective 4: Exposure Assessment
Determine the potential exposures associated with re-entry into a building that has been contaminated with surrogate Ba spores and subsequently decontaminated
Phase I Objectives:

- Conduct and evaluate field-level facility remediation studies of various decontamination, and disposal procedures
- Evaluate the effectiveness of waste/wash water collection, decontamination, and disposal procedures
- Determine the total cost of applying the selected decontamination technology or remediation method/strategy (i.e., including waste handling and treatment)
- Identify any damage to the building or materials/objects that are located inside the building arising from the use of the decontamination technologies

Phase II Objectives:

- Implement the Incident Command System (ICS) structure, processes, and communications between Federal, State, and local partners
- Assess field data management systems and data sharing capabilities
- Exercise field sampling and evidence collection procedures
- Exercise decontamination and waste management processes
- Document all costs associated with an interagency environmental response to an anthrax event in one building
Idaho National Laboratory Facility

PBF-632 at Idaho National Laboratory
The BOTE decontamination tests involved three rounds (or test and evaluation iterations) where simulant levels, room configurations, and sampling procedures are virtually the same inside the test facility. The ground floor had high contamination and the top floor low contamination.

A variety of decontamination technologies were employed:
- Off the shelf technologies (e.g., amended bleach)
- Less availability, requiring lead time and expertise (e.g., ClorDisys-CLO2)
- Requires significant lead time and expertise (e.g., VHP)

Post-demonstration analysis included:
- Efficacy of decontamination methods
- Documentation of operational parameters
 - Time requirements
 - Labor hours
 - Waste generation
 - Adverse impacts on the facility
- Economic Analysis
 - Capture data from studies
 - Assessment of cost of application of technology
 - Estimator for future events
- Risk Analysis
Phase II: Interagency Response

Bio-Incident Response – Covert release followed by an interagency response that includes evidence collection, analysis and facility remediation:

- Conducted September 2011
- Covert Release in Facility
- Coordinated Interagency Response
- Determination of decon methods
- Environmental Clearance Committee
BOTE provides:

- Information on the efficacy of several decontamination methods
- Information on the time requirements, labor requirements, waste generated, and adverse impacts on the facility
- Information that can be used to estimate costs associated with a decontamination approach
- Data that can be used to help guide decision making for future events
Summary

- **BOTE provides information on:**
 - Efficacy of several decontamination methods
 - Time requirements, labor requirements, waste generated, and adverse impacts on the facility
 - Data management systems and information sharing capabilities
 - Sampling, decontamination, and waste management processes
 - Cost estimates associated with a decontamination approach
 - Data that can be used to help guide decision making for future events