Tactical Airlift Division

Combat Ready, Anytime, Anywhere

C-130 Corrosion Prevention and Control Program

Mr. Dave Peth
C-130 Corrosion Engineer
Tactical Airlift Division

People First...Mission Always
C-130 Corrosion Prevention and Control Program

Warner Robins Air Logistics Center, WR-ALC/GRBEB Tactical Airlift Division, Robins AFB, GA, 31098

Presented at the 2011 Air Force Corrosion Conference held 16-18 Aug 2011 at Robins AFB, GA.
C-130 Fleet Overview

Dates of Air Force Deployment

<table>
<thead>
<tr>
<th>Year</th>
<th>Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1956</td>
<td>C-130A</td>
</tr>
<tr>
<td>1959</td>
<td>C-130B</td>
</tr>
<tr>
<td>1962</td>
<td>C-130E</td>
</tr>
<tr>
<td>1974</td>
<td>C-130H</td>
</tr>
<tr>
<td>1999</td>
<td>C-130J</td>
</tr>
</tbody>
</table>

- Over 5 decades of service
- Longest continually running Aircraft production line
- Wide range of operational missions worldwide
- Remains the prime transport for drops into hostile areas
C-130 Fleet Overview

- **C-130 Models**
 - C-130E
 - C-130H/H1
 - C-130H2/H2.5
 - C-130H3
 - C-130J

- **Special Mission Variants**
 - **SOF Variants**
 - AC-130H
 - AC-130U
 - EC-130J
 - MC-130E
 - MC-130H
 - MC-130P
 - MC-130W
 - **CSAR**
 - HC-130N
 - HC-130P
 - MC-130P
 - **Special Mission**
 - EC-130H
 - LC-130H
 - WC-130H
 - WC-130J
 - NC-130H
 - TC-130H
Why the Concern with Corrosion?

Corrosion Impacts

▪ Safety
 • Oct 1993 – Aug 2010
 – 2 Class C mishaps
 o Reportable damage between $10,000 and $200,000
 – 8 Class E events
 o An aircraft event that does not meet reportable mishap criteria

▪ Readiness/Mission Capability

▪ Financial
 • The C-130 transport aircraft has the highest combined total corrosion cost of any DoD aircraft/missile system
Table II-4. Aviation/Missiles with Highest Average per Item and Total Corrosion Costs ($ in millions)

<table>
<thead>
<tr>
<th>Priority</th>
<th>Nomenclature</th>
<th>Average corrosion cost per item</th>
<th>Rank in top 20: Corrosion cost per item</th>
<th>Total corrosion cost</th>
<th>Rank in top 20: Total corrosion cost</th>
<th>Combined rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C-130</td>
<td>$1.3</td>
<td>8</td>
<td>$718</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>C-5</td>
<td>$4.0</td>
<td>2</td>
<td>$431</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>KC-135</td>
<td>$1.2</td>
<td>9</td>
<td>$451</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>FA-18</td>
<td>$0.9</td>
<td>13</td>
<td>$601</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>B-1</td>
<td>$3.7</td>
<td>3</td>
<td>$251</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>EA-6</td>
<td>$4.2</td>
<td>1</td>
<td>$193</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>B-52</td>
<td>$2.6</td>
<td>6</td>
<td>$240</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>F-15</td>
<td>$0.8</td>
<td>17</td>
<td>$444</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>CH-47</td>
<td>$0.9</td>
<td>14</td>
<td>$352</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>C-17</td>
<td>$0.8</td>
<td>16</td>
<td>$137</td>
<td>19</td>
<td>35</td>
</tr>
</tbody>
</table>

DoD Annual Cost of Corrosion, DoD Report July 2009
LMI accomplished corrosion cost and maintenance data analysis for FYs 2006 – 2010 on Air Force C-130 fleet

Results:
- The average annual corrosion-related field-level maintenance cost decreased by $76M over the period
- The annual depot-level corrosion costs increased over that same period by approximately $111M
- Estimated average annual cost of corrosion - $610M
- Ranged from a low of $599M in FY2006 to a high of $634M in FY2010
- **This is roughly an average of 37% of all C-130 maintenance costs during the period**
C-130 Field & Depot Corrosion Costs for FY 2006 - FY 2010

Figure 2-2. C-130 Field- and Depot-Level Corrosion Costs for FY2006–FY2010

<table>
<thead>
<tr>
<th>Year</th>
<th>FLM</th>
<th>DLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY2006</td>
<td>$348</td>
<td>$251</td>
</tr>
<tr>
<td>FY2007</td>
<td>$336</td>
<td>$279</td>
</tr>
<tr>
<td>FY2008</td>
<td>$279</td>
<td>$324</td>
</tr>
<tr>
<td>FY2009</td>
<td>$262</td>
<td>$340</td>
</tr>
<tr>
<td>FY2010</td>
<td>$272</td>
<td>$362</td>
</tr>
</tbody>
</table>

LMI Cost of Corrosion for US Air Force C-130 Aircraft, Dec 2010
Figure 2-2. C-130 Field- and Depot-Level Corrosion Costs for FY2006–FY2010

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>FLM Costs</th>
<th>DLM Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY2006</td>
<td>$348</td>
<td>$251</td>
</tr>
<tr>
<td>FY2007</td>
<td>$336</td>
<td>$279</td>
</tr>
<tr>
<td>FY2008</td>
<td>$279</td>
<td>$324</td>
</tr>
<tr>
<td>FY2009</td>
<td>$262</td>
<td>$340</td>
</tr>
<tr>
<td>FY2010</td>
<td>$272</td>
<td>$362</td>
</tr>
</tbody>
</table>
Figure 2-1. C-130 Corrosion and Maintenance Costs for FY2006–FY2010

<table>
<thead>
<tr>
<th>Year</th>
<th>Total C-130 Corrosion Cost (in millions)</th>
<th>Total C-130 Maintenance Cost (in millions)</th>
<th>Corrosion as a Percentage of Maintenance for C-130 Fleet</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY2006</td>
<td>$599</td>
<td>$1,588</td>
<td>37.7%</td>
</tr>
<tr>
<td>FY2007</td>
<td>$614</td>
<td>$1,604</td>
<td>38.3%</td>
</tr>
<tr>
<td>FY2008</td>
<td>$603</td>
<td>$1,622</td>
<td>37.2%</td>
</tr>
<tr>
<td>FY2009</td>
<td>$602</td>
<td>$1,648</td>
<td>36.5%</td>
</tr>
<tr>
<td>FY2010</td>
<td>$634</td>
<td>$1,743</td>
<td>36.4%</td>
</tr>
</tbody>
</table>

LMI Cost of Corrosion for US Air Force C-130 Aircraft, Dec 2010
LMI Cost of Corrosion for US Air Force C-130 Aircraft, Dec 2010
C-130 Corrosion & Maintenance Costs for FY 2010

Warner Robins Air Logistics Center

Table 2-4. C-130 Corrosion and Maintenance Costs by Aircraft Type (FY2010)

<table>
<thead>
<tr>
<th>MDS</th>
<th>Inventory</th>
<th>Corrosion cost</th>
<th>Maintenance cost</th>
<th>Corrosion as a percentage of maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-130H</td>
<td>268</td>
<td>$243,483,946</td>
<td>$704,000,677</td>
<td>34.6%</td>
</tr>
<tr>
<td>MC-130H</td>
<td>20</td>
<td>$75,016,580</td>
<td>$178,002,161</td>
<td>42.1%</td>
</tr>
<tr>
<td>AC-130H</td>
<td>8</td>
<td>$69,394,668</td>
<td>$151,599,778</td>
<td>45.8%</td>
</tr>
<tr>
<td>MC-130W</td>
<td>8</td>
<td>$64,506,241</td>
<td>$125,513,740</td>
<td>51.4%</td>
</tr>
<tr>
<td>AC-130U</td>
<td>17</td>
<td>$59,058,329</td>
<td>$140,907,180</td>
<td>41.9%</td>
</tr>
<tr>
<td>MC-130P</td>
<td>27</td>
<td>$40,395,952</td>
<td>$119,089,728</td>
<td>33.9%</td>
</tr>
<tr>
<td>C-130E</td>
<td>91</td>
<td>$20,270,142</td>
<td>$82,864,763</td>
<td>24.5%</td>
</tr>
<tr>
<td>HC-130P</td>
<td>23</td>
<td>$16,654,713</td>
<td>$63,474,903</td>
<td>26.2%</td>
</tr>
<tr>
<td>C-130J</td>
<td>52</td>
<td>$13,936,548</td>
<td>$59,178,451</td>
<td>23.6%</td>
</tr>
<tr>
<td>MC-130E</td>
<td>14</td>
<td>$9,208,908</td>
<td>$29,444,027</td>
<td>31.3%</td>
</tr>
<tr>
<td>EC-130J</td>
<td>7</td>
<td>$4,939,299</td>
<td>$15,748,917</td>
<td>31.4%</td>
</tr>
<tr>
<td>HC-130N</td>
<td>10</td>
<td>$4,167,452</td>
<td>$17,852,929</td>
<td>23.3%</td>
</tr>
<tr>
<td>LC-130H</td>
<td>10</td>
<td>$3,938,573</td>
<td>$17,440,141</td>
<td>22.6%</td>
</tr>
<tr>
<td>EC-130H</td>
<td>14</td>
<td>$3,148,587</td>
<td>$17,364,700</td>
<td>18.1%</td>
</tr>
<tr>
<td>WC-130J</td>
<td>10</td>
<td>$2,092,867</td>
<td>$9,109,167</td>
<td>23.0%</td>
</tr>
<tr>
<td>GC-130E</td>
<td>13</td>
<td>$580,930</td>
<td>$1,408,501</td>
<td>41.2%</td>
</tr>
<tr>
<td>TC-130H</td>
<td>1</td>
<td>$263,013</td>
<td>$1,115,160</td>
<td>23.6%</td>
</tr>
<tr>
<td>C-130T</td>
<td>1</td>
<td>$44,045</td>
<td>$176,374</td>
<td>25.0%</td>
</tr>
<tr>
<td>GC-130D</td>
<td>1</td>
<td>$21,556</td>
<td>$58,934</td>
<td>36.6%</td>
</tr>
<tr>
<td>GC-130A</td>
<td>1</td>
<td>$19,278</td>
<td>$48,195</td>
<td>40.0%</td>
</tr>
<tr>
<td>NC-130H</td>
<td>1</td>
<td>$1,992</td>
<td>$6,721</td>
<td>29.6%</td>
</tr>
</tbody>
</table>

Total
$633,666,491
$1,742,575,586
36.4%

LMI Cost of Corrosion for US Air Force C-130 Aircraft, Dec 2010

People First...Mission Always
10 Most Costly C-130 WUCs in Terms of Corrosion and Maintenance (FY2006–FY2010)

Table 2-5. 10 Most Costly C-130 WUCs in Terms of Corrosion and Maintenance (FY2006–FY2010)

<table>
<thead>
<tr>
<th>WUC</th>
<th>WUC description</th>
<th>Corrosion cost (in millions)</th>
<th>Maintenance cost (in millions)</th>
<th>Corrosion as a percentage of maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>Airframe—wings and nacelles</td>
<td>$334</td>
<td>$809</td>
<td>41.4%</td>
</tr>
<tr>
<td>114</td>
<td>Airframe—fuselage</td>
<td>$264</td>
<td>$538</td>
<td>49.1%</td>
</tr>
<tr>
<td>461</td>
<td>Fuel systems—tanks</td>
<td>$195</td>
<td>$403</td>
<td>48.5%</td>
</tr>
<tr>
<td>041</td>
<td>Special inspections</td>
<td>$128</td>
<td>$352</td>
<td>36.5%</td>
</tr>
<tr>
<td>010</td>
<td>Ground handling, servicing, and related tasks</td>
<td>$113</td>
<td>$338</td>
<td>33.5%</td>
</tr>
<tr>
<td>037</td>
<td>Scheduled inspection or maintenance—storage</td>
<td>$111</td>
<td>$492</td>
<td>22.7%</td>
</tr>
<tr>
<td>110</td>
<td>Airframe</td>
<td>$94</td>
<td>$181</td>
<td>51.8%</td>
</tr>
<tr>
<td>112</td>
<td>Airframe—doors (hydraulic)</td>
<td>$92</td>
<td>$211</td>
<td>43.4%</td>
</tr>
<tr>
<td>032</td>
<td>Scheduled inspection or maintenance—thruflight inspection</td>
<td>$90</td>
<td>$243</td>
<td>37.0%</td>
</tr>
<tr>
<td>090</td>
<td>Shop support general code (includes fabrication or local manufacture)</td>
<td>$66</td>
<td>$113</td>
<td>58.7%</td>
</tr>
</tbody>
</table>

LMI Cost of Corrosion for US Air Force C-130 Aircraft, Dec 2010
Table 2-6. 10 Highest C-130 Corrosion and Maintenance Costs by WUC (FY2010)

<table>
<thead>
<tr>
<th>WUC</th>
<th>WUC Description</th>
<th>Corrosion cost (in millions)</th>
<th>Maintenance cost</th>
<th>Corrosion as a percentage of maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>Airframe—wings and nacelles</td>
<td>$75</td>
<td>$198</td>
<td>38.0%</td>
</tr>
<tr>
<td>114</td>
<td>Airframe—fuselage</td>
<td>$60</td>
<td>$130</td>
<td>46.4%</td>
</tr>
<tr>
<td>461</td>
<td>Fuel systems—tanks</td>
<td>$47</td>
<td>$103</td>
<td>45.2%</td>
</tr>
<tr>
<td>010</td>
<td>Ground handling, servicing, and related tasks</td>
<td>$37</td>
<td>$108</td>
<td>34.0%</td>
</tr>
<tr>
<td>041</td>
<td>Special inspections</td>
<td>$26</td>
<td>$77</td>
<td>33.7%</td>
</tr>
<tr>
<td>112</td>
<td>Airframe—doors-hydraulic</td>
<td>$23</td>
<td>$51</td>
<td>45.2%</td>
</tr>
<tr>
<td>020</td>
<td>Equipment and facility cleaning—aircraft cleaning</td>
<td>$22</td>
<td>$30</td>
<td>72.3%</td>
</tr>
<tr>
<td>090</td>
<td>Shop support general code (includes fabrication or local manufacture of miscellaneous items)</td>
<td>$21</td>
<td>$35</td>
<td>60.2%</td>
</tr>
<tr>
<td>110</td>
<td>Airframe</td>
<td>$20</td>
<td>$35</td>
<td>58.4%</td>
</tr>
<tr>
<td>032</td>
<td>Scheduled inspection or maintenance—thruflight inspection</td>
<td>$18</td>
<td>$49</td>
<td>35.9%</td>
</tr>
</tbody>
</table>
Why is this important?

Facilitates decision-making in these fundamental areas:

1. Quantify the overall problem

2. Classify corrosion costs as either preventive or corrective
 - Corrective actions address actual problems
 - Preventive actions address future problems

3. Prioritize efforts by the source of the problem

4. Make project approval decisions and follow up on their effectiveness

5. Identify potential design deficiencies and feed that information back to the acquisition community
The C-130 Corrosion Prevention and Control Program (CPCP) exists to:

- Address the degradation impacts of corrosion
- Combat the effects of corrosion to minimize its impact on maintenance
- Adequately sustain these fleets through their service life
- Extend the service life of the C-130 weapon system

Guidance is provided by the CPCP Plan

- A supplement to the C-130 Aircraft Structural Integrity Program (ASIP) plan
- Provides guidance in accordance with MIL-STD-1530C
- Serves as a reference for the C-130 Corrosion Program Manager and support staff responsible for strategic and tactical corrosion management planning
Assessments and Surveys

Warner Robins Air Logistics Center

Purpose
- Conduct on-site equipment and corrosion program surveys and technical assessments at select locations (C-130 fleet, organizational, depot, and contracted depot facilities (CONUS and OCONUS))
- Surveys include
 - C-130 aircraft condition assessments
 - Review of corrosion prevention and control operations and programs
 - Interviews of maintenance personnel
 - Analysis of maintenance data information
 - Compliance with technical and/or corrosion program guidance
 - Recommendations to transition best corrosion prevention and control practices

Approach
- 100% non-retribution endeavor
- Emphasis on survey and not inspection
Assessments and Surveys

Field units encouraged to communicate and submit new and emerging corrosion issues to their MAJCOM Functional managers, the C-130 Corrosion Manager and MEC.

Details concerning the Corrosion Program Surveys are compiled in an annual Project Technical Report.
The C-130 CPCP is transitioning from a reactionary mode of operation to one of strategic and tactical corrosion management planning (2011 C-130 Corrosion Prevention and Control Program Plan).

- **Strategic Objectives (long-term +5 years)**
 - Develop standardized methodologies for collecting and analyzing corrosion related cost, readiness and safety data
 - Optimize corrosion prevention and mitigation efforts through training tailored to requirements at the management and technical level
 - Maintain corrosion technical data currency
 - Build and maintain a knowledge base of corrosion prevention, detection, prediction, and treatment processes, leading-edge technologies, R&D results, and technology transition successes
 - Development/implementation of prognostics, diagnostics, and integrated health monitoring systems to facilitate a transition to Condition Based-Maintenance
CPCP Short-Term/Long-Term Mission Goals and Thresholds

Warner Robins Air Logistics Center

Tactical Objectives (short-term 1-3 years)

- Conduct a Cost of Corrosion Baseline Study – C-130 weapon systems peculiar
 - Document where corrosion problems exist, identify their causes, and prioritize them according to their relative severity

- Conduct ‘Field Corrosion Assessments and Surveys’
 - Identify corrosion related deficiencies and provide recommendations for corrective actions

- Quarterly management reviews of corrosion issues for the previous 3-month period

- Periodic review of 1-1-8 (Application and Removal of Aerospace Coatings), 1-1-691 (Aircraft Weapon Systems Cleaning and Corrosion Control)

- Periodic review/ update of T.O. 1C-130A-23 (C-130 Corrosion Control Manual), depot specification/ work cards to ensure the use/ application of corrosion prevention technologies and treatments

- Field new materials and other corrosion prevention products

- And more…
Structural Corrosion Program Projects Listing

- 3M Polyurethane Protective Tape to Leading Edge
- Polysulfide Topcoat Addition to Leading Edge
- Latrine Over Servicing Valve
Structural Corrosion Program Projects Listing

AvDec
- Conductive Antenna Gaskets
- Av-Dec Polyurethane Sealant Tapes
 - Replacement for Skyflex on window installations
 - Replacement for Skyflex on aircraft floor panels
- Polyurethane Injectable Sealants
 - FS 737 latrine areas
Structural Corrosion Program Projects Listing

- Cor-Ban 35
 - Cargo Floor Chine Plates (FS 245-737)
 - BL 20 and 61 Longerons
 - Sloping Longerons
 - Lower Empennage Interior Surface
 - Dry Bay Access Panels
 - Wing Leading Edge Spar Caps
 - Center and Outer Wing Trailing Edges
 - Wing Joint Attachment Fitting (Rainbows)
 - Ailerons/Aileron Swing-down Panels
 - Engine truss mounts and braces
- Rewrite/Revision of the C-130 Corrosion Control Manuals, 1C-130A-23 & 1C-130J-23

- 3M Weather Excluding Patches

- Mold and Mildew Remediation
Warner Robins Air Logistics Center

Structural Corrosion Program Projects Listing

- C-130 Anti-Skid Tape Removal Process

- Revisions to the 1C-130A-23CL-1
 - Section III, Post-Desert Wash Corrosion Inspection
 - Section V, Post Cleaning and Washing Corrosion Preventive Compound / Lubrication
 - Section VII, Depot - Level Post Cleaning and Washing Corrosion Preventive Compound.

- Development of New Paint Drawing: C-130J (long/short) & WC-130J
Future Projects

- Chrome-Free Coating Systems Flight Tests
 - AkzoNobel (Sep-Oct 2011)
 - PreKote
 - Aerodur 2100 magnesium rich primer (MgRP)
 - Aerodur 5000 topcoat color #36173
 - Deft (June 2012)
 - Rare earth conversion coating (RECC) 1015/3021
 - 02-GN-093 chrome-free primer
 - 99GY-001 Advance Performance Coating

- Robotic Depaint
 - Employment of robotics to depaint aircraft via laser

…minimize the use of hexavalent chrome…
SIBR Projects

- **Back Scatter X-Ray NDI**
 - Detect concealed corrosion
 - Evaluated on C-130 HVM Pre Induction Inspections

- **Wireless Sensors with Advanced Detection and Prognostic Capabilities for Corrosion Health Management**
POCs

Government

- David Peth
 C-130 Corrosion Engineer, WR-ALC/GRBEB
 Tactical Airlift Division
 478-222-5278
 David.Peth@robins.af.mil

- Lt Doug Banning
 C-130 Corrosion Manager, WR-ALC/GRBEB
 Tactical Airlift Division
 478-926-7396
 Douglas.Banning@robins.af.mil

Contract Support

- Larry Cornwell, Program Manager
 478-329-8233
 Lawrence.Cornwell@mandaree.com
 Lawrence.Cornwell@robins.af.mil

- Kevin Wilson, Logistician
 Kevin.Wilson@mandaree.com

- Scott Ward, Logistician
 Scott.Ward@mandaree.com

- John Lindsey, Logistician
 John.Lindsey@mandaree.com

- Jim Dean, Logistician
 Jfdean2@cox.net

- Andrew Carlisle, Logistician
 Andrew.Carlisle@mandaree.com

- Ed Reid, Materials Engineer
 Edwin.Reid@mandaree.com

- Josh Kingsley, Materials Engineer
 Joshua.Kingsley@mandaree.com

- Brandon Hall, Aerospace Engineer
 Brandon.Hall@mandaree.com