Comparison of the 1.5 Mile Run Times at 7,200 Feet and Simulated 850 Feet in a Hyperoxic Room

Lt Col Michael Zupan, Ph.D.
Director, USAFA Human Performance Lab
Comparison of the 1.5 Mile Run Times at 7,200 Feet and Simulated 850 Feet in a Hyperoxic Room

United States Air Force Academy Human Performance Laboratory 2169 Fieldhouse Dr USAFA CO 80840

Approved for public release, distribution unlimited.
This study investigated if there are differences in **aerobic** performance between altitude and simulated sea level environments and if differences are evident between conditions, to what extent?
Background Information

- **1968** - Dr. Ken Cooper develops the 12 minute run fitness test as an easy, inexpensive and relatively accurate way to estimate VO$_2$ max, or aerobic fitness, in large groups of Air Force personnel. ($R = .897$)
 - Based on results of 115 airmen
 - Better indicator of cardiovascular fitness than the 600 yard run.

- Later Dr. Cooper developed the 1.5 mile test

- **1992** - Cycle ergometry test was implemented to “predict” VO$_2$ max.
• **2004** - New Air Force fitness program was implemented that once again used the 1.5 mile test.

• **2005** - An altitude adjustment was implemented for airmen stationed above 5,000 ft. (1.75 pts)

• **2010** - New Air Force fitness test program was implemented, which still used the 1.5 mile run to test aerobic fitness, but the altitude adjustment for the Air Force Bases located at moderate altitude is removed.
“The high altitude calculation was removed as all individuals are already given a temporary exemption of six weeks to adapt to the altitude differences between locations”

and

“With six weeks to acclimatize and continue training at altitude, members' 1.5 mile run performance should not be appreciably degraded”

and

“Exercise research indicates that a score adjustment for people taking the revised Air Force Physical Fitness Test at higher altitudes is not needed. The VO\textsubscript{2} max or aerobic fitness, the factor we are measuring with the 1.5 mile run, is not measurably altered in a non-acclimated member testing from sea level up to 7,000 feet.”

(Air Force Fitness Program Web Site FAQ)
• As altitude is increased, barometric pressure decreases
 o Results in less oxygen per given volume of air than at sea level
 o Known as hypobaric hypoxia

• Current research shows that total acclimatization can take up to 4-6+ months (Brothers, 2008; Brothers, 2007)

• Aerobic endurance still is impaired even with total acclimatization (Brothers, 2008; Brothers, 2007)

• Training intensities are reduced at altitude which results in deconditioning of the body (TB 505, 2010)

• To date, it is unknown the exact amount of decrement associated with various levels of the hypobaric hypoxic environments.
Protocol

• Time requirement for each subject was ~2 hours
 • 30 min- ICD and VO$_{2\text{max}}$ introduction
 • 30 min- VO$_{2\text{max}}$ and DXA scan
 • 30 min- 1.5 mile run in first condition
 • 30 min- 1.5 mile run in opposite condition

• All 1.5 mile runs were performed in the Colorado Altitude Tent (CAT) in normal moderate altitude environment (~7,200 ft) or *normobaric hyperoxic environment* (oxygen content increased while barometric pressure stayed the same) to simulate ~850 ft.

• Order of running conditions were randomized.

• Only 24 to 72 hours between 1.5 mile runs

• Distance was the only factor known by the subjects during the 1.5 mile runs
Creating a Hyperoxic Environment

Partial Pressure of O$_2$

SL

\[.21 \times 760 \text{ mmHg} = \text{PO}_2 \text{ of 160 mmHg} \]

7,200 FT

\[.21 \times 570 \text{ mmHg} = \text{PO}_2 \text{ of 120 mmHg} \]

Oxygen content at Altitude (20.9%)

CAT

\[.265 \times 570 \text{ mmHg} = \text{PO}_2 \text{ of 152 mmHg} \]

Oxygen content in CAT (~26.5%)
Dual Energy X-Ray Absorptiometry (DXA)
Scanner for Body Composition

• “Gold Standard” for body composition
• Assessments provide:
 o % fat mass
 o % lean body mass
 o Bone density

<table>
<thead>
<tr>
<th>REGION</th>
<th>TOTAL</th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arms</td>
<td>14.2%</td>
<td>14.3%</td>
<td>14.1%</td>
</tr>
<tr>
<td>Legs</td>
<td>23.1%</td>
<td>23.9%</td>
<td>23.1%</td>
</tr>
<tr>
<td>Trunk</td>
<td>25.3%</td>
<td>25.3%</td>
<td>25.3%</td>
</tr>
<tr>
<td>Total</td>
<td>22.3%</td>
<td>22.2%</td>
<td>22.40%</td>
</tr>
</tbody>
</table>
VO₂ Max test

- All VO₂ max tests were performed at altitude
- Subjects were asked to continue running until they reached volitional fatigue

Protocol

<table>
<thead>
<tr>
<th>Test Time (min)</th>
<th>Stage Time (min)</th>
<th>Speed (mph)</th>
<th>Grade (%)</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>1:00</td>
<td>0</td>
<td>0</td>
<td>Standing</td>
</tr>
<tr>
<td>2-3</td>
<td>2:00</td>
<td>2.0</td>
<td>0</td>
<td>Walking</td>
</tr>
<tr>
<td>4-5</td>
<td>2:00</td>
<td>7.0 m, 6.0 f</td>
<td>0</td>
<td>Running</td>
</tr>
<tr>
<td>6</td>
<td>1:00</td>
<td>7.0 m, 6.0 f</td>
<td>2</td>
<td>Running</td>
</tr>
<tr>
<td>7</td>
<td>1:00</td>
<td>7.0 m, 6.0 f</td>
<td>4</td>
<td>Running</td>
</tr>
<tr>
<td>8</td>
<td>1:00</td>
<td>7.0 m, 6.0 f</td>
<td>6</td>
<td>Running</td>
</tr>
<tr>
<td>9</td>
<td>1:00</td>
<td>7.0 m, 6.0 f</td>
<td>8</td>
<td>Running</td>
</tr>
<tr>
<td>10</td>
<td>1:00</td>
<td>7.0 m, 6.0 f</td>
<td>10</td>
<td>Running</td>
</tr>
<tr>
<td>11</td>
<td>1:00</td>
<td>7.0 m, 6.0 f</td>
<td>11</td>
<td>Running</td>
</tr>
<tr>
<td>12</td>
<td>1:00</td>
<td>7.0 m, 6.0 f</td>
<td>12</td>
<td>Running</td>
</tr>
<tr>
<td>13</td>
<td>1:00</td>
<td>7.0 m, 6.0 f</td>
<td>13</td>
<td>Running</td>
</tr>
<tr>
<td>14</td>
<td>1:00</td>
<td>7.0 m, 6.0 f</td>
<td>14</td>
<td>Running</td>
</tr>
<tr>
<td>End of Test</td>
<td>Until HR <120</td>
<td>2.0</td>
<td>0</td>
<td>Active Recovery</td>
</tr>
</tbody>
</table>
Max VO$_2$
Study Participants

- Fifty-five, non smoking, male and female subjects signed informed consent documents (ICD) and completed DXA and VO$_{2\text{max}}$ tests

- All subjects had to be living continuously in Colorado Springs for at least 6 weeks.

- Three subjects did not complete the 1.5 miles run tests due to AF commitments and non-study related injuries

- **Subjects demographics:**

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>DXA (%BF)</th>
<th>Age (yrs)</th>
<th>Weight (lbs)</th>
<th>Height (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>38</td>
<td>16.4 ± 7.6</td>
<td>32.3 ± 6.5</td>
<td>173 ± 24</td>
<td>71.7 ± 3.1</td>
</tr>
<tr>
<td>Females</td>
<td>17</td>
<td>24.9 ± 4.7</td>
<td>33.6 ± 6.9</td>
<td>132 ± 18</td>
<td>64.7 ± 2.2</td>
</tr>
<tr>
<td>Total</td>
<td>55</td>
<td>19.0 ± 7.9</td>
<td>32.7 ± 6.6</td>
<td>160 ± 29</td>
<td>69.5 ± 4.4</td>
</tr>
</tbody>
</table>
Subjects Demographics (cont):

VO₂ Max

Range: 35.3 to 63.5 mL·Kg⁻¹·min⁻¹

<table>
<thead>
<tr>
<th>Gender</th>
<th>Max VO₂ (mL·Kg⁻¹·min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>50.7</td>
</tr>
<tr>
<td>Females</td>
<td>44.1</td>
</tr>
<tr>
<td>Combined</td>
<td>48.6</td>
</tr>
</tbody>
</table>
1.5 Mile Run times at ALT and SL

<table>
<thead>
<tr>
<th>Distance (miles)</th>
<th>ALT</th>
<th>SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>127</td>
<td>126</td>
</tr>
<tr>
<td>0.50</td>
<td>242</td>
<td>234</td>
</tr>
<tr>
<td>0.75</td>
<td>353</td>
<td>351</td>
</tr>
<tr>
<td>1.00</td>
<td>470</td>
<td>459</td>
</tr>
<tr>
<td>1.25</td>
<td>587</td>
<td>567</td>
</tr>
<tr>
<td>1.50</td>
<td>698</td>
<td>668</td>
</tr>
</tbody>
</table>

* p<0.001
Differences between ALT and SL run times

* p<0.001
Rate of Perceived Exertion during 1.5 Mile Runs at ALT and SL

![Graph showing the rate of perceived exertion (RPE) vs distance for ALT and SL during 1.5 mile runs. The graph displays two lines, one for ALT (green) and one for SL (blue), illustrating the increase in RPE with distance.]
Differences seen with Randomization of 1.5 Mile Runs

1st Run at Altitude (n=26)	1st Run at Sea Level (n=26)
31.85 | 29.35

Time (sec)
Comparison of run times at ALT and SL

\[y = 1.0545x - 5.8253 \]

\[R = .96, R^2 = 0.92 \]
VO₂ Max vs. Predicted VO₂ at 850 and 7,200 Feet

\[R = 0.82, \quad R^2 = 0.67 \]

\[R = 0.84, \quad R^2 = 0.71 \]
Time Differences for Subjects (18) Living at Moderate Altitude <1 year

Average difference = 34.1 sec

Time (sec) vs Months at Altitude

Distribution A. Approved for public release
Heart Rates during 1.5 mile runs at ALT and SL

Distance (miles)

Heart Rate (bpm)

Alt
SL

161
167
172
174
176
176
179
179
183
SaO$_2$ levels during the Max VO$_2$ test

Distribution A. Approved for public release
Average SaO_2 During 1.5 Mile Runs

<table>
<thead>
<tr>
<th>Distance (miles)</th>
<th>Alt</th>
<th>SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>0.25</td>
<td>97%</td>
<td>97%</td>
</tr>
<tr>
<td>0.50</td>
<td>95%</td>
<td>95%</td>
</tr>
<tr>
<td>0.75</td>
<td>93%</td>
<td>93%</td>
</tr>
<tr>
<td>1.00</td>
<td>91%</td>
<td>91%</td>
</tr>
<tr>
<td>1.25</td>
<td>89%</td>
<td>89%</td>
</tr>
<tr>
<td>1.50</td>
<td>87%</td>
<td>87%</td>
</tr>
</tbody>
</table>

SaO_2 (%)

Distribution A. Approved for public release

Integrity - Service - Excellence
Conclusions

• A 30.6 seconds, or 4.2% decrease in 1.5 mile running times was measured when running at ~850 ft compared to 7,200 ft.

• These differences were mainly due to a decreased hemoglobin oxygen saturation associated with running at altitude with lower O$_2$ partial pressures.

• HR and RPE were not significantly different between runs

• Our recommendation is that an altitude adjustment for the Air Force fitness test be reinstated for airmen testing at moderate altitude bases.
I wish to acknowledge the help of the following individuals in data collection early analysis of the results.

Dustin R. Bakkie - Western State College
Jennifer A. Malagon - Colorado State University
Jessica A. Malagon - Colorado State University
Kristin Perdue - University of Northern Colorado

This work was supported by Air Force Medical Support Agency(AFMSA/SG9)