Self-Assembly and Self-Repair of Structures with Stability and Resource Constraints

Nikolaus Correll
Department of Computer Science
University of Colorado at Boulder

PM: Les Lee, AFOSR
1. REPORT DATE
AUG 2012

2. REPORT TYPE

3. DATES COVERED
00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Self-Assembly and Self-Repair of Structures with Stability and Resource Constraints

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Colorado at Boulder, Department of Computer Science, Boulder, CO

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES 21

19a. NAME OF RESPONSIBLE PERSON
Vision

- Self-Assembly
- Self-Reconfiguration
- Self-Repair

http://correll.cs.colorado.edu
Computational Materials

DISTRIBUTED
AMORPHOUS
SCALABLE

http://correll.cs.colorado.edu
Challenges

• How to maintain *stability* during self-assembly in air?
• How to limit sensing, actuation and computation *resources*?
• How to *self-repair*?

Distributed Flight Array, Raffael d’Andrea, ETH

Superbot, Wei Min-Shen, USC

3 year grant, start April 1st, 2012
1. Stability

• Which *path* to choose to reach a desired configuration?
 – Basic physics
 – Wind, turbulences, vibrations, etc.
 – Sensor/Actuator limitations

• Adding restraints?
Example
Approach

• Combination of
 – Discrete search
 – Dynamical Simulation
 – Full physics, realistic simulation

Gazebo / ODE

Frame3DD

100 x

10000 x
Valid Assembly Sequences:
1,2,3,4,5,6,7,8
1,2,3,4,5,6,8,7
1,2,3,4,5,7,6,8
1,2,3,4,6,5,7,8
1,2,3,4,6,5,8,7
1,2,3,4,6,8,5,7
Tee Structure Assembly Graph Nodes

Analysis Sequences:
1
1, 2
1, 2, 3
1, 2, 3, 4
1, 2, 3, 4, 5
1, 2, 3, 4, 6
1, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 7
1, 2, 3, 4, 6, 8
1, 2, 3, 4, 5, 6, 7
1, 2, 3, 4, 5, 6, 8
1, 2, 3, 4, 5, 6, 7, 8
Other Structures

Tee

Bridge

2D w/ Hole

2D w/ enclosed

Valid Assembly Paths	Graph Nodes to analyze
6 | 12
78 | 60
452 | 76
7985 | 243

http://correll.cs.colorado.edu
Frame3DD FEA: Partial Bridge

![Analyzed Structure]

- Undeformed
- Deformed

Cubelet Build Path: Build Step = 8 (in-lbf-s)
analysis file: InputFiles/input8.inp deflection exaggeration: 1000.0 load case 1 of 1
Discussion: Stable Paths

• Fast heuristics needed for discrete search
 – Encode basic physics
 – Encode geometric constraints
• Identification of “critical” elements that need restraints
• Frame3DD -> arbitrary physics
 – From static assemblies to flying and swimming
2. Resources

• How to limit the number of building blocks with actuation, sensing, and computation?
 – Weight
 – Cost

• Approach: “Intelligent Scaffolds”
Approach: Intelligent Scaffolds

- Scaffolds (red) coordinate construction
- Three Scaffold blocks can construct any computable structure
Intelligent Scaffolds
Discussion: Resources

• Intelligent scaffold allow trade-off between number of actuated modules (from 3 to N) and assembly time

• Need new algorithms that use *some* computation & communication in otherwise passive blocks
3. Self-Repair

• Challenge:
 – Detect damage
 – Execute repair

• Approach:
 – Graph grammars
 – Graph rewriting rules

\[\phi_{fi} : X \ A \Rightarrow Y \ - \ Z \]

\[\phi_{ri} : Y \ - \ Z \Rightarrow X \ A \]
3. Self-Repair

• Generate graph grammars to monitor and repair structural integrity

• Embed monitor and repair rules into material

A-B, A-C, B-C, B-A, C-A, C-B
Discussion: Self-Repair

• Requires additional sensing, computation, and communication

• Find right trade-off between
 – Speed of detection/repair
 – Additional resources to embed
Outlook

• From simple physics to (simple) flight dynamics
• Study self-assembly, reconfiguration, and repair in realistic simulation
• Perform preliminary experiments in 2D and 3D

http://correll.cs.colorado.edu