Development and Application of Acoustic Metamaterials with Locally Resonant Microstructures

AFOSR grant #FA9550-10-1-0061
Program manager: Dr. Les Lee

PI: C.T. Sun
School of Aeronautics and Astronautics
Purdue University
West Lafayette, Indiana

AFOSR Annual Grantees’ Meeting
Arlington, VA
August 2, 2012
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 AUG 2012</td>
<td></td>
<td>00-00-2012 to 00-00-2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development and Application of Acoustic Metamaterials with Locally Resonant Microstructures</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purdue University, School of Aeronautics and Astronautics, West Lafayette, IN, 47907</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>Same as Report (SAR)</td>
</tr>
<tr>
<td>unclassified</td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std Z39-18
Wave Propagation in Elastic Solids With Negative Mass Density or Modulus

What would happen if mass or modulus becomes negative?

• Dispersion equation:
 \[q = \omega \sqrt{-\frac{\rho}{E}} = i \beta \omega \]

• Wave attenuates:
 \[u = Ae^{i(qx - \omega t)} = Ae^{-\beta \omega x} e^{i\omega t} \]

 \[\beta \] is attenuation factor

Wave cannot propagate without attenuation in elastic solids with negative mass density or modulus
Metamaterials with Local Resonators

Composite with Resonators

1D Lattice Model
Metamaterials with Negative Effective Mass

\[u = Be^{i(\omega_0 x - \omega t)} \]

Effective mass for mass-in-mass lattice

\[\rho_{\text{eff}} = \sqrt{\frac{k_2}{m_2}} \]

Displacement Envelope, (Local resonance \(\omega_0 \))

\[
\begin{align*}
\text{Number of unit cells} & \quad \omega/\omega_0 = 1.003 \\
& \quad \omega/\omega_0 = 1.073 \\
& \quad \omega/\omega_0 = 1.342 \\
& \quad \omega/\omega_0 = 2.013
\end{align*}
\]
Acoustic Metamaterial with Negative Effective Young’s Modulus

A Mechanical Unit Model and Its Representative Elastic Solid

\[\sigma = E_{\text{eff}} \epsilon \]
Frequency-dependent Modulus (stress-strain curves)

\[\frac{\varepsilon}{\varepsilon_0} \left(\frac{\sigma}{\sigma_0} \right) = E \]

(1) Static Modulus

(2) \(0 < \omega < \omega^* \)

(3) Extreme Modulus: Very stiff

(4) Negative Modulus

(5) \(\omega^* < \omega < \omega_0 \)

(6) \(\omega > \omega_0 \)

\(\omega_0 = \sqrt{\frac{k_2}{m_2}} \) Is local resonance frequency

Strain

Stress

Composite Materials Laboratory
School of Aeronautics and Astronautics
Wave Attenuation in Metamaterial with Negative Effective Modulus

- Wave amplitude decays when its frequency falls inside the band gap, especially if frequency is near the frequency ω^*.

![Diagram showing wave attenuation in metamaterial with negative effective modulus](image)
Metamaterial with Double Negativity (DN)

Metamaterial with negative mass density (NMD)

Metamaterial with negative modulus (NEM)

Metamaterial with Double Negativity (DN)

Double Negativity
(green area)

Negative effective mass (Band Gap, red area)

Negative effective modulus (Band Gap, red area)
Wave Propagation in Metamaterial with Double Negativity

$$\omega / \omega_0^{NMD} = 1.56$$

Propogation direction of wavefront

Propagation direction of wave phase

Distance in number of unit cells
Double Positive Metamaterial

$T^* = 0.0000$
Double Negative Metamaterial
Derivation for Reflection and Transmission Coefficients

Material 1

\[u_i = \hat{u}_i e^{i(\omega t - q_1 x)} \]
\[u_r = \hat{u}_r e^{i(\omega t + q_1 x)} \]
\[u_t = \hat{u}_t e^{i(\omega t - q_2 x)} \]

Material 2

\[u_t \]

Assume \(x = 0 \)

If \(E_1 = E_2, \rho_1 = \rho_2 \), then \(R = 0, T = 1 \)

If \(E_2 = -E_1, \rho_2 = -\rho_1 \), then \(R = 0, T = 1 \)
Material 2

Material 1
(Regular Material)

Material 2
(Metamaterial)

Material 1
(Regular Material)

\[
E_{\text{eff}} = \frac{L}{A} \left[k_1 + \frac{1}{2} \left(\frac{k_2 \omega^2}{\omega^2 - \omega_{0,\text{MOD}}^2} \right) \right] \left(\frac{L}{D} \right)^2
\]

\[
\rho_{\text{eff}} = \frac{1}{AL} \left[m_1 + m_3 \left(\frac{\omega_{0,\text{MASS}}^2}{\omega_{0,\text{MASS}}^2 - \omega^2} \right) \right]
\]

\[
\omega_{0,\text{MOD}} = \sqrt{\frac{k_2}{m_2}}
\]

\[
\omega_{0,\text{MASS}} = \sqrt{\frac{k_3}{m_3}}
\]

\[A = 1\]
Material 1

Material 1
(Ordinary Material)

Material 2
(Metamaterial)

Material 1
(Ordinary Material)

\[E_{\text{eff}} = \frac{k_4 L}{A} \]

\[\rho_{\text{eff}} = \frac{m_4}{AL} \]

where \(A = 1 \)
Dispersion Curve for Metamaterial

Non-dimensionalized wave number qL

Frequency

DN Region

Negative Mass Region

Dispersion Curve

OP2

OP1

AC
Material Design

Case 1: \(\omega = 1200 \text{ (rad / s)} \) → Frequency for double negativity
Case 2: \(\omega = 650 \text{ (rad / s)} \) → Frequency for negative mass

\[
\begin{align*}
 m_1 &= 2.4 \times 10^{-4} \text{ (kg)} \\
 m_2 &= 1.2 \times 10^{-4} \text{ (kg)} \\
 m_3 &= 2.4 \times 10^{-4} \text{ (kg)} \\
 m_4 &= 9.0 \times 10^{-5} \text{ (kg)} \\
 k_1 &= 100.0 \text{ (N / mm)} \\
 k_2 &= 200.0 \text{ (N / mm)} \\
 k_3 &= 200.0 \text{ (N / mm)} \\
 k_4 &= 535.3 \text{ (N / mm)}
\end{align*}
\]
Case 1: Simulation Result in DN Region

\[\omega = 1200 \text{ rad} / \text{s} \]

Material 1 (Regular Material)

Material 2 (Metamaterial)

Material 1 (Regular Material)

Distance in number of unit cells

t = 0.07 \text{ s}

t = 0.390 \text{ s}

t = 0.775 \text{ s}
Case 2: Simulation Result in Negative Mass Region

\[\omega = 650 \text{ rad} / \text{s} \]

<table>
<thead>
<tr>
<th>Material 1 (Regular Material)</th>
<th>Material 2 (Metamaterial)</th>
<th>Material 1 (Regular Material)</th>
</tr>
</thead>
</table>

Distance in number of unit cells

\[t = 0.182 \text{ s} \quad t = 0.301 \text{ s} \quad t = 1.857 \text{ s} \]
Refraction of Metamaterials

- 2D Double-Negativity Metamaterial
Boundary Condition: Plane wave
Simulation Window (15x20 units)

Interface

Negative refraction

Normal to interface

Positive refraction

Composite Materials Laboratory
School of Aeronautics and Astronautics
Simulation: Plane wave (DN region: 1)

Interface

Normal to interface
Simulation: Plane wave (DN region: 2)
Simulation: Plane wave (DN region: 3)

Interface

Normal to interface
Simulation: Plane wave (DN region: 4)

Normal to interface
Simulation: Plane wave (DP region: 1)

Interface

Normal to interface
Simulation: Plane wave (DP region: 2)

Interface

Normal to interface
Simulation: Plane wave (DP region: 4)

Interface

Normal to interface
Plane Wave Comparison: DN vs. DP

Double Negativity

Interface

Double Positivity

Interface
List of Publications