Strain- and Temperature-Dependence of Electromagnetic Metamaterials

Dr. Brandon Arritt
Section Chief
AFRL/RVSVS
Space Vehicles Directorate
Air Force Research Laboratory
Title: Strain- and Temperature-Dependence of Electromagnetic Metamaterials

Performing Organization: Air Force Research Laboratory, Space Vehicles Directorate
AFRL/RVSVS, Wright Patterson AFB, OH, 45433

DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

ABSTRACT
Presented at the 2nd Multifunctional Materials for Defense Workshop in conjunction with the 2012 Annual Grantees’/Contractors’ Meeting for AFOSR Program on Mechanics of Multifunctional Materials & Microsystems Held 30 July - 3 August 2012 in Arlington, VA. Sponsored by AFRL, AFOSR, ARO, NRL, ONR, and ARL.

LIMITATION OF ABSTRACT
Same as Report (SAR)

NUMBER OF PAGES
14
Agenda

• Motivation
• Analytic Expression for Constitutive Parameters
• Equivalent Circuit Expressions
• Strain-Dependence
• Temperature-Dependence
• Low Modulus Substrate
• Testing
• Process
• Conclusions
Motivation

• Tailored EM Response
 - Engineered Constitutive Props: Permittivity, Permeability, Magneto-electric coupling
 - Frequency-dependent
 - Anisotropic
 - Inhomogeneous

• Impressive Results: Lab Env.

Motivation

• Defense Systems Operate in Extreme Environments

• Require ability to understand and predict performance before transitioning into Operational Platforms
 - Temperature Changes
 - Mechanical Loading

• Large Structures, Dynamic Environment, Many Unique Unit Cell Designs
Analytic Expressions for Constitutive Parameters

• Analytic Expressions for ε and μ
 - ELC Unit Cell
 - Source is external
 - Prediction of full Structure’s Performance

\[
\varepsilon = \bar{\varepsilon} \frac{\theta d}{2} \frac{\theta d}{\sin \frac{\theta d}{2} \cos \frac{\theta d}{2}}
\]
\[
\mu = \frac{\theta d}{2} \frac{\theta d}{\sin \frac{\theta d}{2} \cos \frac{\theta d}{2}}
\]
\[
\bar{\varepsilon}(f) = \varepsilon_b - \frac{f_p^2}{f^2 - f_0^2 + i\Gamma_e f}
\]
\[
\theta = n_{eff} \frac{\omega}{c}
\]

• Alternate Form of the Lorentzian Term

\[
\bar{\varepsilon} = 1 + \frac{C_{ext}}{d \varepsilon_0} \frac{\omega_0^2 - \omega^2}{\omega_0^2 - \omega^2 \left(1 + \frac{C_{ext}}{C_{int}}\right)}
\]
\[
\omega_0^2 = \frac{1}{LC_{int}}
\]
\[
L = L + \frac{R}{j\omega}
\]
\[
\sin \frac{\theta d}{2} = \sqrt{\varepsilon} \frac{kd}{2}
\]

Metamaterial’s Strain- and Temperature-Dependence can be FULLY described via R, L, C_{int}, C_{ext}
Equivalent Circuit Expressions

• Equivalent circuits expressions are functions of geometry and materials properties
 - Mechanical Strain: Change in Geometry
 - Temperature Change: Mechanical Strain and Changes in Material Properties

\[
C = C_a + C_z \\
C_a = \varepsilon_0 \frac{2}{\pi} \ln \left(2 \beta \frac{H}{s} \right) W \\
C_z = \varepsilon_0 \frac{\varepsilon_z - 1}{s + \frac{4}{3} \ln \beta} \frac{W}{h_z} \\
L = \frac{\mu_0 l}{2\pi} \left[\ln \left(\frac{2l}{b} \right) + \frac{1}{2} + \frac{b}{3l} - \frac{b^2}{24l^2} \right] \\
R = \frac{1}{\sigma A} \\
A = b \delta \quad \left(\delta = \sqrt{\frac{2}{\omega_0 \mu \sigma}} \right)
\]

• Utilized full wave simulation to assess parameter values at baseline condition
 - Expressions utilized to determine changes in value as a function of strain and temperature
 - Minimizes errors from inaccurate expressions
Strain-Dependence

Exx=Eyy=-5%

Exx=Eyy=+5%
Temperature-Dependence

![Graphs showing temperature-dependence of real relative permittivity and real relative permeability across different frequencies and temperatures.](image-url)
Low Modulus Substrates

• Previous analysis utilized thick, high-modulus substrates
 - Homogeneous Strain Profile
 - Simplified integration into analytic expressions

• A soft substrate complicates the strain profile
 - Utilize shear-lag models to describe the different strain levels in the copper and dielectric
 - Modifies geometry from previous equivalent circuit expressions

\[
\varepsilon_{\text{xxc}} = \frac{\sigma_{\text{xxc}}}{Y_c} = \frac{E_{\text{xx}}}{Y_c} \left[\frac{S_{\text{t}} Y_{\text{S}}}{t_{\text{c}} (1 + S)} \right] = E_{\text{xx}} \left[\frac{Y^* t^*}{Y^* t^* + 1} \right] \\
\varepsilon_{\text{iiS}} = \chi E_{\text{ii}} = \frac{d - l_c \beta}{d - l_c} E_{\text{ii}} = \frac{d - l_c \left(\frac{Y^* t^*}{Y^* t^* + 1} \right)}{d - l_c} E_{\text{ii}} = \frac{1 - \frac{l_c}{d}}{1 - \frac{l_c}{d}} E_{\text{ii}}
\]
Low Modulus Substrate

Change in Resonant Frequency as a Function of Strain (E_{xx}) and Modulus Ratio (Analytic)

Change in Resonant Frequency as a Function of Strain (E_{yy}) and Modulus Ratio (Analytic)

Change in Resonant Frequency as a Function of Strain (E_{xx}) and Modulus Ratio (Numeric)

Change in Resonant Frequency as a Function of Strain (E_{yy}) and Modulus Ratio (Numeric)
Testing

• Facility at Duke University
 - Loadframe
 - RF Characterization

• Photogrammetry
 - Large area strain mapping

• Mechanical Characterization
 - At AFRL
 - Material Props did not meet vendor specifications
Test Results

- Predicted different shifts for the different samples
- Understanding EM performance requires knowledge of the full strain vector

<table>
<thead>
<tr>
<th></th>
<th>Pyralux, ½oz Cu, Sample 1, 2400 lbs</th>
<th>Pyralux, ½oz Cu, Sample 2, 2400 lbs</th>
<th>Pyralux, 1oz Cu, Sample 1, 2400 lbs</th>
<th>Pyralux, 1oz Cu, Sample 2, 2400 lbs</th>
<th>5880, Sample 1, 1200 lbs</th>
<th>5880, Sample 1, 1600 lbs</th>
<th>5880, Sample 2, 1250 lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{XX} (%)</td>
<td>-1.12 to -1.06</td>
<td>-1.12 to -0.99</td>
<td>-1.25 to -1.19</td>
<td>-1.12 to -1.06</td>
<td>-0.73 to -0.59</td>
<td>-1.26 to -0.99</td>
<td>-0.79 to -0.66</td>
</tr>
<tr>
<td>E_{YY} (%)</td>
<td>4.16 to 4.3</td>
<td>4.03 to 4.1</td>
<td>3.76 to 3.96</td>
<td>4.03 to 4.1</td>
<td>1.10 to 1.14</td>
<td>1.83 to 1.87</td>
<td>1.10 to 1.14</td>
</tr>
<tr>
<td>Predicted Δf_0 (GHz)</td>
<td>-0.032</td>
<td>-0.030</td>
<td>-0.020</td>
<td>-0.029</td>
<td>+0.009</td>
<td>+0.018</td>
<td>+0.012</td>
</tr>
<tr>
<td>StDev Δf_0 (GHz)</td>
<td>0.002</td>
<td>0.003</td>
<td>0.002</td>
<td>0.001</td>
<td>0.006</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>Test Results (GHz)</td>
<td>-0.039</td>
<td>-0.032</td>
<td>-0.026</td>
<td>-0.029</td>
<td>+0.011</td>
<td>+0.018</td>
<td>+0.013</td>
</tr>
</tbody>
</table>
The Process

• Baseline EM Parameters Extracted from Full-Wave Simulations
• Strain/Temperature Profiles pulled from Finite Element Software
• Simple Scripts executed to determine EM Parameters at given strain/temperature condition
Conclusions

• Analytic Expressions are powerful tools for describing metamaterial strain/temp-dependence
 - Provide insight into physics behind linkage
 - Enable accurate prediction over the continuum of strains/temps
 - Rapid description of properties; $>10^5$ redux in model complexity
 - Rapidly predict strain/temp-dependence for unit cells in same design “family”

• Enable efficient determination of EM performance of large structures, with multiple unit cell designs, under complicated strain/temp profiles

• Care must be exercised in choosing appropriate analytic expressions
 - Circuit elements
 - Constitutive properties

• Process extendable to other unit cell designs
 - Magnetic metamaterials/SRRs
 - Owing to similar analytic expressions and circuit elements