C-cp-Ag Composite Electrodes: A New Approach for Metal Air Batteries

Amy C. Marschilok
Research Associate Professor

Materials Science and Engineering, Chemistry

Sponsor: Air Force Office of Scientific Research
Program Officers: Dr. Joan Fuller, Dr. Ali Sayir
Award Number: FA9550-09-1-0334
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
 AUG 2012

2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
 C-cp-Ag Composite Electrodes: A New Approach for Metal Air Batteries

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Stony Brook University, Materials Science and Engineering, Chemistry, Stony Brook, NY, 11794

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified

 b. ABSTRACT
 unclassified

 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES
 19

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Metal-air batteries provide the opportunity for unprecedented energy density improvements.

<table>
<thead>
<tr>
<th>Battery</th>
<th>Voltage (V)</th>
<th>Capacity (Ah/kg)</th>
<th>Energy (Wh/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li / (CF)ₙ</td>
<td>3.1</td>
<td>860</td>
<td>2,180</td>
</tr>
<tr>
<td>Li / SOCl₂</td>
<td>3.7</td>
<td>450</td>
<td>1,470</td>
</tr>
<tr>
<td>Li / MnO₂</td>
<td>3.5</td>
<td>310</td>
<td>1,010</td>
</tr>
<tr>
<td>Li-ion</td>
<td>3.8</td>
<td>150</td>
<td>570</td>
</tr>
<tr>
<td>Li / O₂</td>
<td>3.4</td>
<td>3,860</td>
<td>13,000</td>
</tr>
<tr>
<td>Al / O₂</td>
<td>2.3</td>
<td>2,990</td>
<td>6,900</td>
</tr>
<tr>
<td>Mg / O₂</td>
<td>2.7</td>
<td>2,200</td>
<td>5,950</td>
</tr>
<tr>
<td>Zn / O₂</td>
<td>1.3</td>
<td>820</td>
<td>1,070</td>
</tr>
</tbody>
</table>

Conventional electrode fabrication

Conventional electrode
- silver = active material
- black = conductive additive
- yellow = insulating binder
- tan = metal foil current collector

Novel composite electrode
- black = conductive carbon
- red = conductive polymer
- silver = catalyst

planar (2D) — 3D
Our composite electrode strategy offers several advantages

Electrochemical deposition of layers ensures good electrical contact among composite electrode components and electrolyte.

This is a transferrable concept that can be extended to prepare 2D and 3D layered composite electrodes.

Depending on the nature of the current collector (cc), and conducting polymer (cp), morphology and porosity of the layered composite can be tuned.

Due to the conductive nature of the composite, even small quantities of catalyst (Ag) should exhibit high oxygen reduction activity.
Project objectives

i. Demonstrate new composite electrode based on carbon-conductive polymer-silver (C-cp-Ag) composite.

ii. Evaluate composite oxygen reduction activity.

iii. Assess roles of composite components.

iv. Investigate non-aqueous oxygen reduction mechanism.

v. Develop and investigate 3D C-cp-Ag composite.
Electrodeposition is desirable for fabrication.
C-cp-Ag prep can be quantitatively controlled

\[\Delta f = \frac{-2f_0^2}{A\sqrt{\mu p}} \Delta m \]

- **cp deposition**
- **Ag deposition**

\[q = n \cdot F \]

cp deposition
- Current vs. potential
- Mass vs. cycle number

Ag deposition
- Ag by charge vs. Ag by CP
- EQCM mass and Faraday mass
- Ag loading vs. scan rate

<table>
<thead>
<tr>
<th>EQCM mass (µg)</th>
<th>trial 1</th>
<th>trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19.0</td>
<td>5.94</td>
</tr>
<tr>
<td>Faraday mass (µg)</td>
<td>21.7</td>
<td>6.75</td>
</tr>
<tr>
<td>Δ (%)</td>
<td>12.5</td>
<td>12.0</td>
</tr>
</tbody>
</table>
C-cp-Ag compares favorably to benchmarks

C-cp-Ag composite shows activity
2.6x higher than C
1.4x higher than Pt
comparable to Au
C-cp-Ag composite shows catalytic activity

C-cp-Ag composite electrodes retain high oxygen reduction capability on multiple cycling.
Low Ag loading is required for optimization.

Response optimized at Ag loading of 0.08 mg/cm².

Activity in air was 20 – 40% of the activity in pure oxygen.

Using density of Ag metal, suggests that 80 nm is minimum Ag thickness required.
kinetics:

C-cp-Ag shows well behaved ORR
linear response to $[O_2]$, consistent with 1st order process

C-cp-Ag shows enhanced activity at all $[O_2]$ Ag loading of 0.3 mg/cm2 for C-cp-Ag composite
C-cp-Ag and Au-cp-Ag show similar profiles

cp, then Ag deposition

cp coating mitigates impact of substrate
C-cp-Ag composites are robust

demonstrated macroscopic and microscopic Ag (and activity) retention after physical stresses

<table>
<thead>
<tr>
<th>number</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>average</td>
<td>73%</td>
</tr>
<tr>
<td>median</td>
<td>72%</td>
</tr>
<tr>
<td>st. dev.</td>
<td>8.7%</td>
</tr>
</tbody>
</table>
3D C-cp-Ag electrodes can be fabricated

Achieved successful cp and Ag-cp deposition on non-planar (3D) substrates of varying geometry and porosity.
3D C-cp-Ag electrodes can be fabricated

<table>
<thead>
<tr>
<th>electrode</th>
<th>electrode surface area (cm²)</th>
<th>electrode surface area (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>reported</td>
<td>planar</td>
</tr>
<tr>
<td>C</td>
<td>0.071</td>
<td>0.069</td>
</tr>
<tr>
<td>Cfelt</td>
<td>121</td>
<td>1.0</td>
</tr>
</tbody>
</table>

estimated cp thickness ~4X greater for C than for Cfelt

electrochemically active surface area reduced 20% for C, > 40% for Cfelt
3D C-cp-Ag composite electrodes

For C-cp-Ag composites, use of 3D substrates provided 4X improvement over 2D substrates based on planar area.

There is opportunity to further improve homogeneity of the 3D composite.
3D C-cp-Ag composite electrodes

Cycle 1 – 2 peak Coulomb flux was unchanged for the planar C-cp-Ag electrode, while the 3D Cfelt-cp-Ag composite showed a significant decrease.

Difference is consistent with reduction on the surface and interior during cycle 1, with surface only on cycle 2.

4) “Three dimensional carbon-conductive polymer-silver (C-cp Ag) composite electrodes for metal-air batteries.” *J. Composite Materials.* **in press.**

5) “Secondary Battery Science: At the Confluence of Electrochemistry and Materials Engineering.” *Electrochemistry.* **in press.** (invited highlight)

6) “Mechanistic investigation of the oxygen reduction reaction on carbon-conductive polymer-silver composites.” **in preparation.**

7) “Activation energy of oxygen reduction on carbon substrates in nonaqueous media.” **in preparation.**

Patent

Acknowledgement

Air Force Office of Scientific Research
AFOSR Program Officers: Dr. Joan Fuller, Dr. Ali Sayir
Award No.: FA9550-09-1-0334