Principles for Designing Compliant Multifunctional Wing Structures with Integrated Solar Cells for MAVs

Prof. Hugh A. Bruck
Prof. Sayandra K. Gupta
Department of Mechanical Engineering
University of Maryland
College Park, MD

This work is supported by Dr. Les Lee under AFOSR grant FA95501210158

Start Date: April 15, 2012
Principles for Designing Compliant Multifunctional Wing Structures with Integrated Solar Cells for MAVs

University of Maryland, Department of Mechanical Engineering, College Park, MD, 20742

Motivation: Flapping Wing MAVs

- Flapping wing MAV platforms are expected to be highly maneuverable and quiet
- We have been designing and building Flapping Wing MAVs for 8 years
 - Increase payload capacity
 - Increase drive mechanism efficiency to reduce power consumption
 - Reduce weight to increase time-of-flight

Micro Air Vehicles developed in Advanced Manufacturing Lab, UMD
Flapping Wing MAVs: Previous Accomplishments at UMD
Enabling Technology: In-Mold Assembly

- In-mold assembly process for realizing multi-material articulated structures
- Introduce multiple materials in the mold sequentially
 - Change mold cavity between different molding stages
- Perform assembly and fabrication inside the mold
 - Mold acts as fabrication tool and assembly device
- Eliminate post-molding assembly
 - Attractive in markets where labor cost is high

This two degree of freedom gimbal comes out of mold fully assembled (Work done in AML)

[Bejgerowski, Gupta, Bruck, *IJAMT* (2011)]
Enabling Technology:
Simulation Based Computational Synthesis for Design
Space Exploration and Parametric Optimization

• Mechanism Design Analysis:
 – Kinematic analysis (ADAMS)
 – Finite element analysis (ProMechanica)

<table>
<thead>
<tr>
<th>Component</th>
<th>Applied to</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>A</td>
<td>N</td>
<td>-1.159</td>
</tr>
<tr>
<td>Y</td>
<td>A</td>
<td>N</td>
<td>-32.767</td>
</tr>
<tr>
<td>Z</td>
<td>A</td>
<td>N</td>
<td>-1.559</td>
</tr>
<tr>
<td>X</td>
<td>C</td>
<td>N</td>
<td>0.026</td>
</tr>
<tr>
<td>Y</td>
<td>C</td>
<td>N</td>
<td>31.141</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker thickness</td>
<td>mm</td>
<td>2.1</td>
</tr>
<tr>
<td>Rocker breadth</td>
<td>mm</td>
<td>2.5</td>
</tr>
<tr>
<td>Wing arm thickness</td>
<td>mm</td>
<td>2.5</td>
</tr>
<tr>
<td>Wing arm breadth</td>
<td>mm</td>
<td>5.1</td>
</tr>
<tr>
<td>Hinge encapsulation thickness</td>
<td>mm</td>
<td>7.5</td>
</tr>
<tr>
<td>Hinge encapsulation breadth</td>
<td>mm</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Results:

Mechanism Design Optimization

[Bejgerowski, et al, JMD (2009), Bejgerowski, Gupta, Bruck, JMD (2009)]
Enabling Technology:
Wing Characterization

- Advanced wing characterization for understanding forces and deformation

(top) Cyclic Variation of Lift and Thrust,
(bottom) Variation with Flapping Frequency

Test Stand for Measuring:
(a) Lift & (b) Thrust

Current Challenges

- Flapping Wing MAVs can not fly more than 40 minutes because of payload constraints
- Need platforms that can harvest energy while flying or resting to increase time-of-flight
- Energy harvesting technologies like Solar Cells can induce a tradeoff in power consumption due to increases in mass, stiffness, and wing area
- Effective integration requires understanding of mechanics principles that govern tradeoffs in order to enhance performance and increase time-of-flight
Solution: Multifunctional Compliant Wings

- Energy harvesting
 - Technologies such as flexible Solar Cells (SCs) can be integrated into compliant MAV wings

- Energy storage
 - Energy from SCs can be directed to battery structures integrated into body of MAV

- Thrust production
 - Need to mitigate effects of SC integration on compliance

- Lift generation
 - Needs to be able to fold wings to increase static lift

- Maneuverability
 - Need to account for SC effects on control of wings
Research Goals

- Develop new compliant multifunctional wing structures for flapping MAVs
- Improve the time-of-flight for flapping MAVs through integration of solar cells
- New models for effects of integrating solar cells on compliance and performance in order to define a new multifunctional performance index for optimizing wing design

Anticipated Impact

- Compliant multifunctional wing structures have the potential to provide flapping MAVs with infinite flight capability
- Characterizing and modeling the mechanics of these wing structures will enable general design principles to be developed for flapping MAVS
Proposed Research Approach

Experimental mechanics-based system design approach to integrating SCs into compliant wings for MAVs for improving time-of-flight through trade-off in energy harvesting and consumption
Solar Cell Integration into Compliant Wing Structures

- Use pre-packaged flexible Solar Cells (SCs) on existing wing structures
 - Parasitic Mass and Stiffness
- Size and distribution of SCs can be varied
- Mechanics of SC integration can vary with wing spar configurations and bird sizes
Experimental:
Lift and Thrust Measurements

- A test stand was developed to measure lift and thrust forces generated by the MAV, as well as torque.
- The MAV is mounted directly to a 6 DOF load cell from ATI in order to measure all forces and torques simultaneously.
- Can compare measured with designed forces and torque to resolve any asymmetries due to wing construction or in the flapping motion.
Experimental: 3-D Digital Image Correlation (DIC)

- Digital Image Correlation is an optical method [Bruck, Sutton, et al, *Exp. Mech.* (1989)] developed to measure 2D or 3D deformations on an object surface under real loading conditions, which can be viewed as an “Optical Finite Element Analysis”
- Actual displacement is continuously measured and the Lagrangian strain tensor is available at every point on the specimen’s surface

Wing w/speckle pattern for DIC
Comparison of 3-D DIC with Thrust Measurements

Transformed DIC strains along direction of spar correlated most directly with thrust measurements obtained from test stand.

1 Hz
Compliant Front Spar Wing

- Composed Mylar® wing material
- Flexible spar section fixed between two carbon fiber rods
- Two additional carbon fiber rods support the wing
Solar Cell (SC) Integration into Wings

SCs can be aligned in parallel to maximize current, and coverage can be varied.
Characterization of MF Wing Performance

Outdoor testing of integrated SCs on regular front spar wing (left) and compliant front spar wing (right)
Stiff vs. Compliant Front Spar: 3 Hz flapping frequency

Significant differences in shapes during flapping for compliant front spar relative to stiff front spar are easily discerned from high speed videos.
Compliant MF wings exhibit more stable and enhanced energy harvesting capability.
Load Cell Results

Load cell measurements indicate very little asymmetry in flapping performance for both stiff and compliant front spars.
Stiff vs. Compliant Front Spars: *Thrust and Lift*

- Compliant spar generates 100% more thrust
- Downward lift component is eliminated with compliant front spar with slight increase overall

<table>
<thead>
<tr>
<th></th>
<th>Avg. Thrust (lb)</th>
<th>Avg. Lift (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stiff</td>
<td>Compliant</td>
</tr>
<tr>
<td>Thrust</td>
<td>0.24</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Thrust and Lift graphs showing the comparison between stiff and compliant spars.
Effects of SC integration

- SC integration significantly decreases thrust/negligible lift change
- Compliant front spar has 3% more lift than stiff front spar
Mechanics of SC Integration into Compliant Wing Structures

- Integration of Solar Cells (SCs) can reduce thrust and lift generation
 - Increases inertial mass of wing
 - Stiffens wing
- Effects of SCs vary with mass of bird and size of wings
- Need to relate benefits of energy harvesting to detrimental effects on flapping performance of compliant wing structures to develop *multifunction performance index*
Conclusions

• Commercial SCs are being integrated into compliant MAV wings for energy harvesting

• Impact of SCs on MAV thrust generation is being characterized and related to shape constraint using 3D DIC
 – Can develop a new *multifunctional performance index* for optimizing performance

• The effects of compliant versus stiff front spars have been characterized use 6 DOF load cell
 – Can determine benefits of compliant front spars in generating more lift to offset weight of SCs
 – Can reduce power requirements by reducing flapping frequency
FY13 Efforts

- Characterize flapping frequency effects on MF wings
- Conduct extensive 3D DIC characterization of MF wings
- Develop mechanics model for MF wings
- Conduct time-of-flight tests
- Use mechanics model to modify design synthesis of MF wings
- Re-design MF wing to enhance time-of-flight