Water Sustainability & Conservation in an Exhaust Cooling Discharge System
Case Study

17 Jun 10

Kimberly Ehret
Environmental Engineer
AFRL/RZOEE
Air Force Research Laboratory
1. REPORT DATE
17 JUN 2010

2. REPORT TYPE

3. DATES COVERED
00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Water Sustainability & Conservation in an Exhaust Cooling Discharge System Case Study

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory, AFRL/RZOEE, Wright Patterson AFB, OH, 45433

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the NDIA Environment, Energy Security & Sustainability (E2S2) Symposium & Exhibition held 14-17 June 2010 in Denver, CO.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES 39

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Component Research Air Facility (CRAF)

- Simulates high altitude conditions for aircraft and aviation fuels research
- Exhaust >3000 F at flows >36,000 cfm
- Cooled by water to 100 F
- Up to 1000 gpm water flow
Challenge

- Design an Exhaust Cooling Discharge System (ECDS)
 - Treat free product
 - Treat emulsified fuel in water
 - Treat 300,000 gallons of water/research effort
 - Efficiently cool while limiting wastes
 - Determine viability of using fuel contaminated water to cool
 - Determine ability to recycle the water
 - Work within existing infrastructure
Technologies Evaluated

• Oil/Water Separator (OWS)
• Air-Sparged Hydrocyclone
• Direct Sanitary Discharge
• Diffused Air Flotation (DAF)
• OWS & Clay Towers – discharge to storm or sanitary
• OWS & Clay Towers – closed loop system
Ranking Parameters

- Initial cost
- Recurring annual cost
- Installation cost
- Risk
Oil/Water Separator

- Mechanical separation of oil and water
- Pros
 - Separates free product
- Cons
 - Cannot separate emulsified fuels
Air-Sparged Hydrocyclone

• Removes hydrophobic particles from aqueous solutions
• Vehicle wash racks & engine test cells
• Pros
 – High removal of oil & grease
• Cons
 – Low flows 20 gpm – 250 gpm
Direct Sanitary Discharge

• OWS – Separates free product – discharge to sanitary

• Pros
 – No EPA compliance monitoring
 – No waste disposal
 – No chemical handling

• Cons
 – Existing line too small
 – Disposal costs for sewage (present & future)
 – Lack of water conservation
Diffused Air Flotation

- Chemicals used to flocculate emulsified fuels
- Air bubbles raise fuel to surface

Pros
- Meets compliance levels for storm water discharge

Cons
- Large footprint needed
- Recurring waste production – sludge disposal
- EPA compliance monitoring (storm water)
- Chemical purchases and handling

17 June 2010
OWS & Clay Towers – Discharge to Storm or Sanitary

- OWS – removes free product
- Clay towers – remove emulsified fuel
- Pros
 - Can meet storm water compliance
 - No chemical handling
- Cons
 - Replacement of clay & waste disposal
 - Compliance monitoring
 - Freezing problems
• OWS – removes free product
• Clay towers – remove emulsified fuel

• Pros
 – Recycles water
 – Can meet storm water compliance or can discharge to existing sanitary
 – No chemical handling

• Cons
 – Replacement of clay & waste disposal
 – Freezing problems
 – Fuel in recycled water
Selection Parameters
(1 Lowest , 4 Highest)

<table>
<thead>
<tr>
<th></th>
<th>Initial Costs</th>
<th>Annual/Recurring</th>
<th>Installation months</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanitary Line</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Closed Loop</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>OWS with Clay</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>DAF</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Preferred Option

• Closed Loop
 – Can it actually be accomplished?

• Additional Details
 – Estimate fuel concentration in recycled water
 • Can it safely be recycled to cool exhaust?
 • Can water be recycled without clay?
 – Can existing sanitary line be used?
 – How much water needs to be stored for release to sanitary?
 – Infrastructure limitations
Fuel Concentration

• 4000 ppm average (200 gal fuel, 50,000 gal water)
• Not to exceed 15,000 ppm
• Measured concentration in trial run
 — 600 ppm time 0
 — 250 ppm time 2hrs
• Water with emulsified fuel can be recycled safely without clay polishing
Sanitary Line

- OWS ensures free product capture
- Sanitary line survey conducted
 - Existing line - <200 gpm discharge acceptable
- Flashpoint test
 - > 140 F for emulsified fuel
- Discharge temperature
 - < 70 F
- Existing line can be used for discharge

17 June 2010
Water Storage

• 60,000 - 100,000 gallons
• 2 or 3 tanks 35,000 gallons each
Infrastructure Limitations

- Location of 1500 gpm OWS
- Location of 35,000 gallon towers
Conclusion

• Closed Loop System can be accomplished
 — Unique combination of OWS, two-35,000 gallon storage tanks, recirculation of water to cool the exhaust and low flow controlled discharge to sanitary sewer
• Recirculation saves approximately 20M gallons of water/year