NAS Brunswick Groundwater Extraction & Treatment System: A Practical Approach to Sustainable Remediation

14-17 June 2010

Todd A. Bober, Remedial Program Manager
Navy BRAC Program Management Office, Northeast

Curt Varner, Project Manager/Engineer
ECC, Marlborough, MA
NAS Brunswick Groundwater Extraction & Treatment System: A Practical Approach to Sustainable Remediation

Naval Facilities Engineering Command Mid-Atlantic, Navy BRAC Program Management Office, Northeast, Philadelphia, PA

Presented at the NDIA Environment, Energy Security & Sustainability (E2S2) Symposium & Exhibition held 14-17 June 2010 in Denver, CO.
Overview

- Groundwater Extraction & Treatment System (GWETS) has been operating at NAS Brunswick for over 15 years
- Navy Team has aggressively sought opportunities to enhance sustainability of remedial operations while protecting human health and the environment
- Enhancements (current and proposed) have included:
 - On-site recycling of GWETS effluent to infiltration gallery
 - Power consumption analysis to minimize environmental footprint and develop more energy efficient treatment train
 - Continued evolvement and update of site conceptual model and associated risk assessment analysis to support long term strategies and decision making
Naval Air Station Brunswick GWETS –
A Practical Approach to Sustainable Remediation

- NAS Brunswick located on Maine’s southern coast.

- Supported the Navy’s antisubmarine warfare operations from 1940s to 2010.

- Identified for Base Closure in 2011 in accordance with 2005 BRAC law.

- Now in final stages of BRAC process, property to be transferred back to public.

- Residual contamination being mitigated under the Navy’s Installation Restoration Program.
Naval Air Station Brunswick GWETS –
A Practical Approach to Sustainable Remediation
Eastern Plume is hydraulically contained by clay aquitard overlying bedrock.

However, groundwater upwells and discharges along several areas of Mere Brook.
Groundwater Contaminant Migration Route
Naval Air Station Brunswick GWETS –
A Practical Approach to Sustainable Remediation

GWETS at Building 50
GWETS Operational Schematic

Untreated Groundwater

Process Water after Primary Treatment

Treated Effluent

Equalization Tank

Sand Filters

Air Intake

Air Primary Blower

10Hp

Air Stripper

24KW Air-Stream Heater

Vapor-Phase GAC Units

Atmospheric Emission

Influent Groundwater

33,000 KWh/month (equivalent to 57 households of power in Maine)

To Infiltration Gallery
Plume Reduction Since 1995
Back Diffusion Problem
GWETS Performance Summary

- Very effective for hydraulic control and contaminant recovery during first 10 years
- Diminishing effectiveness since 2005, GWETS operations have reached asymptotic range
- Further contaminant recovery is diffusion-limited
- Eastern Plume chlorinated solvent concentrations substantially reduced, although residual impacts continue to exceed site closure requirements
- Several decades may be required to reach site closure using diffusion-limited pumping
- What are the off-site environmental impacts incurred during GWETS operation?
USA Electrical Generation by Energy Source – All Sectors
(effective February 2010, not specific to NASB)
Annual Off-site Air Emissions Relative to Chlorinated Solvent Recovery

<table>
<thead>
<tr>
<th>Total Annual Emissions for Conventional Sources of GWETS Electrical Demand*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur Oxides (SOx)</td>
</tr>
<tr>
<td>Nitrogen Oxides (NOx)</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
</tr>
<tr>
<td>Fine Particulates</td>
</tr>
<tr>
<td>Mercury</td>
</tr>
<tr>
<td>Carbon Dioxide (CO$_2$)</td>
</tr>
</tbody>
</table>

Asymptotic GWETS Chlorinated Solvent Recovery = 10-12 lbs per year.

* 20% of power provided by nuclear sources not included, generation breakdown typical for USA (not specific to NASB)
Previously Completed Energy Efficiency Measures

1) Primary treatment changed from Metals Removal and UV Oxidation to Air-Stripping and Granular Activated Carbon (GAC)
 - Substantial reduction in power usage

2) On-site infiltration gallery installed to accept treated effluent, reducing load on Brunswick Sewer System by 50,000-gal/day
 - Eliminated sewer pumping and secondary wastewater treatment
Infiltration Gallery

• Onsite subsurface crushed stone infiltration system, gravity fed

• Recharges approximately 25 million gallons per year into local aquifer – reduces load on local POTW

• Requires very little maintenance

• Is consistent with Low Impact Development (LID) initiatives
Two Technical Challenges in 2009

1) Reduce GWETS electrical demand in consideration of off-site environmental impacts

2) 1,4-dioxane: emerging groundwater contaminant not treated by existing air-stripper and GAC system
GWETS with HiPOx and Liquid-Phase GAC

- Untreated Groundwater
- Process Water after HiPOx
- Treated Effluent
- Inactive Equipment

Influent Groundwater

Equalization Tank → Sand Filters → Re-furbished HiPOx HCU System

- Waste Hydrogen Peroxide
- Ozone Generator

Re-furbished HiPOx System

Air Stripper → Transfer Pumps With VFDs

- 24KW Air-Stream Heater
- 10 Hp Primary Blower
- 10 Hp Booster Blower

Variable Frequency Drives added to transfer pumps

17,000 KWh/month
1,4-dioxane Treated

Beneficial Reuse of waste H2O2

To Infiltration Gallery
Need for Transition to Sustainable Remediation

- Contaminant mass recovery by GWETS is returning to asymptotic conditions, further removal is diffusion-limited.

- Although significantly reduced, residual chlorinated solvent concentrations continue to exceed regulatory standards.

- Off-site (i.e., global) environmental impacts associated with electrical power generation for GWETS operation has an impact on regional environmental quality.

- Navy continuing to investigate nearby surface water area (Mere Brook) to assess the natural or enhanced attenuation capacity.
Sustainable Alternatives to Groundwater Pumping

Reduce mass flux of contaminants at GW-SW interface
- Plant-based methods
- Biological methods
- Abiologic methods
- PRB

In-stream treatment?
Nutrients
Inject nutrients, etc.
Permeable reactive barrier
Groundwater Discharge Area at Mere Brook
Summary

- Overall environmental footprint should be evaluated at the early stages of remedial design.

- Energy audit of remediation system and associated building infrastructure can result in significant long-term savings in power consumption costs.

- Off-site environmental impacts incurred during power production for energy-intensive remedial systems should be considered as part of overall environmental strategy.

- Further understanding and demonstration of natural attenuation mechanisms along with updated site conceptual model are critical to support best sustainable remedial alternatives for groundwater solvent plumes.
Acknowledgement

Assistant Secretary of the Navy for Energy, Installations and Environment (ASN(EI&E)) for championing the development of environmental restoration strategies that are energy efficient, sustainable and cost-effective while protecting human health and the environment.
Naval Air Station Brunswick GWETS –
A Practical Approach to Sustainable Remediation

Todd Bober, PE
Remedial Program Manager
NAVFAC-MIDLANT, Philadelphia, PA
(215) 897-4911
todd.bober@navy.mil

Curt Varner, PE, CEM
Project Manager/Engineer
ECC, Marlborough Massachusetts
(508) 309-0924
cvarner@ecc.net