AFCEE’s ERP-O: A Journey from System Optimization to Program Optimization

Dr. Javier Santillan
Air Force Center for Engineering and the Environment
1. REPORT DATE
JUN 2010

2. REPORT TYPE

3. DATES COVERED
00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
AFCEE’s ERP-O: A Journey from System Optimization to Program Optimization

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Center for Engineering and the Environment, 2261 Hughes Ave, Lackland AFB, TX, 78236-9853

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the NDIA Environment, Energy Security & Sustainability (E2S2) Symposium & Exhibition held 14-17 June 2010 in Denver, CO.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified

 b. ABSTRACT
 unclassified

 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
30

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Outline

Introduction
Evolution
Partnerships
Summary
Optimization Evolution

Evolution (1997 – 2007)

<table>
<thead>
<tr>
<th>Starting point</th>
<th>Monitoring Optimization (LTM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakthrough</td>
<td>RSO/RPO (RA-O)</td>
</tr>
<tr>
<td>Conceptual Site Models</td>
<td>RSC</td>
</tr>
<tr>
<td>Looking to the end</td>
<td>Exit Strategy</td>
</tr>
<tr>
<td>Big Picture</td>
<td>PBM</td>
</tr>
<tr>
<td>What more can go wrong</td>
<td>RPRM</td>
</tr>
<tr>
<td>Net no harm</td>
<td>GSR</td>
</tr>
<tr>
<td>Even Bigger Picture</td>
<td>ERP-O</td>
</tr>
</tbody>
</table>
Foundation for ERP-O

Better Business Practices

- GSR 2009
- RPRM - 2008
- PBM - 2004
- Exit Strategy - 2003
- Streamlined Investigation - 2003
- Remedial Process Optimization - 1999
- Long-Term Monitoring Optimization - 1997

Value Engineering

Integrity - Service - Excellence
What we are doing now
Environmental Restoration Program Optimization (ERP-O) is a comprehensive and systematic review of an installation’s past, current and planned cleanup activities whose goal is to ensure protection of human health and the environment over the entire restoration life-cycle at minimal risk and optimal costs.

ERP-O provides all the needed tools to manage risk and complies with AFSO21.
ERP-O Flow Chart

Environmental Restoration Program Optimization

Investigation Process Optimization
- Preliminary Site Assessment/Site Investigation (PA/SI)
- Remedial Investigation/Feasibility Study (RI/FS)

Remedial Process Optimization
- Remedy Selection, Proposed Plan, and Record of Decision (ROD)
- Remedy in Place
- Response Complete NFRA NFAP
- Cleanup Confirmed Site Closure

Technical Assistance Visits
- Remedial Design (RD)/Remedial Action Construction (RA-C)
- Remedial Action Operations (RA-O)
- Long-Term Monitoring
- Post-Closure Care (Site Closed)
An Iterative/Systematic Planning Approach for
Evaluating Remedial Study Programs
with the Goal of Improving Overall:

- Study Program Effectiveness
- Time and Cost to Achieve Site RIP Milestone
- Timely Feedback to Decision Makers

Definition:

A component of the overall AFCEE ERP-O
An Iterative/Systematic Planning Approach for Evaluating Existing/Proposed Remediation Processes with the Goal of Improving Overall:

- Control Effectiveness
- Site Cleanup Time and Costs
- Timely Feedback to Decision Makers

A component of the overall AFCEE ERP-O
An Iterative/Systematic Planning Approach for Evaluating Existing/Proposed Remediation Processes with the Goal of Improving Overall:

- Control Effectiveness
- Site Cleanup Time and Costs
- Timely Feedback to Decision Makers

A component of the overall AFCEE ERP-O
A Systematic Analytical Approach for resolution of regulatory, technical, contractual, programmatic issues

- Conceptual Site Models and Exit Strategies
- Decision Documents
- Contractual Strategies
- Decision Logic
- Background Studies

A component of the overall AFCEE ERP-O
Where we have been

ERP-O Visits Completed

Integrity - Service - Excellence
Where are we in execution of ERP-O?
Where we are now

- ERP-Os Completed at:
 - 45 Air Force Bases
 - Primary Bases identified with sites at risk for RIP 2012
 - 90% of Total CTC
 - 4 Joint Bases
- ERP-O impact has been realized at many bases
 - Sites closed
 - Eliminated risk
Common Deficiencies

At the Installation Level

- Current, concise and representative CSMs not available
- Exit Strategies not defined nor documented
- Performance Metrics not adequately selected, defined or documented
- Decision Logic not well defined or documented
Where we are now

➢ Working to achieve ERP-O ROI
 ❆ Implementation Challenges
 □ It takes time (12 to 18 months)
 □ It takes resolve (consistent committed effort by all stakeholders)
 □ It takes teamwork (coordinated efforts with PMO-PM and RPMs)
 □ It’s hard (technically, programmatically, contractually, regulatory)
 ❆ Actions needed by ERP-O
 ❆ Base review, concurrence, and follow-through for implementation for Phase II and Phase III taskings
 ❆ Getting PMO PM involved to execute the action(s)
 ❆ Regulatory interface
Did it Work as Planned

- ERP-O recommendations were not being implemented years after the visit
- Needed a process to transfer responsibility of execution to the base
- A Management review was incorporated into ERP-O
 - Recommendations are reviewed by base and management
 - Approval from regulatory agency (if needed) pursued by team with base present
 - Request for funding documents are prepared for approved recommendations
- Now it is working
Original PBM Elements

Expert Team

- Defined Problem
- Representative CSM
- Current & Future Land Use
- Established ARAR Analysis Strategy
- Remediation Decision Logic
- Exit Strategy
- Performance Based Contracting
- Process Optimization
- Defined Problem

I n t e g r i t y - S e r v i c e - E x c e l l e n c e
Current ERP-O Elements

REMEDIAL PROCESS OPTIMIZATION
Peer Review

Process Optimization

Asset Management, Defined Problem, Reuse Objectives

Representative CSM

Restoration Performance Risk Management

Established ARAR Analysis Strategy

RIP/SC EXIT STRATEGY

R-PMO/ TDV Expert Team

VALIDATION & PERFORMANCE BASED CONTRACTING

Contracting or Privatization Strategy

Restoration Exit Strategy

Restoration Decision Logic
ERP-O Phases

High-Level Overview

1. Program Planning
 - 1.1 Plan future projects at biannual meeting
 - 1.2 Use R2TM in validation process

2. Pre-Visit (Phase I)
 - 2.1 Pre-Visit Planning
 - 2.2 Pre-Visit

3. Visit (Phase I)
 - 3.1 Plan ERP-O visit
 - 3.2 Complete ERP-O Visit

4. Detailed Assessment (Phase II)
 - 4.1 Defined as ERP-O project beyond the scope of the site visit team (See 3.2.7)
 - 4.2 Form recommendations for phase II actions (See R2TM 4.2.4)
 - 4.3 Perform phase II actions

5. Implementation of Recommendations (Phase III)
 - 5.1 Implemented by Base and Contractors
 - 5.2 Oversight and Quality Assurance

6. R2TM (Phase IV)
 - 6.1 Produced from ERP-O Visit products
 - 6.2 Coordinate with R-PMO and TD annually

7. Communications
 - 7.1 Participate in dry-run out-brief and review report
 - 7.2 Write article draft
 - 7.3 Editor approves article and article goes to publication

19
ERP-O Tools

- EDITT
- R2TM
- UAT
- PTT
- SRT
Environmental Decision Information Tracking Tool (EDITT)

System Inventory
- Decision Document Inventory
 - Site Inventory
 - R2TM
 - LUC/IC Inventory
 - ERP-O Tracker
 - Emerging Issues
 - LUC/IC E-mail Notification

PTT
- Compliance
 - Phase
- Restoration
 - Phase
- Support Documents
- Tech-Visits
 - Peer Review
 - Five Year Review
 - Triad
 - Phase 1
 - Phase 2
 - Phase 4

AF-wide since 2006 (Formerly RIPS)
Summer 2008
February 2009
March 2009
May 2009

TBD
381 Remedial Systems in Operation*

*Based on FY08 EDITT System Inventory as of 15 March 2010
AF Remediation System

Annual Costs by Technology

381 Remedial Systems in Operation*

Energy Intensive (66% annual costs)
- Soil Vapor Extraction, $5.1M / 11%
- LNAPL Recovery, $1.5M / 3%
- Pump and Treat, $23.9M / 52%

Low Energy / Passive (28% annual costs)
- Enhanced Bioremediation, $7.9M / 17%
- Monitored Natural Attenuation, $4.1M / 9%
- Wall/Barrier, $852K / 3%
- Other, $2.8M / 6%

*Based on FY08 EDITT System Inventory as of 15 March 2010

Integrity - Service - Excellence
Average Life-Cycle Costs by Technology

- **Pump and Treat**: $8.39 M, 30 yrs
- **Soil Vapor Extraction (SVE)**: $2.04 M, 13 yrs
- **LNAPL Recovery**: $2.60 M, 11 yrs
- **Enhanced Bioremediation**: $1.45 M, 11 yrs
- **Monitored Natural Attenuation (MNA)**: $1.51 M, 27 yrs
- **Wall/Barrier**: $2.8 M, 30 yrs
- **Other**: $1.01 M, 15 yrs

Energy Intensive Inventory – 38% LCC - 73%

Low Energy / Passive Inventory – 48% LCC – 24%

Average Lifetime O&M Costs $1.25B

Based on FY08 EDITT System Inventory as of 15 March 2010
Partnerships

- ITRC
- USACE
- USGS
Partnerships

- Interstate Technology Regulatory Council
 - Participates in ERP-O visits
 - Co-authored the Exit Strategy Factsheet
 - Provides support during regulatory interface
 - Provides free environmental training through the internet and class room
- Developed RPO, PBEM Technical Regulatory guidance
- Developing Remediation Risk Management Tech-Reg guidance
- Developing Green and Sustainable Tech-Reg guidance
Summary

- How we got here is a long and tortuous journey
- Over 10 years
- It is essential that we promote wise remediation where we truly manage and when possible eliminate risk
- But we have to stop transferring the risk to others
 - Digging material to send to a landfill (transfer)
 - Removing ounces of pollutants from GW while dumping tons in the atmosphere (transfer)
Conclusion

IMPLEMENT SMART REMEDIATION

QUESTIONS??