Award Number: W81XWH-10-1-0518

TITLE: MASSIVELY PARALLEL ROGUE CELL DETECTION USING SERIAL TIME-ENCODED AMPLIFIED MICROSCOPY OF INERTIALLY ORDERED CELLS IN HIGH THROUGHPUT FLOW

PRINCIPAL INVESTIGATOR: BAHRAM JALALI

CONTRACTING ORGANIZATION: THE UNIVERSITY OF CALIFORNIA, LOS ANGELES
Los Angeles, CA 90095

REPORT DATE: August 2011

TYPE OF REPORT: ANNUAL

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Massively Parallel Rogue Cell Detection Using Serial Time-Encoded Amplified Microscopy of Inertially Ordered Cells in High Throughput Flow

Bahram Jalali, Dino Di Carlo

E-Mail: jalali@ucla.edu

University of California, Los Angeles
Los Angeles, CA 90095-0001

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Approved for Public Release; Distribution Unlimited

14. ABSTRACT approximately 200 words. Summary of the most significant findings during the research period, 2010-2011. Below is the one for 2011-2012

The identification of cancer cells (CTCs) in patient blood has shown to be useful for predicting patient prognosis after primary treatment, and small amounts of CTCs have also been observed in early stage breast cancers. Current gold standard techniques to isolate CTCs based on immunomagnetic capture, however, have low throughput leading to high statistical uncertainty in early stage disease when CTC numbers are very low (< 1 cell/mL). Revolutionary new techniques are required to screen statistically significant larger volumes of blood for CTCs in a cost effective manner. This will critically enable applications in early detection of occult breast cancer not detectable by standard mammography and ultrasonography and dramatically reduce breast cancer related deaths. During this performance period, we successfully completed the development of the STEAM flow analyzer and demonstrated real-time detection of rare MCF7 cells in lysed blood with the analyzer with sensitivity of 75% and a false positive rate of 1 in 1,000,000 white blood cells.

15. SUBJECT TERMS
breast cancer, flow cytometry, cell labeling, single cell imaging, automated microscope, flow through microscope, STEAM, time stretch

16. SECURITY CLASSIFICATION OF:
a. REPORT U
b. ABSTRACT U
c. THIS PAGE U

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES 13

19a. NAME OF RESPONSIBLE PERSON USAMRMC

19b. TELEPHONE NUMBER (include area code)
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>5</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>8</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>8</td>
</tr>
<tr>
<td>Conclusion</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>9</td>
</tr>
<tr>
<td>Appendices</td>
<td>9</td>
</tr>
</tbody>
</table>
Introduction
Detection of rare cells with high statistical accuracy is technically challenging as it requires a high-throughput instrument that can examine an enormous population of cells in a short time yet with high sensitivity and specificity. High-throughput detection is essential to rapidly assay morphological and biochemical properties in a reasonable period of time. Also, the instrument is required to have high information content detection capability (e.g., information provided by imaging) to resolve single, multiple, and clustered cells as well as to distinguish debris and nonspecific labeling. Such capability is challenging for conventional high-throughput analyzers such as electronic particle counters and flow cytometers because their operation builds on single-point detection and hence they do not provide spatial resolution. Moreover, the instrument must be immune to background noise which would otherwise produce a large number of false positive events or inaccurate subpopulation counts. These requirements are crucial as detection with large uncertainty would produce unreliable diagnostic results. Finally, the instrument is required to operate in real time and have on-line image processing capability in order to avoid storing millions of images and having to perform off-line processing of stored images – a task that would be prohibitively slow. Storage and retrieval of a massive amount of data and off-line processing would limit the sample volume, thus compromising statistical accuracy in high-throughput screening.

While useful for visual inspection of many individual cells without human intervention, conventional automated microscopy does not have high throughput and is hence unable to diagnose, evaluate, and screen a large population of cells with high sensitivity and high statistical accuracy simultaneously. The throughput of state-of-the-art automated microscopes is only up to ~1000 cells/s, limiting the sample volume. Furthermore, such systems do not have real-time on-line image processing. As a benchmark, this throughput is significantly lower than that of single-pixel high-throughput analyzers (~100,000 cells/s). While high-end digital cameras [i.e., charge-coupled device (CCD) and complementary metal-oxide-semiconductor (CMOS) cameras] are now able to perform imaging at a speed approaching 1 million frames/s, they are not well suited for high-throughput microscopy due to several critical limitations. First, a critical limitation that hampers imaging of cells flowing at high speeds is the relatively long shutter speed or exposure time (≥1 μs) that results in motion blur and loss of resolution during the high-speed flow (hence, degrading specificity). Another limitation is the time needed to download the image from the array of thousands of pixels. To achieve high frame rates, the number of pixels that are employed must be reduced in a process known as partial readout. The penalty is that image resolution is lost at high frame rates. Furthermore, currently digital image processing cannot be performed in real time due to the storage and access of the massive amount of digital data that is produced during high-speed imaging and hence requires many days of off-line digital processing. This translates into a limited sample volume, leading to low statistical accuracy. These limitations prevent automated microscopy from analyzing a large population of cells with high statistical accuracy in a practical period of time.

To address the needs and challenges, we have developed an automated flow-through single-cell optical microscopy system that can evaluate, diagnose, and screen a large population of cells and hence detect rare cells with high specificity, high sensitivity, and high statistical accuracy in a short time. This method builds on an unique integration of (i) an ultrafast optical imaging modality known as serial time-encoded amplified microscopy (STEAM) [1-3] for blur-free imaging of cells in high-speed flow, (ii) inertial microfluidic technology for sheath-free focusing and ordering of cells with inertial forces [4], and (iii) hybrid optoelectronic image processing circuitry for real-time image processing. The integrated system transforms microfluidic flow into a series of “E-slides” – an electronic version of glass slides – on which cells of interest are digitally analyzed. With the power of optoelectronic
communication and information technologies, this property enables fully automated real-time image-recording and classification of a large number of cells through their morphological and biochemical features. As a proof-of-principle demonstration, we have shown non-stop real-time image-based identification and screening of rare MCF7 breast cancer cells in blood with an unprecedented throughput of 100,000 cells/s and false positive rate of 1 in a million.

Body

Our system, which we refer to as the STEAM flow analyzer (Figure 1, Supplementary Table 1), consists of three subsystems: (i) the microfluidic device (Figure 2, Supplementary Table 2), (ii) the STEAM camera (Figure 1, Supplementary Table 1), and (iii) the real-time optoelectronic image processor (Figure 3, Supplementary Table 3). The STEAM flow analyzer operates in three steps. First, cells are controlled to flow at a uniform velocity and focused and ordered by inertial lift forces in the microfluidic channel. Second, the STEAM camera takes images of the fast-flowing cells. Finally, the real-time optoelectronic image processor optoelectronically processes the images and performs automated cell screening in real time.

The STEAM flow analyzer employs inertial microfluidic technology (Figure 2). This method provides uniform positions and velocities for cells with inertial lift forces (important for generation of clear E-slides) while eliminating the need for sheath fluid which is traditionally required for hydrodynamic focusing in conventional flow cytometers. To ensure stability in real-time image processing, the microfluidic device was fabricated by replica molding in thermoset polyester due to its high stiffness and ability to sustain high pressures (Appendices, Supplementary Figure 1, Supplementary Table 2).

The STEAM camera operates in a shadowgraph imaging configuration. First, the image of a cell is encoded into the spectrum of broadband optical pulses. Operating the STEAM camera in a line scan mode and double-pass shadowgraph imaging configuration, the real-time optoelectronic image processor (the details of which are described below) constructs the 2D shadowgraph image of a cell from a series of 1D line scans (Figure 1). For the line scans, a pair of diffraction gratings spatially disperses and hence converts broadband optical pulses into rainbow pulses (27 ps pulse width) which are incident via the objective lens onto the flowing cell in the microfluidic channel. The pulses are repeated at a repetition rate of 36.7 MHz, which corresponds to the line scan rate. The back-reflected pulses from the substrate of the microfluidic device are directed via the same optics and an optical circulator toward the real-time optoelectronic image processor in which 2D E-slides are constructed from the 1D frames and subject to screening.

The architecture and function of real-time optoelectronic image processor are multi-fold. As shown in Figure 1, it consists of an amplified dispersive Fourier transformer (i.e., optical image amplifier and serializer), a high-speed photodetector, and a field-programmable digital image processor. First, the amplified dispersive Fourier transformer serializes the image-encoded pulse (i.e., the 1D image frame) into a time-domain data stream and simultaneously amplifies it in the optical domain (i.e., optical image serialization and amplification). The optical image amplification (~30 dB) before photon-to-electron conversion is critical as it enables high-throughput microscopy in the ultrashort
exposure time (27 ps) without the need for a high-intensity illuminator or sacrificing sensitivity. In addition, the ultrafast shutter speed freezes any motion of cells in high-speed flow, allowing for acquisition of blur-free images. The amplified 1D data stream is detected by the high-speed single-pixel photodetector, eliminating the need for a detector array and hence readout time limitations. Second, the field-programmable digital image processor (Figure 3, Appendices) employs a programmable multi-stage decision-making architecture that can be customized, depending on the application. It consists of (i) a high-speed analog-to-digital converter (ADC) for image digitization, (ii) a fully integrated designer-programmable circuit employing a field-programmable gate array (FPGA) for cell capture, E-slide generation, and coarse cell classification, (iii) a memory circuit for storing down-selected E-slides, and (iv) a central processing unit (CPU) for fine cell classification. Specifically, the function of the FPGA is to identify the presence of cells (ignoring the gaps between the cells), generate E-slides for the cells, down-select the E-slides (i.e., the cells) through their morphological and biochemical markers, and store the selected E-slides in the memory while dumping the unselected E-slides. To ensure reliable cell classification on the field-programmable digital image processor, our in-house cell classification method (the so-called custom supervised learning method or support vector machine) is trained to build a model that predicts whether a new target (i.e., cell) falls into any of the pre-defined cell categories, and then used to identify the target cells in real time (Appendices).

The STEAM flow analyzer’s blur-free image acquisition enables differentiation of cells from a heterogeneous population. Figure 4 shows E-slides of fast-flowing cells of various species in the microfluidic channel captured by the STEAM flow analyzer. Here the cells were controlled to flow at a uniform speed of 4 m/s, which corresponds to a throughput of 100,000 cells/s – a very fast flow, but motion blur is absent in the images due to the ultrafast shutter speed of the STEAM camera (27 ps). For comparison, Figure 4 also shows images of the same types of cells flowing under the same conditions captured by a state-of-the-art CMOS camera. These images show that the CMOS camera’s lower shutter speed (1 μs) and lack of optical image amplification significantly reduced the sensitivity and caused motion blur in the images, rendering the camera unable to classify cells reliably. For further comparison, stationary cells of the same types on a glass slide were obtained under a conventional microscope with a CCD camera with a much longer exposure time (shutter speed) of 17 ms (Supplementary Figure 2). Despite the fact that the STEAM camera is many orders of magnitude faster than the CCD camera, the two cameras share similar image quality (i.e., sensitivity and resolution).

To show the utility of the STEAM flow analyzer, we used it to demonstrate detection of rare breast cancer cells in blood. Such rare cells can be identified by a combination of morphological (i.e., size, circularity, and clustering) and biochemical (i.e., surface antigens) markers. Here our model for rare breast cancer cells is the MCF7 cell line (breast cancer) spiked in blood. Red blood cells are lysed with a hypotonic lysing agent while MCF7 cells are fixed with formaldehyde and coated with metal beads with a diameter of 1 μm via an antibody to EpCAM (a cell surface molecule that exists on the surface of epithelial cells, but not on the surface of blood cells). Our observation under a conventional microscope indicates that ~80% of MCF7 cells are coated with 5 – 20 metal beads.
To validate sensitivity for rare cell detection, we performed offline statistical analysis of white blood cells and coated MCF7 cells. This validation is important as it is required to build a fully trained model for the supervised learning method and hence the algorithms to be implemented on the FPGA and CPU. Figure 5 shows scatter plots of white blood cells and MCF7 cells based on the cell size (i.e., diameter) and presence of surface antigens (i.e., metal beads) using our system. The plots indicate that the system is capable of differentiating most white blood cells and MCF7 cells with high specificity using a single molecular marker. For comparison, Supplementary Figure 3 shows, using a conventional flow cytometer, scatter plots of the same cell types based on forward- and side-scattered light intensities as well as PerCP/Cy5.5-antiCD45 and FITC-antiEpCAM (fluorescence markers) which selectively bind to white blood cells and MCF7 cells, respectively (Appendices). The scattered light intensity plots do not allow for differentiation of the two cell types due to the significant overlap between the two groups. Furthermore, the overlap in the fluorescence intensity limits the specificity of the instrument down to ~0.1% subpopulations — inadequate for identification of circulating tumor cells which are rarer than ~0.1% of the population.

With the fully trained cell classification model, the STEAM flow analyzer can detect MCF7 cells as rare as ~1 in a million in a short period of time. Here we programmed the FPGA and CPU such that the FPGA captures incoming cells and performs size-based cell classification while the CPU performs classification by circularity and presence of metal beads (Supplementary Figure 4). The threshold for the size-based selection is set such that smaller MCF7 cells are also selected at the expense of detecting larger white blood cells (Figure 5). Yet,
this process efficiently rejects more than 99.9995% of white blood cells, all residual red blood cells, and all free-floating metal beads, leaving only a small number of false positive events (~100 per mL of lysed blood) along with true positive events (Figure 6). The FPGA’s ability to filter out the large number of blood cells and avoid storing the massive amount of digital data enables non-stop real-time operation. The down-selected cell images are stored in the memory (1GB) which can save up to ~4000v images (each of which has 256/v KB, where v is the flow speed in units of m/s). The stored images are then subject to the CPU’s selection process in which the cells are further classified by circularity and presence of metal beads (Supplementary Figure 5). This process rejects almost all the false positive events (i.e., multiple, unfocused, or unordered white blood cells) that have survived from the initial selection process on the FPGA while leaving true positive events and a very small number of false positive events (~10 per mL of lysed blood) which arise due to image processing artifacts and can further be rejected by human visual inspection.

Our statistical analysis of the capture efficiency indicates that the field-programmable digital image processor can identify extremely rare cells with a high efficiency of 75% (limited by the imperfect coating efficiency and missing smaller MCF7 cells in the FPGA selection process) (Figure 7). Furthermore, our receiver operating characteristic (ROC) curve analysis of the results indicates that our method is sufficiently sensitive for detection of ~1 MCF7 cell in a million white blood cells (i.e., a false positive rate of 10^{-6}) and is two orders of magnitude better in terms of false positive rate than the conventional flow cytometer yet without sacrificing throughput. Here all the measurements were performed at a throughput of 100,000 cells/s, corresponding to screening of 10 mL of lysed blood in less than 15 minutes.

Key Research Accomplishments
1. Construction of the optical system including the STEAM camera and its integration with the microfluidic device as well as the optical image amplifier and serializer for high-speed blur-free image acquisition
2. Development of the microfluidic device made of TPE
3. Development of the real-time optoelectronic image processor that performs high-throughput image-based screening of a large number of cells and identification of rare cells
4. Development of the algorithms implemented on the FPGA and CPU
5. Integration of the hardware and software into a combined system

Reportable Outcomes
1. Successful development of the STEAM flow analyzer
2. Real-time detection of rare MCF7 cells in lysed blood with the analyzer with sensitivity of 75%
3. Demonstration of a false positive rate of 1 in 1,000,000 white blood cells with the analyzer

Conclusion
In summary, we have developed a high-throughput single-cell flow-through image analyzer for real-time image acquisition and screening of a large heterogeneous population of cells with high sensitivity and high statistical accuracy. The throughput is limited by the microfluidic device’s tolerance to high pressures caused by high flow rates, not the STEAM camera’s image acquisition speed as well as the field-programmable digital image processor’s processing speed. We estimate that the throughput can be increased to 200,000 cells/s while retaining reasonable image quality and classification accuracy. Our method can also be combined with a conventional cell sorter to sort out rare cells for further chemical analysis of the cells. While in our proof-of-concept demonstration, we showed high-throughput screening of budding yeast and detection of rare breast cancer cells in blood, our method should also be...
amenable to other applications in which high-throughput microscopy is required, such as those found in oceanography, energy science, and medicine.

References

Appendices

Microfluidic device fabrication

The microfluidic device was fabricated in thermoset polyester (TPE) using standard replica molding methods (Supplementary Figure 1). Our previously reported channels [4] were drawn in AutoCAD (Autodesk, Inc., San Rafael, CA, USA). The design was printed as a photolithography transparency mask at 20,000 dots per inch (dpi). A negative photoresist (KMPR 1050, MicroChem, Corp., Newton, MA, USA) was spun at 3,000 rotations per minute (rpm) on a 4 inch silicon wafer. The wafer was heated on a hot plate at 95°C for 20 minutes then exposed to UV light with a power of 8.0 mW/cm² through the transparency mask for 90 seconds. The wafer was baked again at 95°C for 4 minutes then developed in SU-8 developer (MicroChem). The resulting master mold had a feature height of 43 µm. A replica was made by casting Silgard 184 Elastomer Kit (polydimethylsiloxane, PDMS, Dow Corning), mixed according to recipe, over the master.

Next, the replica was peeled off the master and PDMS mold of this replica was made as described by Kuo et al. Briefly, the PDMS replica was oxidized in air plasma then silanized with 0.2% octadecyltrichlosilane (Sigma-Aldrich) in ethanol for 15 minutes. It was then rinsed with ethanol and heated to 65°C for 30 minutes to prevent swelling. PDMS was then cast on the PDMS replica to create a mold with the same polarity as the master. It was degassed and cured at 65°C for 2 hours. This mold was separated from the replica and sonicated in isopropanol for 5 minutes, sonicated in deionized H₂O for 5 minutes, and baked at 65°C for at least 30 minutes. Holes were punched for tubing connectors.

TPE channels were fabricated following the protocol of Fiorini et al. 0.10 g of the UV-
Supplementary Figure 2: CCD images of stationary cells. Images of cells of various species were taken by a research-grade CCD camera. The exposure time (shutter speed) and pixel number of the CCD camera are 17 ms and 1280 x 1024, respectively.

Supplementary Figure 3: Conventional flow cytometer’s scatter plots. Shown are events of white blood cells and MCF7 cells based on forward- and side-scattered light intensities as well as PerCP/Cy5.5-antiCD45 and FITC-antiEpCAM (fluorescence markers) which selectively bind to white blood cells and MCF7 cells, respectively (See Methods). The total number of events is ~10,000 for both cell types. The scattered light intensity plots are clearly inadequate for differentiation of the two cell types due to the significant overlap between the two groups. Furthermore, overlaps in the fluorescence scatters due to unwanted autofluorescence and nonlinear optical processes limit the specificity of the instrument down to ~0.1% subpopulations – inadequate for identification of a cell type which is rarer than ~0.1% of the population.

Illumination and imaging optics of the STEAM camera
The optical source is a mode-locked femtosecond pulse fiber laser with a pulse repetition rate of 36.7 MHz. After supercontinuum generation in a highly nonlinear fiber and band-pass filtering, a nearly flat spectral shape with ~20 nm bandwidth centered at 1590 nm is produced for target illumination. A pair of diffraction gratings with 1100 lines/mm spatially disperses the pulses along a 1D line, producing 1D rainbow pulses.

Amplified dispersive Fourier transformer
The amplified dispersive Fourier transformer (ADFT) consists of a dispersive fiber with -1200 ps/nm dispersion pumped by four continuous-wave lasers with ~100 mW at 1470 nm, 1480 nm, 1480 nm, and 1490 nm for distributed Raman amplification. Before the ADFT, an erbium-doped fiber amplifier (EDFA) is used as a pre-amplifier. The EDFA and ADFT produce a net gain of up to 13 dB and 17 dB (depending on signal-to-noise ratio), respectively. The specifications of the STEAM camera can be estimated from the parameters of its components. First, the number of 1D image pixels on the target (N) is found from the total dispersion in the dispersive fiber (D = -1200...
Supplementary Figure 4: Block diagram of the hardware implemented on the FPGA for the rare cell detection. The FPGA performs size-based cell classification. This process filters out nearly 99.9995% of white blood cells, all residual red blood cells, and all free-floating metal beads, leaving only ~100 false positive events along with true positive events.

Supplementary Figure 5: SVM implemented on the CPU for the rare cell detection. This cell filtration process is performed off-line on the captured cells by the FPGA to differentiate similar looking MCF7 cells and white blood cells based on more delicate differences of their images. The cell classification program uses a SVM to classify the images. The optimized SVM utilizing size, metal content, and circularity (including clustering) can identify rare MCF7 cells with a false positive rate of ~1 in a million.

Architecture of the field-programmable digital image processor
The field-programmable digital image processor employs a programmable multi-stage decision-making model that can be tailored, depending on the application. It consists of the ADC, FPGA, memory circuit, and CPU. The structure and function of the FPGA (coarse) and CPU (fine) classification processes are schematically shown in Supplementary Figures 4 and 5.

The FPGA classification process is described as follows. First, the digitized output of the ADC sampled at 7 GS/s by time interleaving is inputted to the on-board Xilinx Virtex-6 FPGA device (LX240T). The FPGA runs at a frequency of 200 MHz and receives 32 samples of time-interleaved data at every clock cycle. The incoming data is synchronized in the FPGA by selecting four clock cycles of data from the first positive sample point value in the rising edge of the pulse (i.e., the 1D image frame) which forms one frame of the image (i.e., 128 sample points per frame). Initially, the fourth incoming frame is selected as the reference frame by the FPGA and it is done while PBS is passed through the microfluidic channel. Once the reference frame has been selected by the FPGA, the incoming frames are checked for meeting criteria of the target cell. The criteria check consists of comparing the difference between the value of sample points in the incoming frame and the corresponding points in the reference frame to a threshold value which matches to the value observed at the center of a typical coated MCF7 cell, which is different from the typical white blood cell. 2048/v frames divided by the flow speed (where v is the flow speed in units of m/s) are used to represent a MCF7 cell. Therefore, once the criteria are met, 1024/v frames stored until the sample point where the criteria are satisfied and the next incoming 1024/v frames constitute the complete MCF7 cell image to be stored into the on-board 1 GB DDR RAM.

While criteria checking on an incoming quarter frame (32 samples) is taking place at a clock cycle, the
quarter frames are stored into the memory bank 0 as well which is a 256 x 4096/v block RAM in the FPGA which can store 1024/v frames as 4096/v quarter frames which are 256 bits wide. The incoming frame from the point where the MCF7 cell criteria are met gets stored into the memory bank 1 of 256 x 4096/v block RAM in the FPGA while the cell image frames stored in the bank 0 is transferred to the on-board 1 GB DDR RAM. After completion of the frame transfer from bank 0, the input to the external DDR RAM is multiplexed to the output of memory bank 1 to transfer the frames stored in it and simultaneously the incoming frames are checked for the MCF7 cell and gets written to memory bank 0 as explained before.

After the initial filtration process on the FPGA captures nearly all of the MCF7 cells along with occasional suspicious looking white blood cells, their images are transferred to the CPU for further processing. A cell classification algorithm is prepared by studying the images of a large number of cells from each cell type to identify key differences in their signatures. This further cell filtration is implemented off-line on the captured cells to differentiate similar looking MCF7 cells and white blood cells based on more delicate differences of their images. This very efficient, extremely accurate image processing algorithm would require more processing time and needs to be implemented as a post-processing step on a more powerful processor than the FPGA. It takes advantage of a large library of cells each marked as belonging to one of two categories: white blood cells and MCF7 cells. The supervised learning algorithm analyzes the training data and produces a model that maps each image into a two-dimensional space such that cells from different categories are separated in this space. New examples from mixed blood samples that are captured and pre-filtered by the FPGA are then mapped into that same space and predicted to belong to a category based on their location in this space.

The cell classification program uses a SVM to classify the images. During the training process, the SVM algorithm defines and optimizes key features based on size, metal content, and circularity of cells. Metal content is correlated to the introduction of regions with strong shadows on the cell image due to attachment of the metal beads. It is a good measure of surface antigens, which are specific to MCF7 cells. On the other hand, the exact size of the cell from its image serves as an extra measure of differentiating the two cell types, as MCF7 cells are on average larger than white blood cells. Furthermore, circularity of cells is also evaluated as another measure of cell differentiation since white blood cells are typically circular or symmetrically shaped while MCF7 cells are irregularly or asymmetrically shaped or clustered with a few to several MCF7 cells. The optimized SVM utilizing size, metal content, and circularity can identify rare MCF7 cells with a false positive rate of ~1 in a million.

Flow cytometry experiment
MCF7 cells were harvested and fixed in 0.5% formaldehyde for 10 minutes, washed and resuspended in PBS. Whole blood was mixed with red blood cell lysis buffer (Roche) at a ratio of 2 (lysis buffer) to 1 (whole blood) and incubated for 10 minutes. The remaining white blood cells were resuspended once in lysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput (Corresponding Flow Speed)</td>
<td>50,000 particles/s (2 m/s)</td>
</tr>
<tr>
<td>Frame Rate</td>
<td>36.7 MHz (Line Scan Mode)</td>
</tr>
<tr>
<td>Shutter Speed</td>
<td>27 ps</td>
</tr>
<tr>
<td>Flow Technology</td>
<td>Inertial Focusing and Ordering</td>
</tr>
<tr>
<td>Microfluidic Device</td>
<td>Thermoset Polyester</td>
</tr>
<tr>
<td>Flow Speed</td>
<td>Up to 8 m/s</td>
</tr>
<tr>
<td>Optical Image Gain</td>
<td>Up to 30 dB</td>
</tr>
<tr>
<td>Sampling Rate</td>
<td>7 G/s</td>
</tr>
<tr>
<td>Pixel Number (Corresponding Flow Speed)</td>
<td>128 x 1024 (2 m/s)</td>
</tr>
<tr>
<td>Field of View</td>
<td>30 x 30 µm²</td>
</tr>
<tr>
<td>Laser Center Wavelength</td>
<td>1590 nm</td>
</tr>
<tr>
<td>Optical Bandwidth</td>
<td>20 nm</td>
</tr>
<tr>
<td>Illumination Power</td>
<td>500 µW</td>
</tr>
<tr>
<td>Resolution</td>
<td>1.4 µm</td>
</tr>
<tr>
<td>Image Analysis</td>
<td>Online Real-Time</td>
</tr>
</tbody>
</table>

Supplementary Table 1: Specifications of the STEAM flow analyzer. The throughput is limited by the microfluidic device’s tolerance to high pressures caused by high flow rates, not the STEAM camera’s shutter speed and frame as well as the real-time optoelectronic image processor’s processing speed. For reasonable image quality and screening accuracy, the system can operate at a throughput of 200,000 cells/s.

Supplementary Table 2: Specifications of the microfluidic device. To ensure stability in the real-time cell classification, the microchannel was fabricated by replica molding in thermoset polyester due to its ease of fabrication, high stiffness, ability to sustain high pressures, and resistance to ethanol which helps channel washing. Among these advantages, channel rigidity is especially critical to avoid undesirable fluid dynamic and optical effects which result if the channel deforms.
Supplementary Table 3: Specifications of the field-programmable digital image processor. The FPGA device used in our system is a state-of-the-art FPGA (Xilinx Virtex-6 LX240T). The E-slide size captured in the FPGA can be tailored, depending on the size of the particles of interest.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPGA Device</td>
<td>Xilinx Virtex-6 LX240T</td>
</tr>
<tr>
<td>FPGA Clock Frequency</td>
<td>200 MHz</td>
</tr>
<tr>
<td>Frame Size</td>
<td>128 bytes (Pixels/Samples)</td>
</tr>
<tr>
<td>Samples Received in One Clock Cycle</td>
<td>32 bytes (Quarter Frame)</td>
</tr>
<tr>
<td>E-slide Size Captured in FPGA</td>
<td>2048 x 1024 Frames Consisting of 1024 x 1024 Frames in Two Memory Banks of Block RAM (v = Flow Speed in Units of m/s)</td>
</tr>
<tr>
<td>External Memory (DDR RAM) for Storing E-slides</td>
<td>1 GB</td>
</tr>
<tr>
<td>Memory Size of Single E-slide</td>
<td>256 x 1024 KB</td>
</tr>
<tr>
<td>Maximum Number of E-slides Stored in DDR RAM</td>
<td>4,000x1024</td>
</tr>
</tbody>
</table>

Rare cell detection experiment

The initial concentration of cells which were used for the rare cell detection measurements was determined by a hemacytometer. Four counts were performed and the mean and standard deviation were calculated. Clusters of cells were counted as a single cell. The fate of these clusters in the microfluidic device is unclear; clusters could be filtered out upstream, traverse the channel as a cluster, or break up into smaller clusters or individual cells. The coated MCF7 cells were diluted into 3 mL of lysed blood. The resulting concentrations were 0, 5, 10, 50, 100, and 500 coated MCF7 cells per 3 mL. The standard deviation of the initial count is expected to decrease by the dilution factor for each spiked sample. Other sources of error, such as in the process of pipetting, are more difficult to quantify due to the lack of comparable technology for detecting extremely rare events or low concentrations of cells. The fit function used in Figure 8 is $y = ax + b$, where x and y are the spiked and captured numbers of cells, respectively, a is the capture efficiency, and b is the contamination. For large x, the fit function asymptotically approaches $y = ax$.

buffer, then in PBS. Both MCF7 cell and white blood cell suspensions were incubated with FITC-antiEpCAM and PerCP/Cy5.5-antiCD45. Unbound dyes were removed after 30 minutes and cells were washed and resuspended in PBS. The pure MCF7 and white blood cell suspensions and two mixtures were analyzed with the FACSCalibur system in the Flow Cytometry Core Laboratory at UCLA.

buffer, then in PBS. Both MCF7 cell and white blood cell suspensions were incubated with FITC-antiEpCAM and PerCP/Cy5.5-antiCD45. Unbound dyes were removed after 30 minutes and cells were washed and resuspended in PBS. The pure MCF7 and white blood cell suspensions and two mixtures were analyzed with the FACSCalibur system in the Flow Cytometry Core Laboratory at UCLA.