1. REPORT DATE (DD-MM-YYYY) 10/01/2010-09/20/2011
2. REPORT TYPE Final
3. DATES COVERED (From - To) Final
4. TITLE AND SUBTITLE CONTROL-ORIENTED AEROELASTIC REDUCED-ORDER MODELING OF FIGHTERS
5a. CONTRACT NUMBER FA9550-10-1-0539
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER
5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER
6. AUTHOR(S) Charbel Farhat
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Stanford University Stanford CA 94305
8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Office of Scientific Research 875 North Randolph St. Arlington, VA 22203
10. SPONSOR/MONITOR’S ACRONYM(S) AFRL-OSR-VA-TR
11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL-OSR-VA-TR-2012-0805
12. DISTRIBUTION / AVAILABILITY STATEMENT Public Release Unlimited
13. SUPPLEMENTARY NOTES
14. ABSTRACT
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF:
 a. REPORT
 b. ABSTRACT
 c. THIS PAGE
17. LIMITATION OF ABSTRACT
18. NUMBER OF PAGES
19a. NAME OF RESPONSIBLE PERSON
19b. TELEPHONE NUMBER (include area code)
CONTROL-ORIENTED AEROELASTIC REDUCED-ORDER MODELING OF FIGHTERS FA9550-10-1-0539

Charbel Farhat and David Amsallem
Aeronautics and Astronautics
Stanford University
FSI: STATE OF THE ART

🌟 Structural dynamics

- multibody dynamics
- geometrical nonlinearities (large displacements, rotations and strains)
- material nonlinearities (nonlinear constitutive models)
- crack propagation (failure)

🌟 Computational fluid dynamics

- shocks
- turbulence

🌟 Coupling

- static (steady) and dynamic (unsteady)
- eigen
IMPACT ON ENGINEERING

- **Strong**
 - analysis of carefully selected critical configurations

- **Weak (or not as strong)**
 - routine analysis
 - design (and test)
 - control

 significant CPU time issues

"[If I am not getting the NASTRAN answer after 4 hours on a Cray, then God is sending me the message I have the wrong design]"

Burt Rutan, 1993
Model reduction (MOR)

- build the lowest dimensional model that can capture the dominant behavior of the system of interest by projecting the high-fidelity model onto a well-chosen subspace

\[\text{drastic CPU time reduction} \]

Complex, time-dependent problems (with a CFD component)

- Perturbation problems (stability, trends, control, etc.)
 - linearized \[\rightarrow \text{linear ROMs} \]

- Response problems (behavior, performance, etc.)
 - nonlinear \[\rightarrow \text{linearized} \]
 - Newton \[\rightarrow \text{linear ROMs} \]
What this is NOT about

- building the simplest model
- building a variable (or multi) fidelity model
- adopting the coarsest mesh
- substructuring
- constructing a “surrogate” or “meta” model
LINEARIZED DYNAMICAL SYSTEMS

\[\mu = [\mu_1, \ldots, \mu_p] \]

\[y = \int_{-\infty}^{t} h(t - \tau) \mu(\tau) \, d\tau \]

\[u = A(\mu_1, \ldots, \mu_p)u + f \]

\[y = g(u, f, \mu_1, \ldots, \mu_p) \]

\[u(t_0) = u_0 \]
SURROGATE MODEL

* External description

\[\mu = [\mu_1, \ldots, \mu_p] \]

\[y = [y_1, \ldots, y_p] \]

- meta-model, surrogate model, response surface, kriging
- lower-dimensionality is not guaranteed
- it is not a model of the system but of the output
MODEL REDUCTION

★ Internal description

\[\dot{u} = A(\mu_1, \ldots, \mu_p)u + f \text{ (dimension } = N) \]

★ Projection onto a subspace of dimension \(k << N \)

- right Reduced-Order Basis (ROB) \(V_k \), \(k << N \)

\[u \sim V_k y \quad \rightarrow \quad V_k \dot{y} = A(\mu_1, \ldots, \mu_p)V_k y + f + r \]

- left Reduced-Order Basis (ROB) \(U_k \), \(k << N \)

\[\text{constraints} \quad \rightarrow \quad \dot{y} = U_k^T A(\mu_1, \ldots, \mu_p) V_k y + U_k^T f \]

parameterized linear(ized) Reduced-Order Model (ROM)
\[\dot{u} = A(\mu_1, \ldots, \mu_p) u + f \]

\[\dot{y} = U_k^T A(\mu_1, \ldots, \mu_p) V_k y + U_k^T f \]

- The outcome is a dynamical system of lower dimension

- Key issues
 - choice of the lower dimension k and the ROBs U_k and V_k
 - dependence of the resulting ROM on the parameters $\{\mu_i\}$
General purpose linearized aeroelastic high-fidelity model (HFM)

\[
\begin{bmatrix}
\dot{w} \\
\ddot{u} \\
\dot{u}
\end{bmatrix}
= \begin{bmatrix}
-H & -B & -C \\
M^{-1}P & O & -M^{-1}K \\
0 & I & 0
\end{bmatrix}
\begin{bmatrix}
w \\
\dot{w} \\
\dot{u}
\end{bmatrix}
+ \begin{bmatrix}
0 \\
M^{-1}T_i^T \\
0
\end{bmatrix} F
\]

\[A(\mu); \quad \mu = (\mu_1, \ldots, \mu_q)\]
MULTIDISCIPLINARY ROM

Fluid ROM

- CFD-based HFM
- Balanced POD-based ROB
 (with stability guarantee)

Structural ROM

- FE-based HFM
- Eigen-based ROB
 (with truncation)
FLUID-STRUCTURE ROM

Fluid

ROBs: \(U_k, V_k / U_k^T V_k = I \)

\[w = V_k w_r \]

ROM: \(H_r = U_k^T H V_k \)

Structure

ROB: \(X_m, (X_m^T M X_m = I) \)

\[u = X_m u_m \]

ROM: \(\Omega_m^2 = X_m^T K X_m \)

Coupling

\[B_r = U_k^T B X_m \]

\[C_r = U_k^T C X_m \]

\[P_r = X_m^T P V_k \]

General purpose aeroelastic ROM (flutter, response, control, …)

\[
\begin{pmatrix}
\dot{w}_r \\
\dot{u}_m \\
\ddot{u}_m
\end{pmatrix}
= \begin{pmatrix}
-H_r & -B_r & -C_r \\
0 & P_r & 0 \\
0 & 0 & \Omega_m^2
\end{pmatrix}
\begin{pmatrix}
\dot{w}_r \\
\dot{u}_m \\
u_m
\end{pmatrix}
+ \begin{pmatrix}
0 \\
X_m^T T_i T_i^T \\
0
\end{pmatrix} F
\]

\(A_r(\mu); \quad \mu = (\mu_1, \ldots, \mu_q) \)

- Aeroelastic response
- Control, flutter
- Aeroservoelastic analysis, …
Natural mode \textit{shapes} (ground vibrations) \((n_m = 9 \text{ modes})\)

Excitations in a sampled frequency range

\[0 < \kappa = \frac{\omega L_R}{v_R} \sim 1 \quad \rightarrow \quad n_f = 5 \text{ frequencies} \]

Responses of \textit{linearized} flow (frequency domain)

\[(H + i\omega_q I) \mathbf{w}_{jq} = -(C + i\omega_q B) \mathbf{u}_j \quad j = 1, \ldots, n_m, \quad q = 1, \ldots, n_f \]

\[(-H^T + i\omega_q I) \mathbf{w}_{*jq} = -P^T \mathbf{u}_j \quad j = 1, \ldots, n_m, \quad q = 1, \ldots, n_f \]

\[\mathbf{W} \quad \text{data compression} \rightarrow \mathbf{V}_k \]

\[\mathbf{W}^* \quad \text{data compression} \rightarrow \mathbf{U}_k \]
DATA COMPRESSION

🌟 Modal superposition (Fourier decomposition)
 - limited range of applications

🌟 Proper Orthogonal Decomposition (POD)
 - lacks stability

🌟 Balanced Proper Orthogonal Decomposition (POD)
 - more robust than POD but still lacks stability
GUARANTEED STABILIZATION METHOD

* ROM stabilization method (*Amsallem and Farhat, 2011*)
 - universal
 - non intrusive
 - computational complexity scales with the size of the ROM
 - preserves accuracy of original (unstable) ROM

input: ROM → **Stabilization Method** → **output: stable ROM**
Higher-fidelity (higher-dimensional) models (HFM)

- structure: FEM with 168,799 dofs
- fluid: Euler CFD model with 403,919 grid points

ROMs

- structure: projection on ROB consisting of first 9 natural mode shapes
- fluid: projection on ROB of dimension 60 generated by POD using 99 snapshots (9 shapes x 5 ωs x 2 + 9 shapes at 0 Hz)
POD-based fluid ROM (60) built at $M = 0.710$ (trimmed angle)
ANALOGY

Configuration 1

HFM$_1$

ROM$_1$

Reduced-order basis V_{k_1}

Configuration 2

HFM$_2$

ROM$_2$

Reduced-order basis $V_{k_2} = V_{k_1}$
TURNAROUND TIME

- F-16 Block 40 — 1 operating point — 2nd-order discretization
- 64-processor Linux cluster

Construction and processing of aeroelastic ROM in [0, 1.0] s

- Fluid steady-state computation: 6 minutes
- Generation of 99 fluid snapshots and POD-based fluid ROM: 50 minutes
- Construction of fluid ROM: 0.25 minute
- Processing aeroelastic ROM: 0.10 minute
- Total CPU time: 57.25 minutes
APPROACH

* Database of fixed-size stable **ROMs**

![Diagram showing Parameter 1 and Parameter 2 with precomputed ROMs and instantaneous ROMs, along with zonal interpolation.]
CONSISTENCY

Eigenvalues

\[\lambda_{1,2}(\mu) = \frac{\mu + 1.2 \mp \sqrt{((\mu - 0.9)^2 + 0.01}}}{2} \]

Eigenvectors

precomputed ROMs are not necessarily computed in a consistent set of generalized coordinates
Congruence transformations

- Reference ROB: \(V_{\text{ref}} = V_k(\mu_{\text{ref}}) \)
- \(V_i \leftarrow V_i Q_i \) \(Q_i = \arg \min_{Q \in O(k)} \| V_i Q - V_{\text{ref}} \|_F \)

Orthogonal Procrustes problem

- SVD: \(V_i^T V_{\text{ref}} = U_i \Sigma_i Z_i^T \)

\(Q_i = U_i Z_i^T \)
QUOTIENT AND EMBEDDED MANIFOLDS

- standard interpolation of a ROM does not produce a ROM
- interpolation must be carried out on a manifold characterizing the ROM

* Manifolds of interest (quotient = blue, embedded = yellow)

- \(\text{span}(V_k) \) belongs to the Grassmann manifold \(G(k,N) \)
- \(A_r(\mu) = V_k^T A(\mu) V_k \) belongs to
 * manifold of invertible matrices \(GL(k) \) [fluid]
 * manifold of (reduced-order) symmetric positive definite matrices \(SPD(k) \) [structure]
Online Interpolation on a Manifold

- Given a p-parameter system, the appropriate Riemannian manifold, and its logarithmic and exponential maps.

\[\tau_{R_0}M \]

\[\text{Log}_{R_0}(R_2) \quad \text{Log}_{R_0}(R_3) \]

\[R_4 = \text{Exp}_{R_0}(X) \]

\[X = \text{Log}_{R_0}(R_3) \]
SHOWCASE APPLICATION

✨ F-16 Block 40

- CFD model
- FEM structural model

✨ Assisting flight test
- single aircraft configuration ➔ single structural ROM
- hundreds of flight conditions ➔ database of fluid ROBs
83 pairs of flight conditions (operating points)
- 70.6 hours CPU on a 64-processor Linux cluster
Fast responses to 5 queries

- possible scenarios: flight test, flutter clearance, optimization
- interpolation of fluid ROMs
Deep transonic point \((M_\infty, \alpha) = (0.930, 1.3^\circ)\)

Graph showing lift (lbf) over time (sec) for different methods:
- L-HFM
- D-ROM
- I-ROM

Delivered accuracy
TURNAROUND TIME

* F-16 Block 40 — 1 operation point — 1-processor (desktop)

CPU time for interpolating and processing

<table>
<thead>
<tr>
<th>Description</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid ROM interpolation (5 points)</td>
<td>0.2 second</td>
</tr>
<tr>
<td>Aeroelastic ROM processing (FD)</td>
<td>0.3 second</td>
</tr>
<tr>
<td>Total CPU time</td>
<td>0.5 second</td>
</tr>
</tbody>
</table>

real-time, parameterized, CFD-based flutter analysis
IMPLEMENTATION ON MOBILE DEVICES
IMPLEMENTATION ON MOBILE DEVICES

![Graph showing Flutter Speed Index vs Mach Number]

Flutter Speed Index
- Fill Level = 50.00%
US Air Force Office of Scientific Research, T&E Program