CALCULATION OF GROWTH STRESS IN SiO₂ SCALES FORMED BY OXIDATION OF SiC FIBERS (PREPRINT)

Randall S. Hay
Composites Branch
Structural Materials Division

JULY 2012
Interim

Approved for public release; distribution unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
MATERIALS AND MANUFACTURING DIRECTORATE
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750
AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE
1. REPORT DATE (DD-MM-YY)
July 2012

2. REPORT TYPE
Technical Paper

3. DATES COVERED (From - To)
1 June 2012 – 1 July 2012

4. TITLE AND SUBTITLE
CALCULATION OF GROWTH STRESS IN SiO$_2$ SCALES FORMED BY OXIDATION OF SiC FIBERS (PREPRINT)

5a. CONTRACT NUMBER
In-house

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
62102F

5d. PROJECT NUMBER
4347

5e. TASK NUMBER
50

5f. WORK UNIT NUMBER
LN102102

6. AUTHOR(S)
Randall S. Hay (AFRL/RXCC)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Composites Branch (AFRL/RXCC)
Structural Materials Division
Air Force Research Laboratory, Materials and Manufacturing Directorate
Wright-Patterson Air Force Base, OH 45433-7750
Air Force Materiel Command, United States Air Force

8. PERFORMING ORGANIZATION REPORT NUMBER
AFRL-RX-WP-TP-2012-0378

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory
Materials and Manufacturing Directorate
Wright-Patterson Air Force Base, OH 45433-7750
Air Force Materiel Command
United States Air Force

10. SPONSORING/MONITORING AGENCY ACRONYM(S)
AFRL/RX

11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S)
AFRL-RX-WP-TP-2012-0378

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited. Preprint to be submitted to Ceramics Engineering and Science Proceedings.

13. SUPPLEMENTARY NOTES
The U.S. Government is joint author of this work and has the right to use, modify, reproduce, release, perform, display, or disclose the work. PA Case Number and clearance date: 88ABW-2012-0778, 14 February 2012. This document contains color.

14. ABSTRACT
A numerical method to calculate growth stress in SiO$_2$ scales formed during SiC fiber oxidation is described. Calculations were done for SiC fibers between 700°C and 1300°C using previously measured Deal-Grove parameters for oxidation kinetics and an Eyring viscoplastic model for SiO$_2$ scale viscosity. Initial compressive stresses in SiO$_2$ of ~25 GPa from the 2.2× oxidation volume expansion are rapidly relaxed to lower levels by flow of silica with a shear stress-dependent viscosity. At 700°C - 900°C, axial and hoop stress at the GPa level persist. Radial expansion of the outer scale causes hoop stress to become tensile; axial stress becomes tensile by the Poisson effect. Tensile hoop stresses can be >2 GPa for thick scales formed at <1000°C. Effects of different fiber radii on growth stresses are examined. Limitations of the method and analytical approximations are discussed.

15. SUBJECT TERMS
SiC, Oxidation, Fibers

16. SECURITY CLASSIFICATION OF:
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION OF ABSTRACT:
SAR

18. NUMBER OF PAGES
12

19a. NAME OF RESPONSIBLE PERSON
Randall Hay

19b. TELEPHONE NUMBER
N/A
CALCULATION OF GROWTH STRESS IN SiO₂ SCALES FORMED BY OXIDATION OF SiC FIBERS

R. S. Hay
Air Force Research Laboratory
Materials and Manufacturing Directorate, WPAFB, OH

ABSTRACT
A numerical method to calculate growth stress in SiO₂ scales formed during SiC fiber oxidation is described. Calculations were done for SiC fibers between 700° and 1300°C using previously measured Deal-Grove parameters for oxidation kinetics and an Eyring viscoplastic model for SiO₂ scale viscosity. Initial compressive stresses in SiO₂ of ~25 GPa from the 2.2× oxidation volume expansion are rapidly relaxed to lower levels by flow of silica with a shear stress-dependent viscosity. At 700° - 900°C, axial and hoop stress at the GPa level persist. Radial expansion of the outer scale causes hoop stress to become tensile; axial stress becomes tensile by the Poisson effect. Tensile hoop stresses can be >2 GPa for thick scales formed at <1000°C. Effects of different fiber radii on growth stresses are examined. Limitations of the method and analytical approximations are discussed.

INTRODUCTION
Constraint of the 2.2× volume expansion during oxidation of SiC to SiO₂ generates very large growth stresses. Microstructural evidence for these stresses exists for crystalline scales on SiC fibers. High dislocation densities in crystalline SiO₂ near the SiC-SiO₂ interface suggest high shear stresses exist during growth of new crystalline scale.1 Axial cracks form in the outer scale from tensile hoop growth stress.1,3 Tensile growth stress in the scale may decrease fiber strength by surface nucleated fracture.4 Residual stresses affect SiC fiber strength and are important for SiC-SiC ceramic matrix composites (CMCs) for high temperature structural applications.5-6

Growth stress during silicon oxidation, which has a volume expansion similar to that for SiC oxidation, has been extensively modeled.7-9 Most recent models recognize that flow at high stress is non-Newtonian (viscoelastic) and use the Eyring model for shear-stress dependent viscosity.10-14 Radial compressive and tensile hoop growth stresses are predicted for oxidation of silicon fibers.12,15-16 Axial stresses are generally ignored.10-11,13,17 For structural fibers this is an important omission, because axial stress has the most significant effect on fiber strength. Applied tensile stress increases oxidation rates of silicon,18-20 and recently this has also been demonstrated for SiC fibers.21

A method to calculate the radial, axial, and hoop growth stress components anywhere in a SiO₂ scale formed by oxidation of SiC fibers is presented. The method involves discretization of the scale into layers and separate calculation of stresses in each layer. Calculations are done at temperatures from 700° to 1300°C for amorphous scales. Growth stresses for SiC fibers with different radii are examined. Assumptions and limitations of the method are discussed. Complementary results, along with a more thorough description of the background information and method are given elsewhere.22

METHOD
General
A schematic of the volume expansion and attendant stresses during SiC fiber oxidation with discretization of SiO₂ scale into annular layers is in figure 1. There are two sources of stress. The first is the initial elastic constraint of the 2.2× volume expansion accompanying oxidation of SiC to SiO₂. This expansion is shown in stress-free (dilational) and constrained states (Fig. 1). The second is the circumferential expansion of old scale as it is radially displaced outward by formation of new scale (Fig. 1). This creates tensile hoop stress (σθ) in the outer scale,3,23 and tensile axial stress (σz) by the Poisson effect.

The large volume expansion raises concerns for growth stress modeling. Elastic constraint of the 2.2× volume expansion causes ~25 GPa compressive stress in SiO₂ for SiC oxidation, which is much larger than stresses for which linear elasticity is valid.7 However, high shear stresses relax very rapidly to values appropriate for linear elasticity if SiO₂ viscosity is shear-stress dependent, as in the Eyring model,10-11,13,17 and discretization to small increments can confine incremental displacements and stress differences to values appropriate for linear theory.13,26-27
General models of oxidation growth stress are coupled diffusion-reaction and fluid-mechanical problems. The oxygen diffusion rate drives the rate that stress in the oxide is generated. Stress, in turn, affects the oxygen diffusion rates. The measured oxidation rates for SiC, whether they are flat plates, fibers, or particles, inherently include the effect of growth stress; stress-free oxidation rates cannot be measured. The effect of stress on oxidation rate will therefore not initially be considered when modeling growth stress.

The following assumptions are used in modeling the growth stress:

1. Oxidation volume expansion is dilational.
2. Stresses resulting from constraint of oxidation expansion are relaxed by flow of SiO\textsubscript{2} with shear stress-dependent viscosity.
3. Discretization of oxidation to small increments allows use of linear elasticity.
4. Growth stress effects on oxidation kinetics are not considered.
5. Stress relaxation in the SiC fiber is negligible.

Fiber Oxidation Kinetics

Fiber oxidation kinetics will not deviate significantly from flat-plate geometry kinetics until the oxidation product for 12 \(\mu \text{m} \) diameter fibers is several microns thick.1,15,28 SiO\textsubscript{2} thickness (\(w \)) (Fig. 1) therefore obeys Deal-Grove kinetics for flat-plate geometry:1,29

\[
w = \frac{1}{2} A \sqrt{1 + \frac{4Bt}{A^2} - 1} \tag{1}
\]

The parabolic and linear rate constants are \(B \) and \(B/A \), respectively. \(B \) and \(A \) obey the usual Arrhenius relationships:

\[
A = A_0 e^{-Q_A/RT} \tag{2}
\]
\[
B = B_0 e^{-Q_B/RT} \tag{3}
\]

where \(T \) is absolute temperature, \(R \) is the gas constant, \(Q_A \) and \(Q_B \) are activation energies and \(A_0 \) and \(B_0 \) are pre-exponential factors. The SiC radius (\(b \)) after oxidation is (Fig. 1):

\[
b = \sqrt{w^2(\Omega^2 - \Omega) + b_0^2 - \Omega w} \tag{4}
\]

where \(b_0 \) is the original fiber radius and \(\Omega \) is the ratio of SiC/SiO\textsubscript{2} molar volume ratio. The outer radius of the SiO\textsubscript{2} scale (\(c \)) is (Fig. 1):

\[
c = b + w \tag{5}
\]
Elastic Growth Stress

The elastic stresses and strains are determined by modification of a method used for sequentially deposited coatings.30 For discretized fiber oxidation, the “deposition” sequence is reversed; the last oxide increment forms at the SiC-SiO\textsubscript{2} interface, and the oldest is at the surface. The system is divided into the unoxidized SiC fiber, the SiO\textsubscript{2} added from time $t(i-1)$ to $t(i)$ at the SiC-SiO\textsubscript{2} interface, and the outer SiO\textsubscript{2} increment added from $t(0)$ to $t(i-1)$ (Fig. 1). The axial, radial, and hoop stresses in the SiC fiber at time $t(i)$ are $\sigma_{zSiC}(i)$, $\sigma_{rSiC}(i)$, and $\sigma_{\theta SiC}(i)$ respectively, and in the two SiO\textsubscript{2} increments are $\sigma_{zSiO2}(i)$, $\sigma_{rSiO2}(i)$, $\sigma_{\theta SiO2}(i)$ and $\sigma_{zSiO2}(i-1)$, $\sigma_{rSiO2}(i-1)$, $\sigma_{\theta SiO2}(i-1)$, respectively. The increment in SiO\textsubscript{2} thickness formed from $t(i-1)$ to $t(i)$ is $w(i)-w(i-1)$. The effect of the ith SiO\textsubscript{2} increment on growth stresses is found using strain compatibility equations, where the dilational strain is:

$$\Delta \varepsilon = \sqrt[3]{\frac{1}{\Omega}} - 1$$

and

$$\sigma_{zSiC}(i) = -\frac{E_{SiC}f}{\pi \left(E_{SiC}b^2(i) + E_{SiO2} \left((b(i) + w(i) - w(i-1))^2 - b^2(i) \right) \right)} + \sigma_{zSiC}(i-1)$$

$$\sigma_{rSiC}(i) = \sigma_{rSiC}(i-1) - p_{is}$$

$$\sigma_{\theta SiC}(i) = \sigma_{\theta SiC}(i-1) - p_{is}$$

$$\sigma_{zSiO2}(i) = -\frac{E_{SiO2}f}{\pi \left(E_{SiC}b^2(i) + E_{SiO2} \left((b(i) + w(i))^2 - b(i)^2 \right) \right)}$$

$$\sigma_{rSiO2}(i) = -p_i$$

$$\sigma_{\theta SiO2}(i) = \frac{p_i (b(i) + w(i))}{w(i) - w(i-1)}$$

$$\sigma_{zSiO2}(i-1) = \frac{f}{\pi \left[(b(i-1) + w(i-1) - w(i))^2 - b^2(i-1) \right]}$$

$$\sigma_{rSiO2}(i-1) = 0$$

$$\sigma_{\theta SiO2}(i-1) = \frac{2p_{is}b(i-1)^2 - p_i \left((b(i-1) + w(i-1))^2 + b(i-1)^2 \right)}{(b(i-1) + w(i-1))^2 - b(i-1)^2}$$

where f is the axial force, p_{is} is the pressure across the SiO\textsubscript{2}-SiC interface, p_i is the pressure across the interface between the ith and the $i-1$th SiO\textsubscript{2} increments, E_{SiC} and E_{SiO2} are Young’s modulus of the SiC fiber and the SiO\textsubscript{2} scale, respectively, and ν_{SiC} and ν_{SiO2} are Poisson’s ratio for the SiC fiber and the SiO\textsubscript{2} scale. Stresses in older increments ($j = i-2$ to $j = 0$) are updated with the stress values in [13 - 15]:

Relaxation of Elastic Stress

The relaxation of the elastic stresses for all increments ($j = 1$ to i) in time increment $\Delta t = t(i) - t(i-1)$ are calculated next. The Eyring model for shear-stress (τ) dependence of glass viscosity (η) is used for SiO\textsubscript{2}:11-12,16,31-34
\[\eta = \eta_0 \frac{\tau V_c/2kT}{\sinh\left(\frac{\tau V_c/2kT}{2}\right)} = \eta_0 \frac{\tau/\tau_c}{\sinh\left(\frac{\tau}{\tau_c}\right)} \quad [16] \]

\(V_c \) is the activation volume for plasticity in SiO\(_2\).\(^{11-12,34} \) \(k \) is Boltzmann’s constant, \(\tau_c \) is the critical shear stress above which plasticity is significant (typically \(\sim 100 \) MPa), and \(\eta_0 \) is the stress-free SiO\(_2\) viscosity.\(^{35-36} \)

\[\eta_0 = C_o e^{Q/RT} \quad [17] \]

where \(C_o \) and \(Q \) are the pre-exponential factor and activation energy for stress-free viscosity, respectively.\(^{35-36} \)

Shear stress relaxation obeys a Maxwell viscoelastic model:

\[\frac{d\tau}{dt} = -G \frac{\tau}{\eta_0} \left(\tau_c\right) \quad \left(\tau\left(t(i-1)\right) = \tau_o\right) \quad [18] \]

where \(G \) is the SiO\(_2\) shear modulus, and the initial elastic shear stress at \(t(i-1) \) is \(\tau_o \). The relaxation of \(\tau_o \) to a new value (\(\tau \)) in time increment \(\Delta t \) for all the increments \(j=1 \) to \(i \) is determined by substitution of [16-17] in [18] and solving differential equation [18] for \(\tau \):

\[\tau = \frac{4kT}{V_c} \coth^{-1} \left[\sqrt{\frac{G t}{e^{\eta_o}}} \right] = 2\tau_c \coth^{-1} \left[\sqrt{\frac{G t}{e^{\eta_o}}} \right] \quad [19] \]

\(\tau_o \) is determined from the principal stresses for all the increments \(j=1 \) to \(i \) by the usual method.\(^{38} \)

\[\tau_o(j) = \left[\frac{1}{2} s_{ij}(j) s_{ij}(j) \right]^{1/2} \quad [20] \]

\(s_{ij}(j) \) are the components of the deviatoric stress tensor of the \(j^{th} \) annular element at time \(t(i) \):

\[s_{ij}(j) = \sigma_{ij}(j) - \frac{1}{3} \delta_{ij} \sigma_{kk}(j) \quad [21] \]

Relaxation of \(\sigma_{\theta}(j) \) and \(\sigma_z(j) \) is proportional to \(\tau(j)/\tau_o(j) \) and to their difference with \(\sigma_{\theta}(j) \), which is a boundary condition, being zero at the SiO\(_2\) surface and near zero elsewhere. The relaxed values of \(\sigma_{\theta}(j) \) and \(\sigma_z(j) \) (\(\sigma_{\theta}(j)' \) and \(\sigma_z(j)' \)) are determined by solution of:

\[\begin{bmatrix} \sigma_{\theta}(j)' & 0 \\ 0 & \sigma_z(j)' \end{bmatrix} = \frac{\tau(j)}{\tau_o(j)} \begin{bmatrix} \sigma_{\theta}(j) - \sigma_r(j) & 0 \\ 0 & \sigma_z(j) - \sigma_r(j) \end{bmatrix} + \begin{bmatrix} \sigma_r(j) & 0 \\ 0 & \sigma_r(j) \end{bmatrix} \quad [22] \]

Radial Displacement and Hoop Stress Generation

Relaxation expands the SiO\(_2\) scale radially. The individual radial displacement of the \(j^{th} \) increment \((u_r) \) is:

\[u_r(j) = \frac{\Omega_{SiO2}}{\Omega_{SiC} \left(1 + \epsilon_{SiO2}^{Z(j)} + \epsilon_{B}^{SiO2}(j) + \epsilon_{SiO2}^{SiO2}(j) \right) - 1} \quad [23] \]

where

\[\epsilon_{SiO2}^{Z(j)} = \frac{1}{E_{SiO2}} \left[\sigma_{SiO2}^{Z(j)} - u_{SiO2} \left(\sigma_{B}^{SiO2}(j) + \sigma_{r}^{SiO2}(j) \right) \right] \quad [24] \]
\[
\varepsilon_{\theta}^{\text{SiO}_2}(j) = \frac{1}{E_{\text{SiO}_2}} \left[\sigma_{\theta}^{\text{SiO}_2}(j) - \nu_{\text{SiO}_2} \left(\sigma_{\theta}^{\text{SiO}_2}(j) + \sigma_{r}^{\text{SiO}_2}(j) \right) \right] \tag{25}
\]

The total radial displacement of the \(j\)th increment is the sum of the displacements of younger increments. This adds hoop strain \(\varepsilon_{\theta}^{\text{SiO}_2}\) to outer layers as they are forced to a larger circumference (Fig. 1). The new hoop strain in each increment is:

\[
\varepsilon_{\theta}^{\text{SiO}_2}(j)' = \varepsilon_{\theta}^{\text{SiO}_2}(j) + \sum_{i} u_{r}^{(j)} \frac{b(j - 1) - b(j)}{b(j)} \tag{26}
\]

Recalculation of Elastic Stress in the Scale and SiC Fiber after Radial Displacement

The stresses in each \(\text{SiO}_2\) increment are recalculated for \(\varepsilon_{\theta}^{\text{SiO}_2}(j)\) by solving the three strain compatibility equations for the three principal stresses. Revised axial stress \(\sigma_{z}^{\text{SiC}}\) is computed from the force exerted by the \(\text{SiO}_2\) scale, which is the sum of the axial stress in each \(\text{SiO}_2\) increment \(\times\) area of that increment:

\[
\sigma_{z}^{\text{SiC}}(i) = -p_{n} = -\sum_{j=1}^{i-1} \sigma_{z}^{\text{SiO}_2}(j) \frac{2c(i)(w(j) - w(j - 1) + w(j)^2 - w(j + 1)^2)}{b(i)^2} \tag{27}
\]

The revised radial and hoop stress in the \(\text{SiC}\) fiber are calculated by determining the net pressure \(p_{n}\) from the sum of the pressures in each annular increment:

\[
\sigma_{r}^{\text{SiC}}(i) = \sigma_{\theta}^{\text{SiC}}(i) = -p_{n} = -\sum_{j=1}^{i-1} \sigma_{\theta}^{\text{SiO}_2}(j) \frac{w(j) - w(j - 1)}{b(i)} \tag{28}
\]

These revised stresses are added to the next increment \(i\) as the program loops back to equations [1 -28]. For \(\text{SiC}\) oxidation when \(w(i) << b(i)\), the stress in \(\text{SiC}\) is much smaller than that in \(\text{SiO}_2\).

RESULTS AND DISCUSSION

General

Growth stress calculations were done using [1-28] in a Mathematica™ program using scale discretization to 500 layers \((i=500)\). Calculations were done for oxidation of Hi-Nicalon™-S \(\text{SiC}\) fiber for amorphous scales of 10, 100, 1000, and 3000 nm thickness \((w)\) at 700, 800, 900, 1000, 1100, 1200, and 1300°C. The Deal-Grove oxidation kinetics for this fiber have been reported for dry air between 700 and 1300°C, with \(A_{o} = 6.5 \times 10^{-4} \text{ m}, B_{o} = 1.2 \times 10^{-8} \text{ m}^{2} / \text{s}, Q_{A} = 111 \text{ kJ/mol},\) and \(Q_{B} = 249 \text{ kJ/mol}.\) The initial fiber radius \((b_{0})\) is 6.1 \(\mu\text{m}\). The molar volumes for \(\text{SiC}\) \((\Omega_{\text{SiC}})\) and amorphous \(\text{SiO}_2\) \((\Omega_{\text{SiO}_2})\) are 27.34 \(\text{cm}^{3}\) and 12.46 \(\text{cm}^{3}\), respectively. The Young’s modulus \((E)\) and Poisson’s ratio \((\nu)\) values used for \(\text{SiC}\) and \(\text{SiO}_2\) were \(E_{\text{SiC}} = 400 \text{ GPa}, \nu_{\text{SiC}} = 0.157, E_{\text{SiO}_2} = 70 \text{ GPa},\) and \(\nu_{\text{SiO}_2} = 0.17.\) The shear modulus for silica \((G)\) is 34 GPa, and has only weak temperature dependence. The pre-exponential factor \(C_{o}\) and activation energy \(Q\) for stress-free \(\text{SiO}_2\) viscosity are \(3.8 \times 10^{-13} \text{ Pa·s}\) and 712 kJ/mol, respectively. The activation volume for plasticity in \(\text{SiO}_2\), \(V_{c}\), decreases with temperature, and has been inferred to have values ranging from \(1.2 \times 10^{-28} \text{ m}^{3}\) to \(3 \times 10^{-28} \text{ m}^{3}\). \(V_{c}\) corresponds to a critical shear stress \(\tau_{c}\) of about 100 MPa, which is roughly consistent with experiment at 500 to 1400°C. The variation in growth stress with change in fiber radius was examined by calculations using \(b_{0} = 2 \mu\text{m}\) and “flat-plate” \(b_{0} \rightarrow \infty\) (1 km). Calculations for \(\sigma_{\theta}, \sigma_{r}, \tau, \) and \(\tau\) at \(T\) of 700° - 1300°C for \(w = 300 \text{ nm}\) and \(b_{0} = 2 \mu\text{m}, 6 \mu\text{m},\) and “flat-plates” are shown in figure 2. Calculations for other scale thicknesses and for crystallized scales are reported elsewhere.22

The accuracy of growth stress calculations is limited by silica viscosity accuracy. Silica scales formed during \(\text{SiC}\) oxidation incorporate carbon. Network carbon in amorphous \(\text{SiO}_2\) stiffens the network structure, making it more viscous and less permeable to \(\text{O}_2\). However, \(\text{SiO}_2\) viscosity may also be reduced by incorporation of impurities in Hi-Nicalon™-S fiber.
Fig. 2. Growth stress calculations for σ_θ, σ_z, σ_r, and τ at T of 700°C, 800°C, 900°C, 1000°C, 1100°C, 1200°C, and 1300°C for a 2 μm radius fiber, 6 μm radius fiber, and a flat-plate for a 300 nm amorphous SiO$_2$ scale on Hi-Nicalon$^\text{TM}$-S SiC fiber.

General features for hoop stress (σ_θ) and axial stress (σ_z) in amorphous SiO$_2$ scale are evident in figure 2 for 300 nm, thick scales on 2 μm and 6 μm SiC fibers and “flat-plate” SiC. The continuous changes of σ_θ and σ_z with change in b_0 at 700°C to 1300°C throughout the scale are evident. Compressive elastic stress of \sim-25 GPa for σ_θ and σ_z is rapidly relaxed by the Eyring model [16] for SiO$_2$ glass viscosity to \sim-4 GPa at 700°C and \sim-1 GPa at 1200°C just 1 nm away from the SiC-SiO$_2$ interface. At $T >$1200°C glass viscosities are so low that stress levels are insignificant more than 20 nm from the SiC-SiO$_2$ interface. For flat plates $\sigma_\theta = \sigma_z$, and stress is always compressive. σ_z is driven towards tensile values by the Poisson effect from the tensile σ_θ caused by outward radial expansion. Note that a 300 nm scale takes \sim108 s to form at 700°C and \sim105 s to form at 1000°C, so the latter is of more practical interest. Calculations for crystalline SiO$_2$ scale are reported elsewhere. The viscosities of crystalline scale are much higher than those for amorphous scale, so growth stresses in crystalline scale are much larger than amorphous scale.

For a 2 μm radius fiber, tensile σ_θ develops at the scale surface at all temperatures, and reaches 3 GPa at 700°C. Tensile σ_z does not develop until $T >$ 800°C and reaches 300 MPa at 1000°C. For a 6
\[\mu \text{m radius fiber, tensile } \sigma_\theta \text{ does not develop until } T > 850^\circ C \text{ and reaches a maximum of about 600 MPa at } 1000^\circ C; \text{ tensile } \sigma_r \text{ does not develop until } 1100^\circ C \text{ and reaches 100 MPa at that temperature. For thicker scales, larger fractions of the scale are under tensile stress.} \]

For a 2 \(\mu \)m radius fiber, compressive \(\sigma_r \) up to -200 MPa is present in the center of the scale at 800° - 900°C. This is a consequence of tensile \(\sigma_\theta \) at the scale surface. \(\sigma_r \) decreases towards the SiC-SiO\(_2\) interface from the high compressive \(\sigma_\theta \) near that interface. For a 6 \(\mu \)m radius fiber \(\sigma_r \) is tensile at 700° - 900°C because \(\sigma_\theta \) is compressive at the scale surface and throughout the scale thickness, and only reaches small compressive values at \(T > 900^\circ C \) when significant amounts of the scale are in tensile.

\(\tau \) of \(\sim 12 \) GPa is rapidly relaxed to \(\sim 2 \) GPa at 700°C and 500 MPa at 1100°C just 10 nm away from the SiC-SiO\(_2\) interface (Fig. 2). It continues to decrease as compressive \(\sigma_\theta \) and \(\sigma_\theta \) decreases with distance from the SiC-SiO\(_2\) interface until \(\sigma_\theta \) becomes tensile, at which point \(\tau \) increases towards the SiO\(_2\) surface, reaching surface values > 1.5 GPa at 700°C for a 2 \(\mu \)m radius fiber and > 1 GPa for a 6 \(\mu \)m radius fiber, and values close to 500 MPa at 1000°C for both fiber radii.

Steady-State Tensile Stress

For the 300 nm thick scale a “steady-state” develops for \(\sigma_\theta \) tensile stress for \(T > 700^\circ C \) for \(b_o = 2 \) \(\mu \)m and \(T > 1000^\circ C \) for \(b_o = 6 \) \(\mu \)m. For thicker scales the steady-state region develops at lower temperatures.\(^{22}\) For \(\tau < \tau_c \) of 100 MPa \([16]\) where a stress–free viscosity \((\eta_o) \) \([17]\) is applicable, an analytical expression for the steady-state hoop stress \([\sigma_\theta(\text{ss})] \) can be derived:\(^{22}\)

\[
\sigma_\theta(\text{ss}) = \frac{2B}{\Omega - 1}\eta_o \frac{1}{wb} \tag{29}\]

For \(\tau > 100 \) MPa the stress dependence of viscosity is significant, and \(\eta \) \([16]\) must be substituted for \(\eta_o \), giving:

\[
\sigma_\theta(\text{ss}) = -2\tau_cC\text{sch}\left[\frac{b\omega r_c\Omega}{B\eta_o(\Omega - 1)}\right]^{-1} \tag{30}\]

Comparison of predictions for steady-state \(\sigma_\theta(\text{ss}) \) tensile stress from \([30]\) for a 6 \(\mu \)m radius \((b_o) \) fiber with numerical calculations are shown to be very close in another publication.\(^{22}\)

By inserting the Arrhenius expressions for \(B \) and \(\eta_o \) into \([29]\), the decrease in steady-state tensile stress with increasing temperature is a consequence of \(Q > Q_b \):

\[
\sigma_\theta(\text{ss}) = \frac{2B_oC_oe^{-\frac{Q - Q_b}{RT}}}{\Omega - 1} \frac{1}{wb} \tag{31}\]

If materials exist for which \(Q < Q_b \), an increase in tensile growth stress with increase in oxidation temperature is expected.

Summary and Conclusions

A method to calculate the axial, hoop, and radial growth stresses in SiO\(_2\) scales generated by the 2.2\(\times \) volume expansion during SiC fiber oxidation was developed. The method assumes the initial oxidation volume expansion is equal in all directions (dilatational) and that the stresses resulting from constraint of that expansion are relaxed radially with an Eyring stress-dependent SiO\(_2\) viscosity, although other appropriate viscosity models can be substituted. The method can be equally well applied to fibers of silicon or other materials. High compressive hoop and axial stresses of \(\sim 25 \) GPa are very quickly relaxed to much lower values at all temperatures. Radial expansion creates tensile hoop stress in the outer scale. Tensile hoop stress eventually drives axial stress to a tensile state by the Poisson effect. Tensile hoop and axial stress can reach values > 2 and 0.5 GPa, respectively for oxidation for long times at 700° - 900°C on Hi-Nicalon\(^{TM}\) fibers. At temperatures greater than 1200°C growth stresses are quickly relaxed to negligible levels by viscous flow of SiO\(_2\). The accuracy of the growth stress calculation method is likely to be limited by knowledge of accurate values for amorphous silica viscosity. Tensile hoop stresses reach steady-state values that can be described by
analytical expressions. The decrease in tensile hoop growth stress with increase in oxidation temperature is a consequence of activation energy for viscous flow > activation energy for oxidation.

References