Photovoltaic (PV) Power Systems for Enhancing Energy Security

Clark Boriack, NDCEE/CTC
E2S2, New Orleans
May 24, 2012

DoD Executive Agent
Office of the Assistant Secretary of the Army for Installations, Energy and Environment

The NDCEE is operated by CTC
Concurrent Technologies Corporation

Technology Transition – Supporting DoD Readiness, Sustainability, and the Warfighter
1. REPORT DATE
24 MAY 2012

2. REPORT TYPE

3. DATES COVERED
00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Photovoltaic (PV) Power Systems for Enhancing Energy Security

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National Defense Center for Energy and Environment (NDCEE), Concurrent Technologies Corporation, 100 CTC Drive, Johnstown, PA, 15904

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the NDIA Environment, Energy Security & Sustainability (E2S2) Symposium & Exhibition held 21-24 May 2012 in New Orleans, LA. U.S. Government or Federal Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
- a. REPORT: unclassified
- b. ABSTRACT: unclassified
- c. THIS PAGE: unclassified

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
23

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z39-18
Outline

• Demonstration Overview
 – Camp Katuu Site Review
 – Camp Katuu Demonstration Goals

• Development and Design Considerations
 – PV Layout Development
 – Component Selection
  Operating Modes
  Operating Environment
  Availability

• System Options
 – Palau PV System Results
 – Alternative Systems to Enhance Energy Security
Site Review

- Camp Katuu, located near Koror, Palau; latitude of 7° 30’ North
- Remote location
 - Fragile local electrical utility powered by diesel generation
 - High electricity costs
- Corrosive environment
- Abundant sunshine
Demonstration Goals

• Camp Katuu Installation
 - Increase civil outreach and nation building with Palau Government
 - Reduce environmental footprint at Camp Katuu
 - Increase use of alternative energy
 - Demonstrate the feasibility of using alternative energy in the region
 - Quantify PV system performance/capability
 - Train 249th Engineer Battalion to install photovoltaic systems
 - Train Palau Civic Action Team to operate and maintain system
 - Validate camp electrical costs reduction

• Future Installations
 - Leverage design aspects for other remote installations (grid frequency and voltage regulation, corrosion, high electricity costs)
 - Next generation to include off-grid operation capability with energy storage
PV Layout Development

• Sustainability Considerations
 – Safety, maintenance, and reliability
 – Access ways for installation, maintenance, repair

• Performance
 – Simple, intuitive, and robust installation
 – Reliability and electrical costs reduction
 – Roof mounting maximizes capability given limited camp footprint

Camp Katuu Builder’s Shop – PV Array Installation Location
PV Layout Development (cont.)

- PV System Layout Options Considered
PV Layout Development (cont.)

- PV System Layout Considerations and Comparisons

<table>
<thead>
<tr>
<th>No.</th>
<th>Consideration</th>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
<th>Option 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amount of rail mounting (lf)</td>
<td>1440'</td>
<td>1800'</td>
<td>1800'</td>
<td>1440'</td>
</tr>
<tr>
<td>2</td>
<td>Ease of rail installation</td>
<td>some rail cutting required to clear walkway</td>
<td>requires two level rail mounting system</td>
<td>requires two level rail mounting system</td>
<td>no rail cutting required</td>
</tr>
<tr>
<td>3</td>
<td>Ease of wiring</td>
<td>Intuitive circuit pattern</td>
<td>Very Intuitive circuit pattern</td>
<td>Very Intuitive circuit pattern</td>
<td>odd circuit pattern</td>
</tr>
<tr>
<td>4</td>
<td>Maintenance access</td>
<td>21" horizontal & vertical walkway, does not have direct access to all panels</td>
<td>Accessible with 15" walkways</td>
<td>Direct access to each panel and has a center walkway</td>
<td>No direct access to most panels</td>
</tr>
<tr>
<td>5</td>
<td>System DC Rating (kW DC) [1]</td>
<td>42.300</td>
<td>42.300</td>
<td>39.480</td>
<td>50.760</td>
</tr>
<tr>
<td>6</td>
<td>System AC rating (kW AC) [2]</td>
<td>32.571</td>
<td>32.571</td>
<td>30.400</td>
<td>39.085</td>
</tr>
<tr>
<td>7</td>
<td>Fall Protection System</td>
<td>accomodates rail system</td>
<td>accomodates rail system</td>
<td>accomodates rail system</td>
<td>does not accommodate rail system</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Color Legend
- most favorable
- more favorable
- more favorable
- least favorable

Note [1] System DC Rating based upon use of 235W solar panels
Note [2] System AC Rating based upon typical .77 conversion factor from DC power to AC power
PV Layout Selected – Option 1

- Easiest to Implement and Sustain
 - Safety rails
 - Access ways (beginning to be required)
 - Intuitive circuitry/wiring

- Performance
 - Met power requirements

<table>
<thead>
<tr>
<th>No.</th>
<th>Consideration</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amount of rail mounting (lf)</td>
<td>1440'</td>
</tr>
<tr>
<td>2</td>
<td>Ease of rail installation</td>
<td>some rail cutting required to clear walkway</td>
</tr>
<tr>
<td>3</td>
<td>Ease of wiring</td>
<td>Intuitive circuit pattern</td>
</tr>
<tr>
<td>4</td>
<td>Maintenance access</td>
<td>21" horizontal & vertical walkway, does not have direct access to all panels</td>
</tr>
<tr>
<td>5</td>
<td>System DC Rating (kW DC) [1]</td>
<td>41.400</td>
</tr>
<tr>
<td>6</td>
<td>System AC rating (kW AC) [2]</td>
<td>31.878</td>
</tr>
<tr>
<td>7</td>
<td>Fall Protection System</td>
<td>accommodates rail system</td>
</tr>
</tbody>
</table>

Color Legend:
- most favorable
- more favorable
- least favorable
Component Selection

PV Module

Key Features
- Top ranked PVUSA (PTC) rating in California for higher energy production
- 6 years product warranty (materials and workmanship)
- 25 years module power output warranty
- Industry leading plus only power tolerance: +5W (+2%)
- Strong framed module, passing mechanical load test of 5400Pa to withstand heavier snowload
- Ultra reliable in corrosive atmosphere, verified by IEC61701 “Salt Mist Corrosion Testing”
- The 1st manufacturer in the PV industry certified for ISO:TS16949 (The automotive quality management system) in module production since 2003
- ISO 17025 qualified manufacturer owned testing lab, fully complying to IEC, TUV, UL testing standards

Applications
- On-grid residential rooftop
- On-grid commercial/industrial rooftop
- Solar power stations
- Other on-grid applications

Quality Certificates
- IEC 61215, IEC 61730, IEC 61701, UL 1703, CEC Listed, CE, KEMCO and MCS
- ISO9001: 2008: Standards for quality management systems
- ISO/TS16949:2009: The automotive quality management system
- QC080000 HSPM: The Certification for Hazardous Substances Regulations

Best value ($/watt)
Tested for corrosion
Stock item
Common Attributes!!

<table>
<thead>
<tr>
<th>PV Module Specifications</th>
<th>Canadian Solar CS6P-235P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Attributes</td>
<td></td>
</tr>
<tr>
<td>Length (in)</td>
<td>64.5</td>
</tr>
<tr>
<td>Width (in)</td>
<td>38.7</td>
</tr>
<tr>
<td>Thickness (in)</td>
<td>1.57</td>
</tr>
<tr>
<td>Weight (lbs)</td>
<td>44.1</td>
</tr>
<tr>
<td>Electrical Attributes [1]</td>
<td></td>
</tr>
<tr>
<td>Nominal Maximum Power Output at STC (Pmax)</td>
<td>235 Watts</td>
</tr>
<tr>
<td>Voltage at Pmax (Vmp)</td>
<td>29.8 Volts</td>
</tr>
<tr>
<td>Current at Pmax (Imp)</td>
<td>7.9 Amps</td>
</tr>
<tr>
<td>Open Circuit Voltage (Voc)</td>
<td>36.9 Volts</td>
</tr>
<tr>
<td>Short Circuit Current (Isc)</td>
<td>8.09 Amps</td>
</tr>
</tbody>
</table>

[1] Standard Test Conditions for panel ratings: 1,000 Watts/M², AM 1.5, 25 C
Component Selection

Inverter

- Six SMA 7000US inverters for grid-tied system
- Reliable product
- Very low maintenance
- Rated for outdoors use
- Simple, informative interface
- Integral DC disconnect
- Stock item
- Can accommodate electricity grids with poor voltage and frequency regulation
Component Compatibility

Issue – Utility upper operating frequency range exceeds inverter default settings; *nuisance trips will occur!!*

Solution – Increase inverter operating frequency range based upon electrical utility operations and input

Default Frequency Operating Range is not compatible
Camp Katuu Results

• Installed by 249th Engineering Battallion (Prime Power) and Camp Katuu Civic Action Team
 – All wiring correct per installation drawings
 – Very quick commissioning

• System Reliability During 6 Month Sustainment Period:
 – No failures or repairs
 – System automatically restarted after each grid outage
Camp Katuu Results (cont.)

- **System Performance During 6 Month Sustainment Period:**
 - *Electrical cost savings exceeded estimates by*
 - **Adjusted:** 17% ($25.5k versus $21.8k annually)
 - **Actual:** 10% ($23.9k versus $21.8k annually)
 - *Production met expectations, given rainy season, achieving 94% of annual estimate (53.9MWh versus 57.9MWh)*
Camp Katuu Results (cont.)

System Performance During 6 Month Sustainment Period:

- **Energy cost estimate without PV array**: $49.8k
- **Energy cost with PV array**: $37.5k
- **Camp energy cost reduction by PV array**: 25%

![Pie chart showing PV System Economic Impact from 8/16/2011 to 2/19/2012]

- **Net Electricity Cost with PV Array**: $37,495.82
- **Potential Economic Benefit**: $12,253.77
- **Cost Avoided by Consuming PV Energy**: $12,184.69
- **Value of Exported PV Energy**: $79.06
System Options

- **Grid - Tied System**
 - **Camp Katuu System**
Alternative Systems to Enhance Energy Security

- Grid - Tied System
 - Key Benefits
 - Simple to install
 - Easy to maintain
 - Reduces electrical costs
 - Grid can serve as a load for exporting excess renewable energy
 - Very sustainable

- Key Considerations
 - Requires grid to operate
 - Very few products compatible with unstable grids
SMA’s Sunny Island

- Major Components:
 - Battery bank w/ monitoring
 - Sunny Island

- Can be configured to accept a generator input or utility
SMA’s Sunny Island

• Island System - SMA
 – Leverages multiple energy sources
 ➢ Wind, solar
 ➢ Battery bank
 ➢ Generator or utility

 – Key Considerations
 ➢ Not intended for export
 ➢ Number of components to build system
 ➢ Desired system voltage:
 o Single phase 120/240VAC
 o Three phase 120/208, 277/480
Outback’s Radian Inverter

PV Array → Charge Controller → DC Bus → DC Charge/Discharge → Critical Loads

Energy Storage

AC Generator

Utility Source
System Options

• Hybrid System - Outback
 – Leverages Multiple Energy Sources
 ➢ Solar
 ➢ Battery bank, bi-directional
 ➢ Generator
 ➢ Utility
 ➢ Can export

 – Key Considerations
 ➢ Must meet UL1741 for export
 ➢ 120/240 VAC rated system
Summary

- Power Systems to Enhance Energy Security Include:
 - Grid - Tied: simple, few components, no off-grid support
 - Off - Grid: simple, more components than off-grid, requires energy storage
 - Hybrid Systems: few options, but can leverage numerous energy resources to achieve energy security
Questions?

Palau PV System Ribbon Cutting Ceremony Celebrating:
*
* Nation building through the successful implementation of renewable energy systems

Left to right: Ambassador Helen Reed-Rowe, SFC Daniel Husak, 1st Lt Melissa Jumper, LCDR Grant Watanabe, Clark Boriack (CTC Technical Lead)
Points of Contact

• NDCEE Technical Monitor
 John Horstmann
 ARCENT
 Phone: (803) 885-8206
 Email: john.horstmann@arcent.army.mil

• Technical Lead
 Clark Boriack
 Phone: (814) 262-2381
 Email: boriackc@ctc.com

• CTC Project Manager
 Elizabeth Keysar
 Phone: (770) 631-0137
 Email: keysare@ctc.com

This work was funded through the Office of the Assistant Secretary of the Army for Installations, Energy and Environment and conducted under contract W91ZLK-10-D-0005 Task 0720. The views, opinions, and/or findings contained in this paper are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision unless so designated by other official documentation.