Observations from AT&L/PARCA's Root Cause Analyses

NPS Acquisition Symposium
May 17th, 2012

Gary R. Bliss
Director, PARCA
Observations from AT&L/PARCA’s Root Cause Analyses

Office of the Assistant Secretary of Defense for Acquisition, Performance Assessments and Root Cause Analyses (PARCA), 3620 Defense Pentagon RM 5A1082, Washington, DC, 20301-3620

Presented at the 9th Annual Acquisition Research Symposium, May 16 - 17, 2012, Monterey, CA.
Overview

- What is PARCA’s role?
- Steps to improve baseline estimates
- Other actions
Root Cause Analysis Functions

- Statutory duties defined in WSARA 09
 - Conduct root cause analyses for major defense acquisition programs.
 - As part of the Nunn-McCurdy breach certification process.

 WSARA 09 states that the Secretary of Defense shall
 (1) determine the root cause or causes of the critical cost growth
 (2) If program is not terminated, restructure the program in a
 manner that addresses root cause or causes of the critical
 cost growth

 - When requested by designated officials.
 - Issue policies, procedures, and guidance governing the conduct
 of root cause analyses.

- Identification of lessons learned for the benefit of acquisition community.
Analytical Framework

INCEPTION

- Unrealistic cost or schedule estimates
- Inadequate risk assessment
- Unanticipated technological or manufacturing issues
- Funding instability or inadequacy

EXECUTION

Problems will occur: why they occur and our response to them are crucial subjects for root cause analysis.
Overview

- What is PARCA’s role?
- Steps to improve baseline estimates
- Other actions
Why are Estimates Unrealistic?

- Unrealistic estimates are generally caused by the invalidity of major assumptions NOT methodological errors.

- The cost estimating community can and should challenge assumptions but the acquisition community formulates them.

- Consideration of this has led to “framing assumptions”
Estimating Assumptions Flow from Framing Assumptions

Framing Assumptions

- Design is mature
 - (Prototype design is close to Production-Ready)

 Consequences

 - Production and development can be concurrent
 - Weight (critical for vertical lift) is known
 - Design can now be refined for affordability

 Estimating Assumptions

 - Schedule will be more compact than historical experience
 - Weight will not grow as usual for tactical aircraft
 - Affordability initiatives will reduce production cost

Cost and Schedule Estimates

Responsible Communities:
- Requirements, Technical, & Program Management
- Cost Estimators
Illustrative Sources for Framing Assumptions

Pre-MS B activities: The design is very similar to the ACTD.

Technical base: Modular construction will result in significant cost savings.

Policy implementation: The conditions are met for a firm, fixed price contract.

Organizational: Arbitrating multi-Service requirements will be straightforward.

Program dependencies: FCS will facilitate solution of size, weight, and power issues. Interoperability

Threat or operational needs: The need for precision strike of urban targets will not decline.

Industrial base/market: The satellite bus will have substantial commercial market for the duration of program.
Framing Assumptions and Decision-Making

- Issues now are formed by “advocates” of particular subject areas:
 - Each subject area has particular metrics
 - Relationship of these to overall program success is never questioned

- Intent is to raise the key issues for the program irrespective of whether they are controversial
 - **First step:** Identify the right issues and know how they contribute to program success.
 - **Second step:** Establish what metrics are relevant to the issue’s contribution to program success.
 - **Third step:** Present the data to date for and against, including relevant historical programs that are capable of discriminating outcomes.
 - **Fourth step:** Generate baseline forecasts of how the data will evolve if the thesis is correct . . . And vice versa. Track data and report.
Overview

- What is PARCA’s role?
- Steps to improve baseline estimates
- Other actions
Poor Management Performance

- Management performance is the lens through which all program issues are addressed.
 - Contractor
 - Program Office
 - PEO
 - OSD

- PARCA has found issues in three broad areas.
 - Systems engineering
 - Contractual incentives
 - Organizational awareness and response

A critical but difficult area to assess.
Systems Engineering

General observations.

- High potential as a significant or a root cause because systems engineering critical for complex systems.
- Process definition required but can dominate substance.
 “Strong in process but weak in integration” – PMO assessment
- Recognizing poor systems engineering early a challenge.
- “Systems Engineering” too broad for actionable root causes.

Areas where problems have been observed include:

- Requirements management
 - Ambiguities in combining requirements documents.
 - Funding program to include all requirements.
- Interface and environment management
- Holistic performance attributes e.g. reliability, weight
- Risk assessment
Effective Contracting Strategy

- Incentive evaluation
 - Aligned with program goals and challenges
 - Demanding yet achievable
 - Sufficient to motivate
 - No perverse effects
 - Correct signal sent and received

- Incentive strategy
 - Conditions for strategy satisfied?
 - Consistent with corporate goals and position
 - Consistent with policy

Government goals but contractor’s perspective
Situational Awareness – Contract Performance v Program Performance

- Several cases where program content evolves
 - Work not understood
 - “Unfunded” requirement
 - Spiral development (almost by definition)

- Consequences require management
 - Contract performance differs from program performance
 - Discipline in program content
 - Budgetary pressure
PARCA’s role in N-M process is to help identify program root causes so that we don’t have more growth.

The broader issue is – can the breach be avoided altogether?

PARCA’s observations
- Problem cost growth comes both from inception and execution issues
- Inception issues are primarily due to invalid postulates
- In execution, DoD does not always recognize all the implications of postulate invalidity and finds it difficult to identify and respond to evidence of invalid postulates and organizational issues.

Recognizing problems is the first step to solving them.
Backup
Organizational Response

- **Direction**
 - Policy is a significant source of program postulates
 - Implementation not assured e.g. PM tenure, ADMs

- **Organizational performance issues appear to persist**
 - Organizational problems identified at first breach …
 - “Management and systems engineering processes were not in place”
 - Contractor “did not effectively tap … expertise resident within team.”
 - “Concurrent activities increased program execution complexity.”
 - … are often still present at second.
Correlation When Framing Assumption is Invalid

Framing Assumptions

Design is mature
(Prototype design is close to Production-Ready)

Production and development can be concurrent

Weight (critical for vertical lift) is known

Design can now be refined for affordability

Consequences

Schedule will be more compact than historical experience

Weight will not grow as usual for tactical aircraft

Affordability initiatives will reduce production cost

Estimating Assumptions

Cost and Schedule Estimates

Responsible Communities:
Requirements, Technical, & Program Management
Cost Estimators
Role in N-M Breaches

- When an invalid framing assumption is embraced:
 - Evidence of problems will accumulate
 - Cost and schedule estimates will need to be changed
 - But, the amount of growth will depend on
 - How promptly management recognizes the issues
 - How effectively management responds

- Further cost growth if the full implications of the invalid framing assumption are not addressed.

“It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so.” - Mark Twain
Constant set of Assumptions for a Variety of Decisions

- Design is mature (Prototypes demonstrated key issue/trades)
- Government requirements have been defined
- Integration will be straightforward
- Conditions for FFP EMD are satisfied
- Confidence in system definition
- Resolution of SWaP issues
- Soundness of approach to contract management

RFP Release Decision

Concept will be piloted this year
Overview

- Unrealistic Estimates
- Changes in Quantity
- Performance
Quantity Changes

To consider a quantity change to be a root cause, PARCA has defined two conditions:
- The reason for the change was outside the control of the acquisition community.
 - Doctrinal or threat change but NOT Escalating unit costs
 - “Pure” fiscal constraints but NOT Schedule slips
- Other cost growth would not have caused a breach without the quantity change.

To date, PARCA has observed that quantity changes were due to factors within the control of the acquisition community in about half of the cases.

The reason for the quantity change is crucial to management.
Preliminary Trends

<table>
<thead>
<tr>
<th>Inception Issues</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrealistic cost or schedule estimates</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Immature technology, excessive manufacturing, integration risk</td>
<td></td>
</tr>
<tr>
<td>Unrealistic performance expectations</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Execution Issues</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in procurement quantity</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inadequate funding/funding instability</td>
<td></td>
</tr>
<tr>
<td>Unanticipated design, engineering, manufacturing or technology issues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor performance</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

Root causes must be true AND relevant.
The Impact of Changing Quantity Depends on Other Decisions

- Quantity change in isolation mainly impacts PAUC.
 - RDT&E amortized over fewer units.
 - Modest learning effects on APUC.
- Two separate decisions often affect unit costs as much as the quantity change itself.
 - Reduce annual buy or curtail program.
 - The mix of systems can change (or confuse) unit costs.