CROSS-PROGRAM WEAPONS SYSTEM SOFTWARE ACQUISITION CAN SAVE BILLIONS

Rick Brennan
Operational Systems, Inc
May 17, 2012
Cross-Program Weapons System Software Acquisition Can Save Billions

1. REPORT DATE
17 MAY 2012

2. REPORT TYPE

3. DATES COVERED
00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Cross-Program Weapons System Software Acquisition Can Save Billions

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Operational Systems, Inc, 1231 Collier Road NW, Suite D, Atlanta, GA, 30318-2313

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 9th Annual Acquisition Research Symposium, May 16 - 17, 2012, Monterey, CA. U.S. Government or Federal Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
10

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)

Proscribed by ANSI Std Z39-18
SOFTWARE IN MILITARY AIRCRAFT

Functionality provided to the aircrew by software

Year of introduction

1960 (F-4) 1964 (A-7) 1970 (F-111) 1975 (F-15) 1982 (F-16) 1990 (B-2) 2000 (F-22)

Source: NASA Study on Flight Software Complexity
Physical Goods Cost Behavior

• Notional example:
 - $40 million for development, integration, test, certification, and other non-recurring costs
 - $10 million for manufacturing, test, distribution, integration, and other recurring, per-unit costs
 - 1 core capability delivered
 - 50 units built
Software Cost Behavior Comparison

Notional Example:

- $40 million for development, integration, test, certification, and other non-recurring costs
- $0 for manufacturing, test, distribution, integration, and other recurring, per-unit costs
- 1 core capability delivered
- 50 initial software instances built
Economic Effect of Stovepiping

Notional Example:

- Each program builds a unique hardware and software product
- $40 million fixed development cost for each hardware product
- $10 million marginal manufacturing cost per hardware unit
- $40 million fixed development cost for each software product
- $5 million fixed development cost for each software version after V1.0
- $0 marginal manufacturing cost per software instance
Stovepipe Economic Effects Compounded by Software Improvement Cycles

Notional Example:

- Each program builds a unique software product
- $40 million fixed development cost for each software product
- $5 million fixed development cost for each software version after V1.0
- $0 marginal manufacturing cost per software instance

Cost of Stovepiped Software Development

Shared Intellectual Property
THE POWER OF SHARED INTELLECTUAL PROPERTY

• In the best case, once fixed costs for development, test, certification, and verification are paid, the cost to scale software is close to zero

• Someone has to pay those up front fixed costs

But Everyone Doesn’t!
CURRENT BARRIERS TO SHARING IP ACROSS PROGRAM BOUNDARIES

• Requirements development and management structure
• Funding structure
• Cultural interpretation of risk
• Business model
• Shortage of Government Lead Systems Integrator basic knowledge and skills
• Systems Command structure
• Systems Command skillset gaps
MINIMIZING SHARING COSTS

• Identify appropriate intellectual property sharing systems targets
• Facilitate cross-program coordinated software development
 • Cooperative Product Line applications development
 • Community requirements management for frameworks and tools
• Shared Resources
 • Shared open source software infrastructure
 • Shared, cloud-based development and test environment
• Policy optimization
 • Financial incentives for programs that cooperate and collaborate
 • Re-thinking of the concept of risk
 • Streamlined IA and safety certification
• Business Model update
 • Separate physical vehicle acquisition from software applications acquisition
QUESTIONS?