REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

<table>
<thead>
<tr>
<th>1. REPORT DATE (DD-MM-YYYY)</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED (From - To)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 03 2012</td>
<td>Final Report</td>
<td>2009-2012</td>
</tr>
</tbody>
</table>

The Impact of Prophylactic Fasciotomy following porcine limb ischemia/reprofusion injury

Capt Thomas J. Percival, MD; CPT Shimul Patel; Capt Nickolay P. Markov, MD; Jerry R. Spencer RVT; Capt Gabriel E. Burkhardt, MD; Col Todd E. Rasmussen, MD

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Wilford Hall Ambulatory Surgical Center
2200 Bergquist Dr. Bldg 4430
Lackland AFB TX 78236

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution Statement A. Approved for public release: distribution unlimited.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
UNCLASSIFIED

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES
2

19. NAME OF RESPONSIBLE PERSON
Todd E. Rasmussen

19b. TELEPHONE NUMBER (include area code) 210-539-0936
The Impact of Prophylactic Fasciotomy Following Porcine (Sus scrofa) Hind Limb Ischemia/reperfusion Injury

CAPT Thomas J. Percival MD1,2, CPT Shimul Patel2, CAPT Nickolay P. Markov MD1,2, Jerry R Spencer RVT1, CAPT Gabriel E. Burkhardt MD1, COL Todd E. Rasmussen, MD1,2,3

1Wilford Hall USAF Medical Center and Genesis Concepts & Consultants
Lackland Air Force Base, Texas
2The US Army Institute of Surgical Research, Fort Sam Houston, Texas
3The Norman M. Rich Department of Surgery
F. Edward Hebert School of Medicine
The Uniformed Services University of the Health Sciences,
Bethesda, Maryland

Keywords: Vascular injury, Extremity, Ischemia-reperfusion, Therapeutic reperfusion, Statin, Recovery, Neuromuscular, Functional, Fasciotomy

Reprint requests:
Corresponding author:
Todd E. Rasmussen MD FACS
Col United States Air Force, MC
Deputy Commander
US Army Institute of Surgical Research
3400 Rawley E. Chambers/ Suite B
Fort Sam Houston, Texas 78236
Office: 210-916-5181
Email: todd.rasmussen@amedd.army.mil
Background: Prophylactic fasciotomy has been used as an adjunct to alleviate the compartment syndrome after an ischemia reperfusion injury. It has been purposed that prophylactically treating compartment syndrome will improve neuromuscular recovery of the limb therefore improving functional limb outcome. The purpose of this study is to quantify the neuromuscular recovery of prophylactic fasciotomy in a porcine model of hind limb ischemia.

Method: Swine (*Sus Scrofa*; 76 +/-6kg) were randomly assigned to no fasciotomy or prophylactic fasciotomy after ischemia via external iliac artery occlusion and arteriotomy. Class III shock was induced via a 35% blood volume variable rate hemorrhage and external iliac artery repair was achieved after 0, 3, or 6 hours of ischemia. Prophylactic fasciotomy of the anterior compartment was performed at the time of reperfusion. Compound motor action potential, sensory nerve action potential, nerve conduction velocity and gait testing was evaluated during the 14-day survival period to calculate the composite physiologic model of recovery (PMR). Necropsy was performed for evaluation of nerve and muscle histology.

Results: In hemorrhage alone, according to the PMR the recovery was 94+/-28%, 63+/-37% and 55+/-44% at 0, 3 and 6 hours of ischemia respectively. A significant difference was noted between 0 and 6 hours of ischemia (p<0.05). With fasciotomy, a recovery of 97+/-72%, 98+/-80% and 42+/-39% was noted after 0, 3 and 6 hours of ischemia. Compound motor action potential showed the greatest decrement with ischemic insult. Histologic analysis is currently on going.

Conclusion: This study demonstrates the feasibility of fasciotomy in a porcine model. It validates the previous model of functional limb outcome with hemorrhage in a porcine model and shows an apparent trend towards improved functional limb outcome if vascular repair and prophylactic fasciotomy are performed within 3 hours of ischemic time.
Vascular injury is five times the rate of previously reported wars, with the majority of those injuries taking place in the extremities. Recent research has shown the ischaemic threshold of 6 hours has been decreased to < 6 hours in the absence of hemorrhage and < 3 hours in the presence of hemorrhage. Prophylactic fasciotomy has been used to extend the ischaemic threshold by alleviating compartment syndrome after ischaemia reperfusion injury. The functional improvement after prophylactic fasciotomy has yet to be investigated in a translatable large survival model. The objective of this study is to establish a model of extremity compartment syndrome following vascular injury, hemorrhage and ischemia/reperfusion. An additional objective is to determine the effect of fasciotomy on measures of neuromuscular recovery. We hypothesize that prophylactic fasciotomy will improve functional outcome through the alleviation of compartment syndrome.

Methods

Thirty five female yorkshire swine (75 +/- 5kg) underwent 35% blood volume hemorrhage, followed by 1, 3 and 6 hours of ischemia via a right retroperitonael iliac artery occlusion followed by standardized repair with dacron patch angioplasty and reperfusion (n=17; 1HR, 3HR, 6HR). A second cohort (n=18) underwent prophylactic fasciotomy of the anterior compartment of the hind limb following the blood volume hemorrhage and arterial repair, (1HR-F, 3HR-F, 6HR-F). Compartment pressures and measures of electromyographic (EMG) recovery were performed pre-operative, post-operative and on POD 1, 2, 7 and 14. The EMG variables were combined and compared to baseline to create the Physiologic Model of Recovery (PMR). On day 14, necropsy was performed and histologic analysis of the peroneus tertius and peroneal nerves was performed.

Results

Physiologic model of recovery (combination of Compound Motor Action Potential (CMAP), Sensory Nerve Action Potential (SNAP) and Nerve Conduction Velocity (NCV))

Compartment pressures

Histologic Results

Physiologic Model of Recovery

Table. Characteristics at day 14.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Means (SE)</th>
<th>1HR</th>
<th>3HR</th>
<th>6HR</th>
<th>p-value</th>
<th>1HR vs. 3HR</th>
<th>1HR vs. 6HR</th>
<th>3HR vs. 6HR</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMAP [mV]</td>
<td>13.8 (1.0)</td>
<td>16.2 (1.2)</td>
<td>15.4 (1.0)</td>
<td>13.8 (0.9)</td>
<td>0.034</td>
<td>0.046</td>
<td>0.884</td>
<td>0.230</td>
<td></td>
</tr>
<tr>
<td>SNAP [mV]</td>
<td>10.5</td>
<td>13.0 (1.0)</td>
<td>11.5 (1.4)</td>
<td>11.5 (1.2)</td>
<td>10.5</td>
<td>0.04</td>
<td>0.046</td>
<td>0.046</td>
<td></td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>40.1 (10.6)</td>
<td>19.7 (1.2)</td>
<td>21.3 (2.6)</td>
<td>20.7 (1.2)</td>
<td>0.046</td>
<td>0.230</td>
<td>0.046</td>
<td>0.046</td>
<td></td>
</tr>
<tr>
<td>Myoglobin (mg/dL)</td>
<td>64.1 (12.2)</td>
<td>58.7 (9.5)</td>
<td>58.7 (9.5)</td>
<td>51.4 (5.3)</td>
<td>0.057</td>
<td>0.046</td>
<td>0.230</td>
<td>0.046</td>
<td></td>
</tr>
<tr>
<td>Lactate (mM)</td>
<td>5.1 (1.4)</td>
<td>5.3 (1.4)</td>
<td>5.3 (1.4)</td>
<td>5.3 (1.4)</td>
<td>0.034</td>
<td>0.046</td>
<td>0.046</td>
<td>0.046</td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

Although not statistically significant, fasciotomy at 3 hours of ischemia improved recovery, 3HR 66 +/- 9% vs. 3HR-F 81 +/- 9%.

Fasciotomy at 3 hours of ischemia improved recovery, 3HR 66 +/- 9% vs. 3HR-F 81 +/- 9%.

Obstacles

- Compartment pressure had a statistically significant rise between all groups (1HR, 3HR & 6HR).
- Fasciotomy released compartment pressure in a statistically significant manner at 3 and 6 hours of ischemia.
- Increasing intervals of ischemia without fasciotomy showed worsening muscle damage that was mitigated by fasciotomy.

Fasciotomy did not improve recovery at 6 hours of ischemia, 6HR 47 +/- 8% vs. 6HR-F 52 +/- 11%.

Fasciotomy at 3 hours of ischemia improved recovery, 3HR 66 +/- 9% vs. 3HR-F 81 +/- 9%.

Conclusions

- Elevated compartment pressures can be obtained in a translatable model of ischemia/reperfusion injury.
- Fasciotomy successfully reduces compartment pressures and reduces the result for further damage caused by compartment syndrome.
- After 6 hours of ischemia in the presence of hemorrhage, fasciotomy does not improve the functional outcome of the limb.
- Although not statistically significant, fasciotomy at 3 hours of ischemia with hemorrhage trended towards improved functional outcome.
- Fasciotomy moves the ischemic threshold from less than 3 hours to 3 to 6 hours.

Acknowledgements

The veterinary staff at the USAISR for the tireless efforts to help complete this protocol.

References