DoD Corrosion Prevention and Control Program

Demonstration of a Nanomaterial-Modified Primer for Use in Corrosion-Inhibiting Coating Systems

Susan A. Drozdz, Todd Hawkins, Larry Clark, Michael Surratt,
Joshua Kingsley, Karl Palutke, and James Dean

November 2011

Approved for public release; distribution is unlimited.
Demonstration of a Nanomaterial-Modified Primer for Use in Corrosion-Inhibiting Coating Systems

Susan A. Drozdz

Construction Engineering Research Laboratory
US Army Engineer Research and Development Center
2902 Newmark Drive
Champaign, IL 61822

Todd Hawkins

Tesla NanoCoatings Limited
PO Box 270
Massillon, Ohio 44647

Larry Clark, Michael Surratt, Joshua Kingsley, Karl Palutke, and James Dean

Mandaree Enterprise Corporation
812 Park Drive
Warner Robins, GA 31088

Final report
Approved for public release; distribution is unlimited.
Abstract: Above-ground steel fuel tanks, some as large as 1 million gallons, are the main fuel supply for central energy plants and aviation support throughout the Department of Defense (DoD). These tanks and their associated pipelines are aging and many need remediation before leaks or catastrophic failures occur. This project evaluated an emerging coating technology for steel tanks and implemented the technology at Fort Bragg, NC, on a fuel oil storage tank.

For conventional zinc-rich primer to be effective, the metallic zinc dust pigment particles must be heavily loaded in the coating binder (65–95%) so that zinc particles are in contact with each other for electrical conductivity. This high loading can be problematic during coating application/removal due to zinc metal’s heavy weight and the traces of lead it normally contains. The coating used in this project is a technically advanced primer additive that uses galvanically inactive, electrically conductive fullerene carbon nanotubes in conjunction with a much lower percentage of the metallic zinc powder (~30%) to produce the enhanced galvanic reactivity with the steel substrate. The reduced content of the zinc pigment to resin/binder volume ratio also improves the coating integrity and application.
Executive Summary

This Office of the Secretary of Defense Corrosion Prevention and Control project demonstrated and validated the successful use of a modified metallic zinc-containing primer on exterior surfaces of a steel fuel tank and associated piping. The primer contained technically advanced additives consisting of galvanically inactive, electrically conductive fullerene carbon nanotubes (CNTs). This CNT/zinc hybrid primer formulation allowed for reducing the high metallic zinc pigment loading (65–95%) of a traditional zinc-rich primer to provide for better coating application and performance. The hybrid primer (10–30% metallic zinc powder) provides at a minimum the same galvanic protection to scratched or damaged areas as does the traditional zinc-rich primer. If a void in the paint system (i.e., a holiday) develops, corrosion normally initiates at that point. However, when using the CNT/zinc hybrid primer, if a holiday develops, the bare area is still protected by the reduced-load metallic zinc coating that continues to function as a sacrificial anode with increased performance due to the conductivity of the CNTs. Studies have demonstrated that traditional zinc-rich primer sacrificial coatings can provide the best protection to steel for 20–50 years or more. This demonstration/validation (dem/val) project supports the claim that the CNT/zinc hybrid primer can provide the same level of corrosion protection and be easier to apply when compared to traditional metallic zinc-rich primer systems.

During project testing, Mandaree Enterprise Corporation conducted a review of the Material Safety Data Sheet (MSDS) and available industry/academia carbon nanotube-related literature. As the use of CNT in various applications is relatively new technology, a complete determination of the toxicity of carbon nanotubes has not been completely established. The MSDS review did not reflect any unusual risks associated with the CNT containing primer. However, other carbon nanotube reference material reviewed indicate that, in animal studies under certain conditions, nanotubes may be able to cross biological membrane barriers, which suggests that if ingested, inhaled, or otherwise entering the body, they may induce harmful effects such as inflammatory and fibrotic reactions [1, 2, 3, 4, 5]. Researchers will continue to investigate the biological effects of exposure to carbon nanotubes and nanofibers, but in
the meantime, precautionary measures are advised during the handling of dry materials in the coating manufacturing process. Once these dry nanotubes are dispersed in the liquid epoxy resin components, they are unlikely to be released by any downstream processing, including coating application, exposure to weather, and paint removal by abrasive blasting or other means. This report documents the materials and methodologies used for testing and application of the new coating systems on the fuel storage tank and associated piping at Fort Bragg, NC.

The project metrics were met or exceeded. This project has shown that the installation method with improved corrosion resistant coatings will provide the DoD with a means to cost effectively rehabilitate the outer metal surfaces of structurally sound fuel tanks and their associated piping. These coatings should extend the service life of all steel fuel and water storage tanks in all environments.

Further studies may be necessary to develop the most effective combined corrosion prevention rehabilitation package for many other metal structures. Additional studies should be completed to determine any adverse bio-environmental effects that may occur by long-term exposure to the CNT/zinc hybrid primer or other materials containing the CNT.
Table of Contents

Executive Summary .. iii

List of Figures and Tables .. vii

Preface .. viii

Unit Conversion Factors ..ix

1 Introduction ... 1
 1.1 Problem statement .. 1
 1.2 Objective .. 2
 1.3 Approach .. 2
 1.3.1 Project planning .. 2
 1.3.2 Surface preparation .. 3
 1.3.3 Coating process ... 4
 1.3.4 Coating evaluation .. 4
 1.3.5 Overall project evaluation ... 4

2 Technical Investigation .. 5
 2.1 Project overview ... 5
 2.1.1 Specifications .. 7
 2.1.2 Application design details ... 7
 2.2 Application of the technology .. 8
 2.2.1 Fuel oil tank #2 ... 8
 2.2.2 Associated piping for Fuel Oil Tanks #1 and #2 ... 13
 2.3 Technology monitoring .. 17
 2.4 Data collection ... 18

3 Discussion ... 19
 3.1 Metrics ... 19
 3.2 Results .. 19
 3.3 Lessons learned .. 20
 3.3.1 Site selection .. 20
 3.3.2 Application .. 21

4 Economic Summary ... 22
 4.1 Costs and assumptions ... 22
 4.2 Projected return on investment (ROI) ... 23

5 Conclusions and Recommendations .. 25
 5.1 Conclusions ... 25
 5.2 Recommendations .. 27
 5.2.1 Applicability .. 27
List of Figures and Tables

Figures

Figure 1. Fort Bragg fuel oil tank #2 with piping (foreground). .. 5
Figure 2. Corroded fuel tank piping with electrical conduit... 6
Figure 3. Corroded fuel tank piping. ... 6
Figure 4. Scaffolding erected around fuel oil tank #2. ... 8
Figure 5. Scaffolding fully contained with environmental controls in place. .. 9
Figure 6. Abrasive blast-cleaned tank surface... 10
Figure 7. Abrasive blast-cleaned tank ladder.. 10
Figure 8. NAVSEA/NST Center inspection system... 11
Figure 9. CNT/zinc primer... 12
Figure 10. Intermediate epoxy primer. ... 12
Figure 11. Sikaflex sealant at tank base.. 13
Figure 12. Preparation of piping containment. ... 14
Figure 13. Piping containment with environmental controls. .. 14
Figure 14. Abrasive blasting of piping. ... 15
Figure 15. Hybrid CNT/zinc primer on piping. ... 15
Figure 16. Intermediate epoxy primer on piping. .. 16
Figure 17. Finished piping with MIL-PRF-85285 polyurethane topcoat. ... 16
Figure 18. Completed fuel oil tank #2 and piping. ... 17
Figure 19. Blasted coupons. ... 18
Figure 20. Exposure rack with coupons prepared with the coating systems used on tank #2........... 18

Tables

Table 1. Labor costs. .. 22
Table 2. Equipment and material costs. ... 22
Table 3. Validated return on investment calculation. ... 23
Table 4. Guidance documents recommended for change.. 27
Preface

This demonstration/validation project was performed for the Office of the Secretary of Defense (OSD), Corrosion Policy and Oversight, under Department of Defense (DoD) Corrosion Prevention and Control (CPC) Program project FY 07-AR-19, “Application of Innovative Coating System on the Exterior of a Fuel Oil Tank at Fort Bragg, NC”; Military Interdepartmental Purchase Request MIPR7CCORB1019, dated 21 November 2006. The proponent was the US Army Office of the Assistant Chief of Staff for Installation Management (ACSIM), and the stakeholder was the US Army Installation Management Command (IMCOM). The technical monitors were Daniel J. Dunmire (OUSD(AT&L)), Bernie Rodriguez (IMPW-E), and Valerie D. Hines (DAIM-ODF).

The work was performed by the Materials and Structures Branch (CF-M), Facilities Division (CF), US Army Engineer Research and Development Center – Construction Engineering Research Laboratory (ERDC-CERL). Mandaree Enterprise Corporation (MEC), Warner Robins, GA, provided project management and onsite material and process assessments. The MEC principal subcontractor for all coating applications was Adam Brown, J&W of North Carolina. The test coatings were provided by Todd Hawkins of TeslaNano Coatings Limited. At the time this report was published, Vicki L. Van Blaricum was Chief, CF-M, L. Michael Golish was Chief, CF, and the Technical Director for Installations was Martin J. Savoie (CEERD-CV-ZT). The Deputy Director of ERDC-CERL was Dr. Kirankumar Topudurti and the Director was Dr. Ilker Adiguzel.

The following Fort Bragg personnel are gratefully acknowledged for their support and assistance in this project: Russell Hayes – Mechanical Engineer Department of Public Works; Gene Foster – Field Service Leader, Honeywell Building Solutions; and all personnel of the heating plant at Fort Bragg.

COL Kevin J. Wilson was the Commander and Executive Director of ERDC, and Dr. Jeffery P. Holland was the Director.
Unit Conversion Factors

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To Obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>degrees Fahrenheit</td>
<td>(F-32)/1.8</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>feet</td>
<td>0.3048</td>
<td>meters</td>
</tr>
<tr>
<td>gallons (US liquid)</td>
<td>3.785412 E-03</td>
<td>cubic meters</td>
</tr>
<tr>
<td>inches</td>
<td>0.0254</td>
<td>meters</td>
</tr>
<tr>
<td>mils</td>
<td>0.0254</td>
<td>millimeters</td>
</tr>
<tr>
<td>square feet</td>
<td>0.09290304</td>
<td>square meters</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Problem statement

Coatings have been a principal element of corrosion protection for steel structures for many years. The best corrosion-inhibiting primers for steel have been shown to contain high volumes of metallic zinc powder (65–95%) that galvanically protects the steel between the cathodic substrate and anodic sacrificial zinc. However, these coatings are so heavily loaded with the metallic zinc pigment that it reduces the integrity of the coating film as compared with other primer coatings. Industry has developed an innovative way to reduce the metallic zinc pigment powder by replacing much of metallic zinc powder (10–30%) with an additive of galvanically inactive, electrically conductive carbon nanotubes (CNTs).

This CNT additive can be adapted to a wide variety of binder systems. The additive is typically loaded at appreciably low levels when compared with traditional zinc-rich primers. The CNT screening factors have shown promising test results with either aluminum or zinc sacrificial metal particles.

The new coating used in this demonstration/validation (dem/val) project is designed to improve the corrosion protection on an above-ground steel fuel tank and associated piping at Fort Bragg, NC. The storage tank shows signs of physical deterioration due to age and requires remediation. The US Army Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) estimates that 25 other Army installations have similar problems with above-ground steel storage tanks. There are further indicators of similar problems at virtually all Department of Defense (DoD) installations.

As a consequence, the need is urgent to evaluate emerging innovative protective coating technologies for fuel and water storage tanks as part of the DoD Corrosion Prevention and Control (CPC) Program. This coatings research is part of an ERDC-CERL Paint Technology Center project to develop a CNT additive for use in zinc-rich primer coating systems.
1.2 Objective

The objective of this demonstration was to prepare the steel tank surface through abrasive blasting, apply the subject coating system, and monitor its performance over time.

1.3 Approach

1.3.1 Project planning

In accordance with the Delivery Order Statement of Work (SOW), Mandaree Enterprise Corporation (MEC) provided the majority of the following project documentation for review and approval at the Pre-Construction Meeting held at Fort Bragg on 8 October 2008, the remainder was provided shortly thereafter:

1. Work Plan (Appendix A)
2. Health and Safety Plan
3. Toxic Characteristic Leaching Procedure (TCLP) Report (Appendix B)
4. Containment System Design (Appendix C)
5. Coatings Qualification Test Reports (Appendix D)
6. Coating System Manufacturer’s Instructions (Appendix E)
7. Certification of Sealant Conformance to Specifications
8. Joint Sealant Manufacturer’s Instructions.

All plans and documents submitted were determined to be in accordance with EM 385-1-1 and National Fire Protection Association 241 as required by the contract SOW. The approved documents are included in Appendices A–H of this report.

Also as required by the SOW, MEC and ERDC-CERL conducted a review and discussed the coating technology evaluation of the above-ground 82d Airborne Division Heating Plant fuel oil tank #2 (measuring 33.5 ft in diameter by 34 ft high (vertical) and associated piping. After completing the review, MEC and ERDC-CERL discussed the evaluation of tank #2. The processes discussed were to:

- abrasive-blast the tank surfaces to bare metal, near white metal finish (SSPC-10)
- prime the prepared metal surfaces with an epoxy primer modified to contain both metallic zinc powder and the CNTs
• apply an intermediate epoxy primer over the base primer
• apply a liquid polymeric coating as a topcoat

In addition, the same processes would be applied to the associated steel piping within the fuel tank containment area.

1.3.2 Surface preparation

Substrate surface preparation was conducted in accordance with project requirements and appropriate industry standards for the coating system to be applied. In accordance with Delivery Order requirements for this project, the Heating Plant tank #2 substrate was prepared with abrasive blasting to remove existing paint and contamination per Unified Facilities Guide Specifications (UFGS) 02 82 33.13 20, “Removal/Control And Disposal of Paint With Lead” (April 2006), and both 15A NCAC 02D.0521 and 15A NCAC 02D.0541. Analysis of the existing paint revealed no lead content. The blasted surfaces were inspected for compliance with the requirements of Society for Protective Coatings (SSPC) Standard VIS 1 (near-white metal). Surfaces that did not meet SSPC VIS 1 requirements after inspection were re-blasted and re-inspected until compliance was achieved. Storage and disposal of the wastes created by the abrasive blasting were conducted in compliance with state and federal solid and hazardous waste regulations and all permits and manifests related to waste management were obtained. MEC’s coating subcontractor controlled the waste generated onsite during operations by establishing a Hazardous Waste Accumulation Site (HWAS) with a secured onsite container. The HWAS location was approved by the Environmental Compliance Branch at Fort Bragg. MEC met with the Fort Bragg Directorate of Public Works (DPW), Environmental Compliance Branch, Hazardous Waste Office prior to starting abrasive blasting operations, to provide assurance of compliance with all regulations. At the conclusion of operations, the MEC subcontractor removed all waste materials from the site and disposed of them at an appropriate licensed off-base facility.

2 Title 15 A, North Carolina Administrative Code (NCAC) 02D.0521, “Control of Visible Emissions”; and NCAC 02D..0541, “Control of Emissions from Abrasive Blasting.”
1.3.3 Coating process

Coating application also was conducted in compliance with project requirements, including industry standards and the product manufacturer’s published instructions and specifications. After proper surface preparation was completed, the coating application contractor applied the CNT/zinc hybrid primer on the surface of the Heating Plant tank #2. Spraying was coordinated with abrasive blasting to ensure that no more than 8 hours had expired between the two processes for optimum adhesion of the primer coat to the prepared substrate. The coatings were applied in accordance with SSPC PA 1. The Military Specification MIL-DTL-24441/19 (modified per section 09 97 13.27) CNT/zinc hybrid primer coating was applied to an average thickness of 0.002 in. with no more than 0.005 in. at any measurement site. The CNT/zinc hybrid primer was sprayed in two half-lapped passes oriented at right angles to each other. The intermediate epoxy primer MIL-DTL-24441/31 stripe coat was then applied within the specified recoat window followed by the application of a full coat of intermediate primer to an average thickness of 0.003 in. with no more than 0.0005 in. at any site. Finally, the topcoat of MIL-PRF-85285 High Solids Polyurethane coating was applied to a thickness of 0.002 to 0.003 in. to conform to Fort Bragg’s color requirements for providing an extended service life for the paint system.

1.3.4 Coating evaluation

Twelve mild steel coating test coupons (3 by 9 by 0.125 in.) were prepared and mounted in a test rack at the heating plant for environment exposure per ASTM D1040. Each coupon was prepared and coated in compliance with the requirements of the SOW. Six coupons were abrasive blasted and coated with the CNT/zinc hybrid primer, intermediate primer, and topcoat system. Six coupons were delivered to ERDC-CERL and six were deployed on a test rack at the Fort Bragg Power Plant for atmospheric exposure.

1.3.5 Overall project evaluation

The processes and materials for each selected coating system were evaluated and documented with respect to the application for which they were intended. Material, labor, and other associated process cost data were also documented to augment the technical data in order to provide a comprehensive evaluation of the technology and a basis for calculating the return on investment. Lessons learned were documented for prospective users.
2 Technical Investigation

2.1 Project overview

Fort Bragg has two large above-ground steel fuel tanks and associated piping used for Heating Plant fuel oil storage. These tanks are showing signs of age and corrosion; therefore, the tanks need remediation before they start leaking. Tank #1 was recoated under a previous project and tank #2 is the dem/val target for this project. The project calls for abrasive blast stripping, priming with CNT/zinc hybrid primer, applying an intermediate primer, and then top coating the tank. The steel fuel tank, which is shown in Figure 1, measures 33.5 ft in diameter by 34 ft high.

Additionally, this project directed that the surface preparation and coating be applied to associated piping within the containment area, which required special preparation. The severely corroded condition of piping is shown in Figure 2 and Figure 3.

Figure 1. Fort Bragg fuel oil tank #2 with piping (foreground).
Figure 2. Corroded fuel tank piping with electrical conduit.

Figure 3. Corroded fuel tank piping.
2.1.1 Specifications

2.1.1.1 Abrasive blast

Technical data sheet and MSDS in Appendix G.
Surface Quality Requirement: SSPC-SP 10 (NACE 1), near white metal.
Surface Profile Requirement: 0.002–0.003 in.

2.1.1.2 Zinc-rich primer

Material description: Epoxy polyamide, MIL-DTL-24441/19 (Formula 159, Type III), except that component B shall be formulated with a zinc dust replacement of 10–30% of CNT and an undetermined percentage of the metallic zinc dust.
Technical data sheet and MSDS in Appendix E.
DFT Coating Thickness Requirement: 0.002–0.005 in.
Coating Thickness Gage: Elcometer 456, Type II Appendix H

2.1.1.3 Intermediate primer

Material description: Epoxy Intermediate Coat MIL-DTL-24441/31 Formula 152 Type IV (White (Tinted)
Technical data sheets and MSDS in Appendix E.
DFT Coating Thickness Requirements: 0.003–0.005 in.
Coating Thickness Gage: Elcometer 456, Type II Appendix H

2.1.1.4 Top coat

Material description: Polyurethane Topcoat MIL-PRF-85285 Type II
Technical data sheets and MSDS in Appendix E.
DFT Coating Thickness Requirements: 0.002–0.003 in.
Coating Thickness Gage: Elcometer 456, Type II Appendix H

2.1.2 Application design details

The coating system was designed to protect steel in corrosive environments. The demonstration was intended to assess the coating system’s application to high-value facility infrastructure. The first step involved determining if lead-based coatings were used on the tanks. Analysis of the coatings on the tanks determined them to be lead free. The application design included a containment system for the abrasive blasting operation
and scaffolding structure along with proper disposal. Environmental controls were managed to ensure proper temperatures were maintained during coating application.

2.2 Application of the technology

2.2.1 Fuel oil tank #2

Work to erect the containment system began in October 2008 and consisted of erection of scaffolding and a tarp enclosure around the tank for containment of the blast and coating processes (Figure 4 and Figure 5).

Fuel oil tank #2 was abrasive-blasted to remove the existing coating and prepare the surface for repainting. The tank was recoated during November and December 2008; final work on piping was completed in January 2009.

Figure 4. Scaffolding erected around fuel oil tank #2.
The abrasive blasting activities were coordinated so that bare metal would be exposed for no more than 8 hours between blasting and coating, as required by UFGS Section 09 97 13.27 and SSPC-SP 10 - NACE No. 2 - Near White Blast Cleaning. An aggressive surface profile with sharp tooth is necessary for excellent coating adhesion to the tank substrate. The surface profile was measured as part of the quality assurance (QA) inspection process using Elcometer 224 Digital Surface Profile Gauge. Accordingly, the tank surface was visually inspected for SSPC-VIS 1 continuously and profile measurements were conducted approximately every 100 SF to ensure proper surface preparation (cleanliness and profile depth) had been achieved. Figure 6 and Figure 7 show examples of the prepared surfaces.
The CNT/zinc hybrid primer coating was applied using at least two half-lapped passes at right angles to achieve the required thickness. Primer coating thickness was measured during application using an Elcometer 456, Type II (Appendix H) to ensure compliance with project requirements. For measurement purposes, ERDC-CERL required the use of the Naval Sea Systems Command (NAVSEA)-sponsored QA Toolkit (Figure 8) to support an Army evaluation of the NAVSEA/National Surface Treatment (NST) Center QA Toolkit database. (User feedback was being ob-
tained for the Navy as part of a separate task). A certified National Association of Corrosion Engineers (NACE) coating inspector trained on the QA Toolkit system measured the coating thickness at designated locations. All inspection activities (e.g., surface profiles, surface conditions, temperature, humidity, and coating thickness) were entered into the system and recorded.

The coating process consisted of priming with the CNT/zinc hybrid primer, applying the intermediate epoxy primer coat, and then finishing with a polyurethane topcoat. All were applied according to the manufacturer’s specifications (Appendix E) and UFGS Section 09 97 13.27. Several issues arose during the coating process and had to be addressed. Requests were made to approve a lower temperature threshold for the coating application due to severe conditions that challenged the environmental controls. Another problem was the topcoat having a shadow effect due to poor color coverage over the white intermediate primer, even though it was applied to the correct dry film thickness (DFT). A waiver was requested and approved to increase the total coating system thickness from 0.013 to 0.015 in. The tank surface was prepared and a recoat of the topcoat applied to achieve an acceptable cosmetic appearance. The applicator reported that all total thickness measurements indicated that the total coating system and the topcoat had been applied in accordance with manufacturer’s specifications (Appendix E) and for compliance with project requirements. Pictures of the successful coating application are shown in Figure 9 and Figure 10.
At the conclusion of coating activities, the tank base was sealed to the concrete pad using Sikaflex-1A sealant (Appendix F) as shown in Figure 11.
2.2.2 Associated piping for Fuel Oil Tanks #1 and #2

The fuel line piping was severely corroded for tanks #1 and #2 and two small horizontal tanks within the containment area. The piping required rehabilitation and corrosion protection. Refinishing of these lines presented challenges due to an electrical conduit running parallel with the fuel lines. The conduit had to be either protected or removed. Special enclosures had to be constructed and environmental controls applied for the blasting and coating operations. The electrical conduit was removed in most cases, and special containment was constructed as shown in Figure 12 and Figure 13.

The fuel line piping was treated with the same process used on tank #2. The lines were blasted per UFGS Section 09 97 13.27 (Figure 14), and SSPC SP 10 and operations coordinated so bare metal would not be exposed for more than 8 hours between blasting and coating. When conditions or scheduling caused delays exceeding 8 hours, all affected areas were reblasted. Coating procedures and specifications were identical to those used on tank #2. A special effort was made to ensure that the manufacturer’s specified minimum thickness was applied to all complex surface areas. Where spray application was not effective, brush/roller equipment was used consistent with the paint manufacturer’s recommendations. Figure 15 – Figure 17 are representative of the blasting and coating process on the piping, and Figure 18 shows some of the completed piping and the completed tank.
Figure 12. Preparation of piping containment.

Figure 13. Piping containment with environmental controls.
Figure 14. Abrasive blasting of piping.

Figure 15. Hybrid CNT/zinc primer on piping.
Figure 16. Intermediate epoxy primer on piping.

Figure 17. Finished piping with MIL-PRF-85285 polyurethane topcoat.
2.3 Technology monitoring

To evaluate the performance and effectiveness of these coatings, it was necessary to install an exposure rack for test coupons. Scribed steel test coupons were prepared at the site with the coating systems used on tank #2. These coupons (Figure 19 and Figure 20) were mounted in a test rack for environmental exposure and deployed at the plant site for testing on 2 February 2009. Three additional uncoated steel coupons of 1010 mild carbon steel were installed on 16 April 2009.
Data collection on the coating application was collected using the NAVSEA/NST Center QA Toolkit to document proper application and to assure it met all required parameters of UFGS Section 09 97 13.27. Daily logs were used to document the work performed on the piping and are at Appendix I. Data collection on coating performance was accomplished through quarterly visits to Fort Bragg to assess the coupons, the condition of tank #2 and piping; these results are at Appendix J.
3 Discussion

3.1 Metrics

The results of this project were assessed against the following metrics:

- ASTM D1014, “Standard Practice for Exterior Exposure Tests of Paints and Coatings on Metal Substrates” was used in the preparation and coating of all test panels.
- Visual aesthetics of finished coating system acceptable to the DPW and the garrison’s senior leadership.

Daily temperature, dew point, and humidity measurements, surface profile, and paint thickness readings were documented using the QA Toolkit and the data uploaded to the NAVSEA/NST Center database.

3.2 Results

This dem/val project began on 3 November 2008. Work was successfully completed on fuel oil tank #2 and associated piping in the containment area on 16 January 2009. The NAVSEA/NST Center QA Toolkit was used to ensure that the coatings were being applied in accordance with project specifications.

The coating system performed well based on the quarterly assessments documented at Appendix J. They showed that all requirements and metrics for the coating performance were achieved. The assessment parameters did not involve comparative analysis by MEC with other similar coating systems and a correlation of performance against them was not made. The assessment showed the test coating system — CNT/zinc hybrid primer, the intermediate primer, and topcoat — to be a very effective new coating system for preventing corrosion on steel structures. This coating system will contribute significantly to reducing the cost of maintaining steel equipment and infrastructure throughout DoD.
This dem/val showed the application of advanced corrosion resistant coatings coupled with traditional installation technology. It illustrated the significant improvements this technology has for performance to extend the service life of facility assets in the DoD and around the world through corrosion protection. It also advances priorities in coupling increased material service longevity with improved corrosion protection.

The principal constraints experienced by the contractor were a result of adverse weather conditions. The impact on the application processes were mitigated by a containment system and the use of heat and dehumidification equipment. Any deviations in the prescribed methods of preparation and coating application parameters were resolved cooperatively by ERDC-CERL, MEC, the Fort Bragg DPW, and J&W of North Carolina.

3.3 Lessons learned

Significant pre-planning and preparation for staging with regard to the installation process and onsite management and QA contributed to the successful application of the demonstration coatings and keeping to schedule.

The work was accomplished during the time of year with the most adverse weather, so application conditions were not ideal. The temperature parameters for the coating application (set at 60 °F) could not be met even with a containment system and environmental controls. Authorization was granted to permit application at 50 °F. The CNT/zinc hybrid primer performed very well under these conditions, demonstrating that it has a broader flexibility for use under less-than-desirable conditions.

3.3.1 Site selection

The selection of the Heating Plant tanks #1 and #2 site was ideal. The area provided sufficient room to support staging of equipment and storage facilities. The abrasive blasting and coating application operations generate significant dust and paint residue that must be contained. The site was remote enough that operations did not cause concern or disrupt any base activities.
3.3.2 Application

Planning and coordination is a key element in the successful execution of the coating technology demonstrated in this project. The application of the CNT/zinc hybrid primer met the project metrics requirements. The coating can be applied with conventional application equipment, and it performs well under less-than-desirable conditions, such as ambient temperatures at the lower limit of the permissible application range. The coating must be applied over white blasted metal surfaces, so the blasting and coating operations must be well coordinated. For example, if more surface area is blasted than can be coated within the required 8 hour re-coat time, light oxidation will form on any remaining bare steel and those surfaces will have to be re-blasted before coating operations can continue. Therefore, blasting production must be carefully timed to avoid slowing down the coating work while avoiding too much surface area exposure that might lead to excessive rework.

The CNT/zinc hybrid primer coating can be applied and used under all the same conditions as traditional zinc-rich primers. Because of the reduced pigment content and CNT-enhanced mechanical and electrical properties, the CNT/zinc hybrid primer demonstrates advances over zinc-rich coatings. The material has a lower weight per gallon, which improves the handling of bulk materials and makes them easier to mix. The lower zinc content improves application properties such as sag resistance and edge retention, and it reduces clogged spray gun tips. The dried coating is lighter, which reduces the load on the structure.
4 Economic Summary

4.1 Costs and assumptions

The labor, equipment and material costs for applying the coating to the fuel tank are shown in Table 1 and Table 2. The return on investment analysis is based on three assumptions: (1) the new coating will increase the required touchup interval from 6 to 30 months, and the necessary recoating interval from 24 to 120 months, (2) the cost to coat the tank with a conventional system is the same as the cost using the demonstrated system, except that the conventional coating materials costs 50% less, (3) the material and labor cost of touch-up is 5% of the cost of the material and labor of recoating.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasive Blast and Painting Labor (1440 man-hours x $42.50)</td>
<td>$61,200</td>
</tr>
<tr>
<td>Per Diem</td>
<td>$18,000</td>
</tr>
<tr>
<td>QA and CIH Consultant</td>
<td>$20,000</td>
</tr>
<tr>
<td>Mobilization and Demobilization</td>
<td>$8,873</td>
</tr>
<tr>
<td>Total Labor Costs</td>
<td>$108,073</td>
</tr>
</tbody>
</table>

Table 1. Labor costs.

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment System</td>
<td>$25,000</td>
</tr>
<tr>
<td>Generator</td>
<td>$9,500</td>
</tr>
<tr>
<td>Dust Collector</td>
<td>$10,000</td>
</tr>
<tr>
<td>Air Compressor</td>
<td>$8,000</td>
</tr>
<tr>
<td>Diesel</td>
<td>$15,500</td>
</tr>
<tr>
<td>Misc. (wash facilities, etc)</td>
<td>$5,300</td>
</tr>
<tr>
<td>Dehumidification Equipment</td>
<td>$5,000</td>
</tr>
<tr>
<td>Heating Equipment</td>
<td>$10,000</td>
</tr>
<tr>
<td>Abrasive and Disposal</td>
<td>$16,000</td>
</tr>
<tr>
<td>Coatings & Thinner</td>
<td>$57,037</td>
</tr>
<tr>
<td>Total Equipment and Materials</td>
<td>$161,337</td>
</tr>
<tr>
<td>Total Labor, Equipment, and Materials</td>
<td>$269,410</td>
</tr>
</tbody>
</table>

Table 2. Equipment and material costs.
4.2 Projected return on investment (ROI)

The project yielded adequate data to perform an ROI analysis in accordance with OMB Circular A-94 methodology. The costs for painting and touching up the tank are from the project costs given in the previous section. A tank failure and replacement costing $8,000,000 is predicted in year 21. Using the full project cost of $950,000 as the investment required, the project ROI is calculated at 2.67, as shown in Table 3.

The full project costs include all and research and development and support costs. The actual implementation cost at Fort Bragg was $269,410. This figure includes the cost of heating and dehumidification equipment, which were required for painting the full tank in the cold winter months. On projects with a more flexible schedule, these costs can be avoided. Using the actual implementation costs, a more favorable ROI of 9.43 is calculated.

Table 3. Validated return on investment calculation.

<table>
<thead>
<tr>
<th>Future Year</th>
<th>Baseline Costs</th>
<th>Baseline Benefits / Savings</th>
<th>New System Costs</th>
<th>New System Benefits / Savings</th>
<th>Present Value of Costs</th>
<th>Present Value of Savings</th>
<th>Total Present Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>240,892</td>
<td></td>
<td></td>
<td></td>
<td>225,138</td>
<td>225,138</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12,045</td>
<td></td>
<td></td>
<td></td>
<td>9,832</td>
<td>9,832</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12,045</td>
<td></td>
<td></td>
<td></td>
<td>8,588</td>
<td>8,588</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>240,892</td>
<td></td>
<td></td>
<td></td>
<td>160,506</td>
<td>160,506</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12,045</td>
<td></td>
<td></td>
<td></td>
<td>7,010</td>
<td>7,010</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12,045</td>
<td></td>
<td></td>
<td></td>
<td>6,122</td>
<td>6,122</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>240,892</td>
<td></td>
<td></td>
<td></td>
<td>114,448</td>
<td>114,448</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12,045</td>
<td></td>
<td></td>
<td></td>
<td>4,999</td>
<td>4,999</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>12,045</td>
<td></td>
<td></td>
<td></td>
<td>69,803</td>
<td>32,545</td>
<td>-28,179</td>
</tr>
<tr>
<td>10</td>
<td>240,892</td>
<td></td>
<td></td>
<td></td>
<td>81,590</td>
<td>81,590</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12,045</td>
<td></td>
<td></td>
<td></td>
<td>3,564</td>
<td>3,564</td>
<td></td>
</tr>
</tbody>
</table>

The table shows the validated return on investment calculation with the following details:

- **Investment Required:** $950,000
- **Return on Investment Ratio:** 2.67
- **Percent:** 267%
- **Net Present Value of Costs and Benefits/Savings:** $67,945
- **Future Year Present Value of Costs:** $2,608,691
- **Future Year Present Value of Savings:** $2,540,746
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>12,045</td>
<td></td>
<td></td>
<td>3,112</td>
<td>3,112</td>
</tr>
<tr>
<td>21</td>
<td>8,000,000</td>
<td></td>
<td></td>
<td>1,932,000</td>
<td>1,932,000</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>12,045</td>
<td></td>
<td></td>
<td>2,540</td>
<td>2,540</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>240,892</td>
<td></td>
<td></td>
<td>41,482</td>
<td>41,482</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>12,045</td>
<td></td>
<td></td>
<td>1,812</td>
<td>1,812</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>12,045</td>
<td>269,410</td>
<td>35,400</td>
<td>1,583</td>
<td>-33,818</td>
</tr>
</tbody>
</table>
5 Conclusions and Recommendations

5.1 Conclusions

The application of the standard three-part epoxy coating system — consisting of an organic zinc-rich primer, an epoxy intermediate coating, and a urethane topcoat — used on many steel structures is very labor intensive and expensive to apply and maintain. The three-part system is used extensively in the DoD and Department of Transportation for equipment and structures located in environments conducive to medium to severe corrosion.

The primary purpose of the metallic zinc-loaded primer is to provide a coating that will cathodically protect properly prepared steel substrate surfaces. Organic zinc-rich primer coating normally contains between 65% and 95% metallic zinc powder in the cured paint film. This heavy loading of zinc powder is necessary to achieve the cathodic protection of the steel substrate, which is achieved when the metallic zinc-loaded primer is applied so that the zinc particles come in contact with each other and the bare steel substrate. Conductivity between the zinc particles and properly prepared steel substrates allows the zinc particles to galvanically protect the substrate. The “throwing power” of the sacrificial zinc metal allows for the protection of minor damage to the steel substrate while the zinc is consumed in the process. The heavy loading of the zinc powder, combined with the reduced resin packages/binders, can cause a high-build coating thickness that can be prone to chipping and “mud cracking” if not properly applied.

The primer demonstrated in this CPC project was designed to inhibit corrosion by forming a cathodically protective coating using a CNT additive in order to reduce the amount of metallic zinc powder used in conventional primers. The data produced in this project support the use of CNT in conjunction with the reduced loading of metallic zinc particles. This innovative nanocoating system is designed to inhibit corrosion of steel by forming a barrier film and a cathodically protective coating. The CNT additive facilitates the transfer of electrons by creating an electron path through the binder and between the cathodic substrate and anodic sacrificial metals. This characteristic shifts the potential of the environment to a less-corrosive cathodic potential to produce an effective corrosion-
inhibiting primer that is much lighter in weight, stronger, tougher, abrasion-resistant and more environmentally acceptable than conventional zinc-rich primers.

Final evaluation of the test coupons found a tight oxide corrosion film in all scribed areas. No topcoat lifting, blistering, or undercutting at the scribe edge or zinc corrosion product residue was detected on any of the fully coated test panels. It was noted that the intermediate primer did chip along the scribe line on all test panels that were not topcoated. The chipping was an interlaminar failure of the intermediate primer only; the base CNT/zinc primer remained intact.

During the project, the MSDS and select carbon nanotube-related literature [1, 2, 3, 4] were reviewed. The use of CNT in applications such as coatings and composites is a relatively new technology area, so a definitive determination of CNT toxicity and the potential for exposure associated with use in these materials has not been established. While the MSDS review did not reflect any unusual risks associated with the CNT-containing primer, other carbon nanotube reference material reviewed indicate that, under certain conditions, nanotubes may be able to cross membrane barriers. This suggests that, if they are ingested, inhaled, or otherwise enter the body, nanotubes can induce harmful effects such as inflammatory and fibrotic reactions [1, 2, 3, 4]. Concerns about worker exposure to carbon nanotubes or nanofibers are based on animal studies [5]. As researchers continue to investigate the biological effects of exposure to carbon nanotubes and nanofibers, precautionary measures are advised during the handling of dry materials in the coating manufacturing process. Once these dry nanotubes are dispersed into the liquid epoxy resin components, they are unlikely to be released by any downstream processing, including coating application, exposure to weather, or paint removal by abrasive blasting or other means. The definitive requirements for the safe handling of these materials will be established by the Department of Health and Human Services, Centers for Disease Control and Prevention, and the National Institute for Occupational Safety and Health. Users of the nanomaterial-modified primer and other materials containing CNTs should always refer to the manufacturer’s current Materials Safety Data Sheets for guidance on handling the materials and the use of appropriate personal protection equipment (PPE).
5.2 Recommendations

5.2.1 Applicability

It is recommended that the CNT/zinc-rich primer system, intermediate primer, and polyurethane topcoat system be used to replace the standard three-part coating system now applied to prevent corrosion on steel structures such as storage tanks, towers, and pipelines.

It is further recommended that CNT-containing coating overspray should be carefully contained and removed. Applicators should wear appropriate PPE and skin barrier materials as prescribed by the coating manufacturer’s MSDS and applicable regulations. As with any other hazardous material, the used PPE should be handled in such a way to prevent the dried CNT-containing material from becoming airborne and inhaled or ingested.

5.2.2 Implementation

Additional laboratory work will be completed at the ERDC Paint Technology Center to develop performance standards for the CNT-modified coating system. The performance standards and guidance on the selection and use of the coating system will be published at a future date; and revisions of the applicable Unified Facilities Guide Specifications and an Engineer Technical Letter will be submitted.

Table 4 lists documents recommended for revision to promote implementation of the modified coating system.

<table>
<thead>
<tr>
<th>Document</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>UFC 3-190-06</td>
<td>Protective Coatings and Paints</td>
</tr>
<tr>
<td>UFGS 05 12 00</td>
<td>Structural Steel</td>
</tr>
<tr>
<td>UFGS 09 97 13.00 40</td>
<td>Steel Coatings</td>
</tr>
<tr>
<td>UFGS 09 97 13.27</td>
<td>Exterior Coating of Steel Structures</td>
</tr>
<tr>
<td>UFGS 33 16 15</td>
<td>Water Storage Steel Tanks (Exterior Surfaces Only)</td>
</tr>
</tbody>
</table>

Note: UFC is Unified Facilities Criteria; UFGS is Unified Facilities Guide Specification.
References

Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>CNT</td>
<td>carbon nanotube</td>
</tr>
<tr>
<td>CPC</td>
<td>Corrosion Prevention and Control</td>
</tr>
<tr>
<td>dem/val</td>
<td>demonstration/validation</td>
</tr>
<tr>
<td>CERL</td>
<td>Construction Engineering Research Laboratory</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DPW</td>
<td>Directorate of Public Works</td>
</tr>
<tr>
<td>ERDC</td>
<td>Engineer Research and Development Center</td>
</tr>
<tr>
<td>HWAS</td>
<td>Hazardous Waste Accumulation Site</td>
</tr>
<tr>
<td>MEC</td>
<td>Mandaree Enterprise Corporation</td>
</tr>
<tr>
<td>NACE</td>
<td>National Association of Corrosion Engineers</td>
</tr>
<tr>
<td>NAVSEA</td>
<td>Naval Sea Systems Command</td>
</tr>
<tr>
<td>NST</td>
<td>National Surface Treatment (Center)</td>
</tr>
<tr>
<td>OSD</td>
<td>Office of the Secretary of Defense</td>
</tr>
<tr>
<td>PPE</td>
<td>personal protective equipment</td>
</tr>
<tr>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>ROI</td>
<td>return on investment</td>
</tr>
<tr>
<td>SOW</td>
<td>scope of work</td>
</tr>
<tr>
<td>UFC</td>
<td>Unified Facilities Criteria</td>
</tr>
<tr>
<td>UFGS</td>
<td>Unified Facilities Guide Specification</td>
</tr>
</tbody>
</table>
Appendix A: MEC Project Management Plan

WORK PLAN

APPLICATION OF INNOVATIVE COATING SYSTEM ON THE EXTERIOR OF A FUEL OIL TANK AT FORT BRAGG, NC

September 16, 2007

1. PROJECT OBJECTIVE: Preliminary research on a number of advanced coating systems is underway at the ERDC CERL Paint Technology Center. Industry has developed innovative paint additives designed to inhibit corrosion by forming both a high quality barrier film and a cathodically protective coating that does not require the high pigment loading of a traditional zinc-rich primer. The technically advanced additives utilize either an electroactive inherently conductive polymer (ICP) or galvanically inactive single wall carbon nanotubes (SWNT)* in conjunction with sacrificial metals to produce galvanic reactivity with the substrate. One of the products using these technologies has been selected to coat the exterior surfaces of a 200,000 gallon fuel oil tank at Fort Bragg, NC. The overall objective of this task order is to clean the tank exterior to bare steel by abrasive blasting, apply the designated coating system, and monitor the performance of the coating system.

In addition, coated test panels will be prepared and exposed on a separate rack at the test site, per ASTM standard methods. Coatings shall include the ICP and SWNT coating systems, and other similar test coatings selected by ERDC CERL, as well as the currently specified coating systems based on the traditional zinc-rich primer, similar coating systems without a zinc rich primer, and bare metal coupons. The coating panel rack will be installed at the time of coating application and near the fuel oil tank. The same paint systems will be tested in the laboratory to measure coating adhesion, flexibility, impact resistance, and other performance properties.

* The actual material source used in this demonstration did not consist solely of single-walled nanotubes, so the less-restrictive term carbon nanotube (CNT) is used in final documentation of CPC project F07-AR19.
Once applied, the coating systems will be evaluated for performance, return on investment, and consideration for wider application within the Army and Department of Defense.

2. MAJOR REQUIREMENTS: MEC and its subcontractors will be responsible for all work and materials necessary to prepare the surfaces and apply test coatings on the exterior surfaces of the fuel oil tank at Fort Bragg, NC.

Work will also include removal and disposal of all waste, including but not limited to, existing coating materials removed, spent abrasive media, paint containers, application waste and all other refuse that may be generated at the sites. This waste will be entirely removed from the installation. At the conclusion of the project, each site will be completely clean. Paint overspray on other surfaces will be removed and all surfaces returned to their original condition. All damage done to surrounding areas or surfaces will be repaired to original conditions.

MEC and its subcontractors will complete all work in a neat and orderly manner in accordance with OSHA, EPA, State of North Carolina, and Army Environmental regulations. MEC will be responsible for complying with all safety and environmental regulations that may be in effect at the site. Work will be performed in accordance with the requirements of the Task Order for this project as well as the requirements of 29 CFR 1910, 29 CFR 1926, EM 385-1-1 and the guidance provided by the manufacturers of the various coatings in the pertinent Material Safety Data Sheets (MSDS).

To successfully complete the work defined in this Task Order, MEC will complete the following tasks:

a. Task 1. MEC and its subcontractors will conduct paint removal, surface preparation and paint application to the exterior surfaces of the fuel oil tank in accordance with Section 09 97 13.27 of the contract (attachment 1.). Primer (Components A and B), Intermediate Coat, and Topcoat materials will be obtained from a single manufacturer to ensure compatibility. The Government will drain the tank prior to the work. The work schedule will be coordinated in advance with the Fort Bragg DPW POC to accommodate the draining of the tank.

MEC will arrange to have a person on-site representing the test coating manufacturer during the field work to advise the COTR on technical as-
pects of the surface preparation and handling, mixing application and cur-
ing of the paint system. MEC will coordinate consultations between the
manufacturer and the COTR.

MEC will submit the following Plans, Reports, and Qualification state-
ments for Government approval a minimum of 30 days prior to the start of
work at the site. MEC will not proceed with work at the site until the Gov-
ernment has approved each plan.

- Containment System Design
- Joint Sealant Qualification Test Reports
- Coatings Qualification Test Reports and Color Chip
- Work Plan
- Accident Prevention Plan
- Qualifications of Certified Industrial Hygienist
- Qualifications of Coating Contractors
- Joint Sealant Manufacturer’s Instructions
- Certification of Joint Sealant Conformance to Specifications
- Coating System Manufacturer’s Instructions
- Coating Qualification Test Reports

MEC will submit paint and abrasive samples to the ERDC-CERL Paint
Technology Center a minimum of 30 days prior to the start of on-site
work.

During the course of the work on-site, daily Inspection Reports will be sent
by fax or email to the COTR.

MEC will submit disposal of spent abrasives and inspection logbook to the
COTR 15 days after the on-site work (Tasks 1 – 3) is complete.

b. Task 2. Test Panels – For each coating system used above, MEC
will prepare six coated test panels. Test panels will be mild steel, 3 by 9
inches, and will be prepared and coated in the same manner as the struc-
ture components. For the set of fuel oil tank coated panels, four will be
shipped to ERDC-CERL for accelerated exposure testing and the others
will be exposed on the corrosion test rack at Fort Bragg, NC in accordance
with ASTM-D1014 “Standard Practice for Exterior Exposure Tests of
Paints and Coatings on Metal Substrates.” The test panels exposed on the
corrosion test rack will be scribed to base metal in accordance with ASTM

c. Task 3. Exposure Rack – MEC will set up a test panel exposure rack to accommodate approximately 20-coated steel panels prepared in accordance with Task 2. The location of the test rack will represent the exposure conditions of the test coatings on the structure. MEC will mount pairs of duplicate test panels (outlined in Task 2) on the rack prior to or no later than 15 days after completion of coating work on the structure.

d. Task 4. Monitor Coating System Performance. - MEC will evaluate and document the performance of the test panel coatings and the tower itself at approximately 3-, 6-, 9- and 12-months of exposure in accordance with ASTM Test Method D 1654. MEC will evaluate the scribed test panels in accordance with Procedure A, Method 2, and with Procedure B. Evaluate the performance of the coating on the tower itself in accordance with Procedures B and D, and include an evaluation of the coating on representative areas of both the support structure and the exterior tank wall. The results of all evaluations will be documented for inclusion in the succeeding monthly report and in the final report. Documentation will include photographing the test panels prior to exposure, and at approximately 3-, 6-, 9-, and 12-months after installation.

e. Task 5. Return on Investment (ROI). - MEC will conduct a Return on Investment analysis. Information will include the actual cost and quantity of each specific expendable material used, the costs of equipment and mobilization, and the actual man hours by trade required to apply the coating system. MEC will provide all data to the project COTR in the draft/final report. NOTE: This information will only be used to determine life cycle costs and will not be used in any manner that could influence future work by MEC.

3. MEETINGS/REVIEWS: MEC will coordinate one pre-job conference at Fort Bragg, NC with the COTR.

4. TRAVEL: MEC will conduct all field work at Fort Bragg, NC and will be responsible for all travel costs necessary to perform the work of the task order. MEC will travel to Fort Bragg for a pre-job conference, and will conduct all travel necessary to complete the work required in this task order. Dates of coating application and subsequent performance monitoring will be coordinated with the COTR.
5. REPORTS/DELIVERABLES: During the course of this task order, MEC will submit the following reports as outlined in Section 09 97 13.27, attachment 1 to the CERL COTR:

 a. Thirty days prior to the start of field work:

 • Containment System Design
 • Joint Sealant Qualification Test Reports
 • Coatings Qualification Test Reports
 • Coating Sample Test Reports
 • Work Plan
 • Accident Prevention Plan
 • Joint Sealant Manufacturer’s Instructions
 • Coating System Manufacturer’s Instructions

 b. Paint and Abrasive Samples: Paint and abrasive samples will be submitted to the ERDC-CERL Paint Technology Center a minimum of 30 days prior to the start of on-site work.

 c. Daily Inspection Reports: During the course of the on-site work, Daily Inspection Reports will be sent by fax or e-mail to the COTR.

 d. Closeout Reports: Fifteen days after the on-site work (Tasks 1 through 3) is complete closeout reports (disposal of spent abrasives and inspection logbook) will be submitted to the COTR.

 e. Monthly Progress Reports: MEC will submit Monthly Progress Reports in accordance with the requirements of this Task Order.

 f. Draft and Final Reports: MEC will fully document the project with a Draft and Final Report, with major sections as follows:

 • Introduction (including who, where, what, and acknowledgements)
 • Executive Summary
 • Background
 • Lessons Learned
 • Technical Investigation (statement of the problem, approach, findings planned vs. actual and other noteworthy tangibles, and include all technical documentations: safety/quality plans, photographs, SOPs, data collection and test/eval procedures, test results, lessons learned, etc.)
- Economic Summary (Projected ROI)
- Recommendations for implementation at other sites or on other steel structures
- Implementation (recommendations for further implementation across the DOD, and contract specification language that can be used to implement the technology at other sites. Use UFGS 09 97 13.27 as a specification guide, and recommend the modifications required to incorporate the zinc dust replacement into the primer specified.)
- Conclusions
- Appendices (technical investigation attachments)

6. PERIOD OF SERVICE: MEC will complete Tasks 1 through 3 no later than 30 November 2008. Task 4 will be completed no later than 30 November 2009. All other work to be performed under this task order will be completed no later than 31 December 2009.
Appendix B: Toxic Characteristic Leaching Procedure (TCLP) Report

METAL TCLP ANALYSIS SUMMARY

CLIENT:	J & W of North Carolina, Inc.
	1040 Old Washington Road
	P.O. Box 1069
	Vanceboro, NC 28886
CLIENT NUMBER:	34-3837 A
EHS PROJECT #:	2008-04-0322
PROJECT:	35' Dia Pool Tank; Ft. Bragg, NC

EHS SAMPLE #:	2008-04-2682-01
SAMPLE DATE:	25 Apr 2008
CLIENT SAMPLE #:	Exterior
LAB. GROSS DESCRIPTION:	Blast Media

<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>RESULT (mg/L)</th>
<th>REPORT LIMIT (mg/L)</th>
<th>MDL (mg/L)</th>
<th>METHOD</th>
<th>REGULATORY LIMIT (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILVER (Ag)</td>
<td><0.050</td>
<td>0.050</td>
<td>0.0005</td>
<td>EPA SW846 1311/3010B/6010B</td>
<td>5.0</td>
</tr>
<tr>
<td>ARSENIC (As)</td>
<td><0.050</td>
<td>0.050</td>
<td>0.0044</td>
<td>EPA SW846 1311/3010B/6010B</td>
<td>5.0</td>
</tr>
<tr>
<td>BARIUM (Ba)</td>
<td>2.0</td>
<td>0.050</td>
<td>0.0001</td>
<td>EPA SW846 1311/3010B/6010B</td>
<td>100</td>
</tr>
<tr>
<td>CADMIUM (Cd)</td>
<td><0.050</td>
<td>0.050</td>
<td>0.0005</td>
<td>EPA SW846 1311/3010B/6010B</td>
<td>1.0</td>
</tr>
<tr>
<td>CHROMIUM (Cr)</td>
<td><0.050</td>
<td>0.050</td>
<td>0.0011</td>
<td>EPA SW846 1311/3010B/6010B</td>
<td>5.0</td>
</tr>
<tr>
<td>LEAD (Pb)</td>
<td>0.21</td>
<td>0.050</td>
<td>0.0017</td>
<td>EPA SW846 1311/3010B/6010B</td>
<td>5.0</td>
</tr>
<tr>
<td>SELENIUM (Se)</td>
<td><0.050</td>
<td>0.050</td>
<td>0.0052</td>
<td>EPA SW846 1311/3010B/6010B</td>
<td>1.0</td>
</tr>
<tr>
<td>MERCURY (Hg)</td>
<td><0.001</td>
<td>0.001</td>
<td>0.0001</td>
<td>EPA SW846 1311/7470A</td>
<td>0.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QUALITY CONTROL ANALYTE</th>
<th>SPIKE RECOVERY</th>
<th>DUPLICATE RELATIVE PERCENT DIFFERENCE (RPD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILVER (Ag)</td>
<td>104%</td>
<td>0.477%</td>
</tr>
<tr>
<td>ARSENIC (As)</td>
<td>112%</td>
<td>1.78%</td>
</tr>
<tr>
<td>BARIUM (Ba)</td>
<td>103%</td>
<td>0.966%</td>
</tr>
<tr>
<td>CADMIUM (Cd)</td>
<td>107%</td>
<td>0.00%</td>
</tr>
<tr>
<td>CHROMIUM (Cr)</td>
<td>102%</td>
<td>0.487%</td>
</tr>
<tr>
<td>LEAD (Pb)</td>
<td>100%</td>
<td>0.996%</td>
</tr>
<tr>
<td>SELENIUM (Se)</td>
<td>113%</td>
<td>1.78%</td>
</tr>
<tr>
<td>MERCURY (Hg)</td>
<td>160%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

ANALYST:

David Xu

Reviewed By Authorized Signatory:

Michael A. Mueller, MPh, Laboratory Director
Howard Varnes, General Manager
Erma Fawkeski, Quality Assurance Coordinator
David Xu, MS, Senior Chemist
ERDC/CERL TR-11-42

CLIENT NUMBER: 34-3337 A
EHS PROJECT #: 2008-04-2632
PROJECT: 38' Dia. Fuel Tank, Ft. Bragg, NC

Method EPA SW846 1311 recommends 100g for analysis.
The condition of the samples analyzed was acceptable upon receipt per laboratory protocol unless otherwise noted on this report.
Results represent the analysis of samples analyzed by the client. Samples location, description, area, volume etc. was provided by the client. This report shall not be reproduced, except in full, without the written consent of Environmental Hazards Services, L.L.C.
California Certification #2372 NY CLAP #1174

LEGEND
g = gram ug = microgram ppm = parts per million MDL = method detection limit

PAGE 02 of 02 -- END OF REPORT --

[Image of environmental hazards service form]

Company Name: J&W of North Carolina, Inc.
Address: 140 Old Washington Road P.O. Box 1096
City, State, Zip: Vanceboro, NC 28586
EHS Client Account #: 34-3337 A
Phone #: (252) 244-3800
Fax #: (252) 244-3805

Sample Number
Sample Date & Time |
Asbestos |
Lead |
Other Metals |

<table>
<thead>
<tr>
<th>Exterior</th>
<th>1/26/08</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments |

Particulate: Total Nuisance (NIOSH 1006) |
Respirable (NIOSH 1006) |

Do wipe samples submitted meet ASTM E1792 requirements? Yes | No |

Released by: | Signature: Frank Stevens | Date/Time: |
Received by: | Signature: | Date/Time: |
Released by: | Signature: | Date/Time: |
Received by: | Signature: | Date/Time: |
Appendix C: Containment System Design

<table>
<thead>
<tr>
<th>PHYSICAL PROPERTIES</th>
<th>UNIT</th>
<th>SCAFLITE SCAFFOLD SHEETING</th>
<th>ROLL SIZES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td></td>
<td>7' 4" X 136'</td>
<td>12' X 100'</td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td>Non-Flame Retardant clear with white scrim</td>
<td>Stock</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flame Retardant opaque with white scrim</td>
<td>Stock</td>
</tr>
<tr>
<td>Shipping Weight</td>
<td>ea. roll</td>
<td>65 Lbs.</td>
<td>66 Lbs.</td>
</tr>
<tr>
<td>Thickness</td>
<td>mil</td>
<td>9 mil (excluding scrim and reinforcement bands)</td>
<td></td>
</tr>
<tr>
<td>Webbing</td>
<td></td>
<td>Rolls equipped with reinforced webbing straps having eyelets on approximate 4" centers</td>
<td>6 bands; 6 bands; 3 single straps; 4 single straps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 double strap; 3 single straps</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td>Material works well from -40° F to +176° F.</td>
<td></td>
</tr>
</tbody>
</table>

Composition: The ten weave scrim pattern has 2 X 900 denier and 1 X 1800 denier polyethylene yarns encased in low density polyethylene scrim in white.
TYP PATTERN AROUND TANK EXCEPT WHERE NOTED
EAGLE SHEETING ATTACHED TO EXTERIOR OF SCAFFOLD RING

SCAF-LITE SCAFFOLD SHEETING
Bowen net material to be eagle geotarp as previously used.

Tripod cables to support Bowen.

Ladder rest platform

U-665 TYP FRAME

S-29

Ladder access.

This drawing is for proposed scaffold layout only. This drawing must not be used for erection or dismantling.
Appendix D: Coating System Qualification Test Report

CERL Paint Laboratory Testing Report

<table>
<thead>
<tr>
<th>Lab Report No.: 08K100</th>
<th>Date: 14 November 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification: MIL-DTL-24441/19</td>
<td>Contract No.:</td>
</tr>
<tr>
<td>Manufacturer: Tesla NanoCoatings Limited</td>
<td>MIPR No.:</td>
</tr>
<tr>
<td>Batch No.: a) JLH-1-011 b) JLH-1-026</td>
<td></td>
</tr>
</tbody>
</table>

Analysis:

<table>
<thead>
<tr>
<th>Component</th>
<th>Min</th>
<th>Max</th>
<th>Result</th>
<th>Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component A:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatiles, %</td>
<td>42.8</td>
<td>44.3</td>
<td>46.2</td>
<td>OK</td>
</tr>
<tr>
<td>Nonvolatile vehicle, %</td>
<td>53.7</td>
<td>57.7</td>
<td>53.8</td>
<td>OK</td>
</tr>
<tr>
<td>Weight per gallon, lb</td>
<td>7.3</td>
<td>8.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water, %</td>
<td>.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flash point, °C</td>
<td>35.6</td>
<td>36+</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Component B:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigment content, %</td>
<td>81.5</td>
<td>85.5</td>
<td>71.1</td>
<td>OK</td>
</tr>
<tr>
<td>Volatiles, %</td>
<td>8.0</td>
<td>8.4</td>
<td>13.1</td>
<td>OK</td>
</tr>
<tr>
<td>Nonvolatile vehicle, %</td>
<td>.8</td>
<td>8.7</td>
<td>15.8</td>
<td>OK</td>
</tr>
<tr>
<td>Weight per gallon, lb</td>
<td>27.5</td>
<td>28.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water, %</td>
<td>.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flash point, °C</td>
<td>37.8</td>
<td>38</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Consistency, grams</td>
<td>250</td>
<td>500</td>
<td>1090</td>
<td>No</td>
</tr>
</tbody>
</table>

Mixed component:

Sag resistance, mils	12	12+		
Dry set-to-touch, hrs	2	2		Yes
Dry hard, hrs	8			
Pot life, hrs	4			Yes
Pounds per gallon	23.4	24.4		
VOC	304			

Recommendation:

- Accept _X_ Reject ___

Remarks: The test requirements given are for the standard formulation of this zinc epoxy primer. This formulation was modified for the product tested, and, as expected, many of the results fall outside the specification requirements. This paint is approved based on the performance characteristics of the material.
CERL PAINT LABORATORY TESTING REPORT

Lab Report No.: 08K101
Date: 14 November 2008
Specification: MIL-DTL-24441 F152 Type IV
Manufacturer: Testa NanoCoatings Limited
Contract No.:
Batch No.: a) JLH-1-012 b) JLH-1-016

Analysis:

<table>
<thead>
<tr>
<th>Component</th>
<th>Min</th>
<th>Max</th>
<th>Result</th>
<th>Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component A:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigment content, %</td>
<td>44.0</td>
<td>49.0</td>
<td>46.5</td>
<td>Yes</td>
</tr>
<tr>
<td>Volatiles, %</td>
<td>29.0</td>
<td>35.0</td>
<td>31.4</td>
<td>Yes</td>
</tr>
<tr>
<td>Nonvolatile vehicle, %</td>
<td>17.5</td>
<td>23.5</td>
<td>22.1</td>
<td>Yes</td>
</tr>
<tr>
<td>Water, %</td>
<td>1.5</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coarse particles, %</td>
<td>0.3</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consistency, grams</td>
<td>180</td>
<td>320</td>
<td>475</td>
<td>No</td>
</tr>
<tr>
<td>Pounds per gallon</td>
<td>11.6</td>
<td>12.1</td>
<td>11.8</td>
<td>Yes</td>
</tr>
<tr>
<td>Fineness of grind, NS</td>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flashpoint, C</td>
<td>35.5</td>
<td>36+</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Component B:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigment content, %</td>
<td>33.0</td>
<td>38.0</td>
<td>35.9</td>
<td>Yes</td>
</tr>
<tr>
<td>Volatiles, %</td>
<td>16.0</td>
<td>21.0</td>
<td>16.0</td>
<td>Yes</td>
</tr>
<tr>
<td>Nonvolatile vehicle, %</td>
<td>44.0</td>
<td>49.0</td>
<td>48.1</td>
<td>Yes</td>
</tr>
<tr>
<td>Water, %</td>
<td>0.5</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coarse particles, %</td>
<td>0.3</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consistency, grams</td>
<td>300</td>
<td>470</td>
<td>775</td>
<td>No</td>
</tr>
<tr>
<td>Pounds per gallon</td>
<td>10.8</td>
<td>11.3</td>
<td>10.7</td>
<td>Yes</td>
</tr>
<tr>
<td>Fineness of grind, NS</td>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flashpoint, C</td>
<td>37.8</td>
<td>38</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Mixed component:

<table>
<thead>
<tr>
<th>Test</th>
<th>Min</th>
<th>Max</th>
<th>Result</th>
<th>Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set-to-touch, hrs. (40 F)</td>
<td>3</td>
<td>5</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Set-to-touch, hrs. (73 F)</td>
<td>3</td>
<td>3</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Dry hard, hrs. (40 F)</td>
<td>24</td>
<td>24</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Dry hard, hrs. (73 F)</td>
<td>8</td>
<td>8</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Pot life, hrs. (73 F)</td>
<td>4</td>
<td>3</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Specular gloss, 60</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sag resistance, mils</td>
<td>12</td>
<td>12+</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrast ratio (3 mils DFT)</td>
<td>0.98</td>
<td>0.96</td>
<td></td>
<td>Yes*</td>
</tr>
</tbody>
</table>

Recommendation: Accept _X_ Reject_____

Remarks: The epoxy intermediate coat has a higher viscosity and a shorter pot life than are required by the specification. The applicator will need to watch time and temperature to ensure the coating is applied before the viscosity becomes too high. The coating cured slowly to the set-to-touch stage at 40 degrees F., but cured hard within the required 24 hours. * Contrast ratio test chart dried to just 2 mils dry film thickness. It is assumed to pass at 3 mils.

Signature:
Appendix E: Coating System Manufacturer's Instructions and MSDS
TESLAN™ ZN Primer

Product Information

Product Description

TESLAN™ ZN Primer is a solvent-based, two component, organic nanocoating. Teslan™ utilizes carbon in the form of single wall carbon nanotubes called "Buckytubes". The special nature of carbon combines with the molecular perfection of buckytubes to endow them with exceptionally high material properties such as electrical conductivity, strength, stiffness, and toughness.

- Coating provides exceptional barrier
- Provides cathodic/sacrificial if damaged
- Forms an barrier to moisture and solvents

Recommended Uses

For use over prepared blasted steel
- Locks / Dams / Refineries
- Ships / Drilling rigs / Docks / Chemical Plants
- Pipelines / Military Equipment
- As a one-coat maintenance coating or as a permanent primer for severe corrosive environments
- Ideal for application at low temperatures or service at high temperatures and/or humidity conditions
- Fresh and Salt water immersion service

Characteristics

Color:	Dark Gray
Finish:	Flat
Gloss, 60 Degree:	35 maximum
Mix Ratio:	1-parts A : 2- parts B
Pot Life (73°F):	4-Hr minimum
Set to Touch (73°F):	2-Hr maximum
Dry Hard (73°F):	8-Hr maximum
Flash Point, °F:	100 minimum
Sag, mils	12 minimum
Consistency, g	150-300
VOC, lb/gal:	2.5 maximum

Surface Preparation

Severe Exposure:
- SSPC-SP10 Near White Blast Cleaning

Moderate Exposure:
- SSPC-SP6 Commercial Blast Cleaning

Coverage Rates

<table>
<thead>
<tr>
<th>Primer</th>
<th>Desired Spread Rate (ft²/gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TESLAN™ ZN Primer</td>
<td>2-6 200</td>
</tr>
</tbody>
</table>

Theoretical Coverage 950/mil

Allow for overspray and surface irregularities. Application of coating below minimum or above maximum recommended dry film thicknesses may adversely affect coating performance.

Teslan NanoCoatings Limited
PO Box 270
Massillon, Ohio 44646
(Tel) 330-880-5229
www.teslanano.com

Primer ZN Tech Sheet
TESLAN™ ZN Primer

Product Information (page 2 of 2)

<table>
<thead>
<tr>
<th>Mixing</th>
<th>Thinning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use an air-driven power mixer and keep material under constant agitation while mixing. Slowly add 1-part (Part A) into 2-parts (Part B). Adjust mixer speed to break up lumps and mix until the two components are thoroughly blended. Strain through a 35 to 60 mesh (310 to 681 microns) screen before using. For spray application, keep under low RPM agitation to prevent settling. For brush or roller application, stir frequently to prevent settling. Do not use mixed material beyond pot life limits.</td>
<td>For airless spray, air spray, brush or roller thin up to 10% or 3/4 pint (380 mL) per gallon with Teslan Type II Epoxy Polyamide Thinner if temperatures are below 80°F (27°C).</td>
</tr>
</tbody>
</table>

Surface Temperature
- Minimum 50°F (10°C)
- Maximum 100°F (38°C)
- The surface should be dry and at least 5°F (3°C) above the dew point.

Ambient Humidity
- Minimum 40%
- Maximum 90%

Application Equipment

Air spray

<table>
<thead>
<tr>
<th>Gun</th>
<th>Fluid Tip</th>
<th>Air Cap</th>
<th>Hose ID</th>
<th>Pot Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devilbiss JGA or Equal</td>
<td>E</td>
<td>765 or 704</td>
<td>3/8 inch (9.5 mm)</td>
<td>40-50 psi (2.8-3.4 bar)</td>
</tr>
</tbody>
</table>

Airless spray

<table>
<thead>
<tr>
<th>Tip Orifice</th>
<th>Atomizing Pressure</th>
<th>Hose ID</th>
<th>Manifold Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.017"-0.021" (430-535 microns) Reversible Tip</td>
<td>2400-3000 psi (165-207 bar)</td>
<td>1/4” or 3/8” (6.4 or 9.5 mm)</td>
<td>60 mesh (250 microns)</td>
</tr>
</tbody>
</table>

Clean up: Flush and clean all equipment immediately after use with Teslan Type II Epoxy Polyamide Thinner

WARRANTY & LIMITATION OF SELLER'S LIABILITY: Tesla NanoCoatings Limited warrants only that its coatings represented herein meet the formulation standards of Tesla NanoCoatings Limited. Technical and application information herein is provided for the purpose of establishing a general profile of the coating and proper coating application procedures. As application, environmental and design factors can vary significantly, due care should be exercised in the selection and use of the coating.
Tesla NanoCoatings Limited

Material Safety Data Sheet

Tesla NanoCoatings Limited

MSDS Name: TESLAN™ ZN Primer Part A

MSDS Number: SEP-09-2008

SECTION I - PRODUCT AND COMPANY INFORMATION

Product Name: TESLAN™ Primer Part A
CAS Number: Mixture
Hazard Rating: Health: 1 Fire: 2 Reactivity: 1 PPI:

Company Identification: Tesla NanoCoatings Limited
1311 20th Street SW
Massillon, OH 44647

Contact: Todd Hawkins
Telephone: (330) 417-3550
Emergency Phone (24 Hour): (330)-417-3550

Product Class: Paint
Trade Name:
Product Code:
DOT Hazard Class:
UN Number:
Shipping Name: SWNT /Zinc Epoxy Primer Coat
Technical Name:

Additional Information

SECTION II - INGREDIENT AND HAZARD INFORMATION

Ingredient Name	CAS Number	Percent	TSCA
ZINC METAL	7440-66-6	10-30	Y
AROMATIC PETROL. DISTILL.	64742-95-6	10-30	Y
HMIS Health: 0 Fire: 2 Reactivity: 0 PPI:			
$ 1,2,4 TRIMETHYLBENZENE	95-63-6	5-10	Y
HMIS Health: 0 Fire: 2 Reactivity: 0 PPI:			

***ALL ingredients in this product are listed in the T.S.C.A. Inventory

ADDITIONAL INFORMATION

SECTION 313 SUPPLIER NOTIFICATION: THIS PRODUCT MAY CONTAIN TOXIC CHEMICALS SUBJECT TO THE REPORTING REQUIREMENTS OF SECTION 313 OF THE EMERGENCY PLANNING AND COMMUNITY RIGHT TO KNOW ACT OF 1986 AND 40 CFR 372 (NOTED BY THE $ SYMBOL)

CAUTION: This product may become a dust nuisance when removed by sanding, abrading or sandblasting. Dust masks should be worn during these operations.

NE = not established NA = not available NR = not regulated

ALL COMPONENTS OF THIS MIXTURE ARE LISTED ON THE TSCA INVENTORY.
Tesla NanoCoatings Limited

Material Safety Data Sheet

MSDS Name: TESLAN™ ZN Primer
Part A

MSDS Number:

MSDS Date: SEP-09-2008

SECTION III - PHYSICAL DATA

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td>Liquid</td>
</tr>
<tr>
<td>Appearance/Color</td>
<td>Gray</td>
</tr>
<tr>
<td>Odor</td>
<td>Mild</td>
</tr>
<tr>
<td>Solubility (in water)</td>
<td>N</td>
</tr>
<tr>
<td>pH Value</td>
<td>0</td>
</tr>
<tr>
<td>Boiling Range</td>
<td>300°F (148.89°C)</td>
</tr>
<tr>
<td>Vapor Pressure (mmHg)</td>
<td>0 @ 0°F (-17.78°C)</td>
</tr>
<tr>
<td>Melting Point</td>
<td>0°F (-17.78°C)</td>
</tr>
<tr>
<td>Evaporation Rate</td>
<td>0.15 times slower than n-Butyl Acetate</td>
</tr>
<tr>
<td>Vapor Density</td>
<td></td>
</tr>
<tr>
<td>Partition Coefficient</td>
<td></td>
</tr>
<tr>
<td>% Volatile Weight</td>
<td>23.67%</td>
</tr>
<tr>
<td>% Volatile Volume</td>
<td>34.15%</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.18656</td>
</tr>
<tr>
<td>VOC</td>
<td>2.49</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td></td>
</tr>
<tr>
<td>Heavy Elements (ppm)</td>
<td>0</td>
</tr>
</tbody>
</table>

SECTION IV - FIRE AND EXPLOSION HAZARD DATA

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability Class</td>
<td>II</td>
</tr>
<tr>
<td>Flash Range</td>
<td>130°F (54.44°C)</td>
</tr>
<tr>
<td>Explosive Range</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>7%</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA:

Carbon Dioxide—Dry Chemical—Foam—Water Fog
Use water for cooling material stored in vicinity of fire.

SPECIAL FIREFIGHTING PROCEDURES:
Use self-contained breathing apparatus with a full facepiece operated in pressure-demand or other positive pressure mode. Wear protective clothing.

UNUSUAL FIRE & EXPLOSION HAZARDS:
Vapors are heavier than air and may travel along the ground to an ignition source some distance from material handling point. Ignition sources include pilot lights, smoking, heaters, electric motors, sparks from electrical switches and static discharges.

CAUTION: Never use cutting torch on empty containers! Residual solvent vapor in empty container may explode.

SECTION V - HEALTH HAZARD DATA

<table>
<thead>
<tr>
<th>Route</th>
<th>Species</th>
<th>Exposure and Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERMISSIBLE EXPOSURE LEVEL:
Refer to Section II
EFFECTS OF OVEREXPOSURE:
EYES: Can cause redness, irritation, swelling and blurred vision.
SKIN: Prolonged or repeated contact can cause moderate irritation, defatting, dermatitis.
BREATHING: Excessive inhalation of vapors and/or spray mist can cause respiratory irritation, dizziness, weakness, fatigue, nausea, headache, unconsciousness and even asphyxiation.
SWALLOWING: Can cause gastrointestinal irritation, nausea, vomiting and diarrhea; aspiration of material into the lungs can cause chemical pneumonitis which can be fatal.
FIRST AID:
EYES: Flush with large amounts of water for 15 minutes. Lift eyelids occasionally, get prompt medical attention.
SKIN: Wash thoroughly with soap and water, remove contaminated clothing promptly; wash clothing before reuse. Consult a physician if irritation persists.
SWALLOWING: DO NOT induce vomiting! Keep person warm, quiet and get medical attention. Aspiration of material into the lungs due to vomiting can cause chemical pneumonitis which can be fatal. Drink 1-2 glasses of water to dilute.
INHALATION: Move affected person to fresh air. If breathing is difficult, administer oxygen. If breathing has stopped, give artificial respiration. Keep person warm, quiet, and get medical attention. Consult a physician.

SECTION VI - REACTIVITY DATA
Stability: This product is stable
Hazardous Polymerization: Hazardous polymerization will not occur
INCOMPATIBILITY:
Avoid contact with strong oxidizers (e.g. nitric acid)
CONDITIONS TO AVOID:
Keep away from heat and open flame.
HAZARDOUS DECOMPOSITION PRODUCTS:
May form carbon monoxide and dioxide, various hydrocarbons, etc.

SECTION VII - SPILL OR LEAK PROCEDURES
STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED SMALL SPILL:
Absorb liquid with rags, floor absorbent, vermiculite or other absorbent material and transfer to hood.
LARGE SPILL: Eliminate all ignition sources—dike area of spill to prevent spreading—ventilate area if indoors—pump liquid into salvage tank—remaining liquid may be taken up with sand, floor absorbent or other absorbent material and shoveled into containers—prevent run-off to sewers and bodies of water—notify proper authorities as required by local, state and federal regulations.
WASTE DISPOSAL METHOD:
Dispose of in accordance with federal, state and local regulations.
SECTION VIII - SPECIAL PROTECTION INFORMATION

Occupational Exposure Limits

<table>
<thead>
<tr>
<th>Component</th>
<th>ACGIH TLV</th>
<th>ACGIH TLV-C</th>
<th>ACGIH STEL</th>
<th>OSHA STEL</th>
<th>OSHA PEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZINC METAL</td>
<td>N/est</td>
<td>N/est</td>
<td>N/est</td>
<td>N/est</td>
<td>N/est</td>
</tr>
<tr>
<td>AROMATIC PETROL. DISTILL.</td>
<td>N/est</td>
<td>N/est</td>
<td>N/est</td>
<td>N/est</td>
<td>N/est</td>
</tr>
<tr>
<td>$1,2,4 TRIMETHYLBENZENE</td>
<td>25.00ppm</td>
<td>N/est</td>
<td>N/est</td>
<td>N/est</td>
<td>N/est</td>
</tr>
</tbody>
</table>

RESPIRATORY PROTECTION:
If workplace exposure limits are exceeded for any component (see Section II for hazardous components and exposure limits) a NIOSH/OSHA approved respirator for components listed is recommended.

VENTILATION:
Sufficient ventilation in volume and pattern, should be provided to keep air contamination below current applicable OHSA permissible exposure limit or ACGIH TLV limit.

PROTECTIVE GLOVES:
Wear resistant gloves such as: nitrile rubber

EYE PROTECTION:
Chemical splash goggles in compliance with OSHA regulations are advised; however, OSHA regulations also permit other types of safety glasses. (Consult your safety equipment supplier)

OTHER PROTECTIVE EQUIPMENT:
Appropriate impervious clothing is recommended if prolonged or repeated contact is likely.

SECTION IX - SPECIAL PRECAUTIONS

PRECAUTIONS TO BE TAKEN IN HANDLING AND STORING:
Do not drop containers. Avoid heat, sparks, and open flame. Store large quantities only in buildings designed to comply with OSHA 1910.106. Never use pressure to empty. Avoid breathing sanding dust. Do not handle until the manufacturers safety precautions have been read and understood.

OTHER PRECAUTIONS:
The information accumulated herein is believed to be accurate but is not warranted to be whether originating with the company or not. Recipients are advised to confirm in advance of need that the information is current, applicable, and suitable to their circumstances.

DO NOT TAKE INTERNALLY. AVOID PROLONGED INHALATION AND BODY CONTACT.

SECTION X - ADDITIONAL REGULATORY INFORMATION

SARA TITLE III SECTION 313:
This product contains the following toxic chemicals subject to the reporting requirements of section 313 of the Emergency Planning and Community Right to Know Act of 1986 and of 40 CFR 372:
<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>CAS Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,4 TRIMETHYLBENZENE</td>
<td>95-63-6</td>
<td>8.04</td>
</tr>
</tbody>
</table>

PROP 65 (CARCINOGEN):
WARNING: This product contains a chemical known to the state of California to cause cancer.

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>CAS Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Compound</td>
<td>1314-41-6</td>
<td>0.01</td>
</tr>
</tbody>
</table>

PROP 65 (TERATOGEN):
WARNING: This product contains a chemical known to the state of California to cause birth defects or other reproductive harm.

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>CAS Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluene</td>
<td>108-88-3</td>
<td>0.01</td>
</tr>
</tbody>
</table>

PROP 65 (BOTH CARCINOGEN AND TERATOGEN):
Tesla NanoCoatings Limited

Material Safety Data Sheet

MSDS Name: TESLAN™ ZN Primer Part B

MSDS Number:

MSDS Date: SEP-09-2008

SECTION I - PRODUCT AND COMPANY INFORMATION

Product Name: TESLAN™ ZN Primer Part B
CAS Number: Mixture
Hazard Rating: Health: 2 Fire: 1 Reactivity: 1 PPI:

Company Identification: Tesla NanoCoatings Limited
1311 20th Street SW
Massillon, OH 44647

Contact: Todd Hawkins
Telephone: (330) 417-3550
Emergency Phone (24 Hour): (330)-417-3550

Product Class: Paint
Trade Name:
Product Code:
DOT Hazard Class:
UN Number:
Shipping Name: SWNT / Zinc Epoxy Primer Coat
Technical Name:

Additional Information

SECTION II - INGREDIENT AND HAZARD INFORMATION

Ingredient Name CAS Number Percent TSCA
AROMATIC PETROL. DISTILL. 64742-95-6 7-13 Y
HMIS Health: 0 Fire: 2 Reactivity: 0 PPI:
MINERAL SPIRITS RULE 66 8052-41-3 5-10 Y
HMIS Health: 0 Fire: 2 Reactivity: 0 PPI:
$1,2,4 TRIMETHYLBENZENE 95-63-6 3-8 Y
HMIS Health: 0 Fire: 2 Reactivity: 0 PPI:

***ALL ingredients in this product are listed in the T.S.C.A. Inventory

ADDITIONAL INFORMATION

SECTION 313 SUPPLIER NOTIFICATION: THIS PRODUCT MAY CONTAIN TOXIC CHEMICALS SUBJECT TO THE REPORTING REQUIREMENTS OF SECTION 313 OF THE EMERGENCY PLANNING AND COMMUNITY RIGHT TO KNOW ACT OF 1986 AND 40 CFR 372 (NOTED BY THE $ SYMBOL)

CAUTION: This product may become a dust nuisance when removed by sanding, abrading or sandblasting. Dust masks should be worn during these operations.

NE = not established NA = not available NR = not regulated
ALL COMPONENTS OF THIS MIXTURE ARE LISTED ON THE TSCA INVENTORY.

SECTION III - PHYSICAL DATA

Form: Liquid
Appearance/Color: Amber
Odor: Amine
Solubility (in water): N
pH Value: 0
Boiling Range: 300°F (148.89°C)
Vapor Pressure (mmHg): 0 @ 0.0°F (-17.78°C)
Melting Point: 0°F (-17.78°C)
Evaporation Rate: 0.2 times slower than n-Butyl Acetate
Vapor Density: Heavier than air
Partition Coefficient:
% Volatile Weight: 44.34%
% Volatile Volume: 45.86%
Specific Gravity: 0.92502
VOC: 3.46
Molecular Weight: Heavy Elements (ppm): 0

SECTION IV - FIRE AND EXPLOSION HAZARD DATA

Flammability Class: II
Flash Range: 130°F (54.44°C)
Explosive Range: 1%
7%

EXTINGUISHING MEDIA:

Carbon Dioxide—Dry Chemical—Foam—Water Fog
Use water for cooling material stored in vicinity of fire.

SPECIAL FIREFIGHTING PROCEDURES:
Use self-contained breathing apparatus with a full facepiece operated in pressure-demand or other positive pressure mode. Wear protective clothing.

UNUSUAL FIRE & EXPLOSION HAZARDS:
Vapors are heavier than air and may travel along the ground to an ignition source some distance from material handling point. Ignition sources include pilot lights, smoking, heaters, electric motors, sparks from electrical switches and static discharges.

CAUTION: Never use cutting torch on empty containers! Residual solvent vapor in empty container may explode.
SECTION V - HEALTH HAZARD DATA

PERMISSIBLE EXPOSURE LEVEL:
Refer to Section II
EFFECTS OF OVEREXPOSURE:
EYES: Can cause redness, irritation, swelling and blurred vision.
SKIN: Prolonged or repeated contact can cause moderate irritation, defatting, dermatitis.
BREATHING: Excessive inhalation of vapors and/or spray mist can cause respiratory irritation, dizziness, weakness, fatigue, nausea, headache, unconsciousness and even asphyxiation.
SWALLOWING: Can cause gastrointestinal irritation, nausea, vomiting and diarrhea; aspiration of material into the lungs can cause chemical pneumonitis which can be fatal.
FIRST AID:
EYES: Flush with large amounts of water for 15 minutes. Lift eyelids occasionally, get prompt medical attention.
SKIN: Wash thoroughly with soap and water, remove contaminated clothing promptly; wash clothing before reuse. Consult a physician if irritation persists.
SWALLOWING: DO NOT induce vomiting! Keep person warm, quiet and get medical attention. Aspiration of material into the lungs due to vomiting can cause chemical pneumonitis which can be fatal. Drink 1-2 glasses of water to dilute.
INHALATION: Move affected person to fresh air. If breathing is difficult, administer oxygen. If breathing has stopped, give artificial respiration. Keep person warm, quiet, and get medical attention. Consult a physician.

SECTION VI - REACTIVITY DATA

Stability: This product is stable
Hazardous Polymerization: Hazardous polymerization will not occur
INCOMPATIBILITY: Avoid contact with strong oxidizers (e.g. nitric acid)
CONDITIONS TO AVOID: Keep away from heat and open flame.
HAZARDOUS DECOMPOSITION PRODUCTS: May form carbon monoxide and dioxide, various hydrocarbons, etc.

SECTION VII - SPILL OR LEAK PROCEDURES

STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED SMALL SPILL:
Absorb liquid with rags, floor absorbent, vermiculite or other absorbent material and transfer to hood.

LARGE SPILL: Eliminate all ignition sources—dike area of spill to prevent spreading—ventilate area if indoors—pump liquid into salvage tank—remaining liquid may be taken up with sand, floor absorbent or other absorbent material and shoveled into containers—prevent run-off to sewers and bodies of water—notify proper authorities as required by local, state and federal regulations.

WASTE DISPOSAL METHOD:
Dispose of in accordance with federal, state and local regulations.
SECTION VIII - SPECIAL PROTECTION INFORMATION

Occupational Exposure Limits

<table>
<thead>
<tr>
<th>ACGIH TLV</th>
<th>ACGIH TLV-C</th>
<th>ACGIH STEL</th>
<th>OSHA STEL</th>
<th>OSHA PEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/est</td>
<td>N/est</td>
<td>N/est</td>
<td>N/est</td>
<td>N/est</td>
</tr>
</tbody>
</table>

AROMATIC PETROL, DISTILL.
N/est N/est N/est N/est N/est

MINERAL SPIRITS RULE 66
N/est N/est N/est 100.00ppm

$1,2,4 TRIMETHYLBENZENE
25.00ppm N/est N/est N/est

RESPIRATOR PROTECTION:
If workplace exposure limits are exceeded for any component (see Section II for hazardous components and exposure limits) a NIOSH/OSHA approved respirator for components listed is recommended.

VENTILATION:
Sufficient ventilation in volume and pattern, should be provided to keep air contamination below current applicable OHSA permissible exposure limit or ACGIH TLV limit.

PROTECTIVE GLOVES:
Wear resistant gloves such as: nitrile rubber

EYE PROTECTION:
Chemical splash goggles in compliance with OSHA regulations are advised; however, OSHA regulations also permit other types of safety glasses. (Consult your safety equipment supplier)

OTHER PROTECTIVE EQUIPMENT:
Appropriate impervious clothing is recommended if prolonged or repeated contact is likely.

SECTION IX - SPECIAL PRECAUTIONS

PRECAUTIONS TO BE TAKEN IN HANDLING AND STORING:
Do not drop containers. Avoid heat, sparks, and open flame. Store large quantities only in buildings designed to comply with OSHA 1910.106. Never use pressure to empty. Avoid breathing sanding dust. Do not handle until the manufacturer’s safety precautions have been read and understood.

OTHER PRECAUTIONS:
The information accumulated herein is believed to be accurate but is not warranted to be whether originating with the company or not. Recipients are advised to confirm in advance of need that the information is current, applicable, and suitable to their circumstances.

DO NOT TAKE INTERNALLY. AVOID PROLONGED INHALATION AND BODY CONTACT.

SECTION X - ADDITIONAL REGULATORY INFORMATION

SARA TITLE III SECTION 313:
This product contains the following toxic chemicals subject to the reporting requirements of section 313 of the Emergency Planning and Community Right to Know Act of 1986 and of 40 CFR 372:

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>CAS Number</th>
<th>Percent</th>
</tr>
</thead>
</table>
$1,2,4$ TRIMETHYLBENZENE
95-63-6
6.11

PROP 65 (CARCINOGEN):

PROP 65 (TERATOGEN):
WARNING: This product contains a chemical known to the state of California to cause birth defects or other reproductive harm.

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>CAS Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Toluene$</td>
<td>108-88-3</td>
<td>0.01</td>
</tr>
</tbody>
</table>

PROP 65 (BOTH CARCINOGEN AND TERATOGEN):
Product Information

Product Description

Teslan™ Epoxy Polyamide Intermediate coating is a solvent-based, two-component, organic paint designated by Navy Formula 152 Type IV for interior or exterior use over Teslan™ primers. The Teslan™ system utilizes carbon in the form of single wall carbon nanotubes called “Buckytubes”. The special nature of carbon combines with the molecular perfection of buckytubes to endow them with exceptionally high material properties such as electrical conductivity, strength, stiffness, and toughness.

- Coating provides exceptional barrier
- Provides cathodic/sacrificial if damaged
- Forms an barrier to moisture and solvents

Characteristics

<table>
<thead>
<tr>
<th>Color:</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finish:</td>
<td>Semi-gloss</td>
</tr>
<tr>
<td>Gloss, 60 Degree:</td>
<td>35 minimum</td>
</tr>
<tr>
<td>Mix Ratio:</td>
<td>1-part A : 1- part B</td>
</tr>
<tr>
<td>Pot Life (73⁰):</td>
<td>6-Hr minimum</td>
</tr>
<tr>
<td>Set to Touch (73⁰):</td>
<td>3-Hr maximum</td>
</tr>
<tr>
<td>Dry Hard (73⁰):</td>
<td>24-Hr maximum</td>
</tr>
<tr>
<td>Flash Point, ⁰F:</td>
<td>100 minimum</td>
</tr>
<tr>
<td>Sag, mils:</td>
<td>12 minimum</td>
</tr>
<tr>
<td>Consistency, g</td>
<td>180-245</td>
</tr>
<tr>
<td>VOC, lb/gal:</td>
<td>2.8 maximum</td>
</tr>
</tbody>
</table>

Recommended Uses

For use over prepared blasted steel previously coated with Teslan Primers
- Locks / Dams / Refineries
- Ships / Drilling rigs / Docks / Chemical Plants
- Pipelines / Military Equipment
- Ideal for application at low temperatures or service at high temperatures and/or humidity conditions
- Fresh and Salt water immersion service

Surface Preparation

Must be clean, dry, oil and grease free and free from other surface contamination applied within recoat times specified below:

<table>
<thead>
<tr>
<th>Recoat 24 - 48 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended Recoat 1 - 15 Days</td>
</tr>
</tbody>
</table>

Coverage Rates

<table>
<thead>
<tr>
<th>Coverage Rate</th>
<th>Desired Spread Rate (ft²/6mil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate</td>
<td>3-8</td>
</tr>
<tr>
<td>TESLAN™ Intermediate</td>
<td>200</td>
</tr>
<tr>
<td>Theoretical Coverage</td>
<td>1200/mil</td>
</tr>
</tbody>
</table>

Allow for overspray and surface irregularities. Application of coating below minimum or above maximum recommended dry film thicknesses may adversely affect coating performance.

Tesla NanoCoatings Limited
PO Box 270
Massillon, Ohio 44646
(Tel) 330-880-8229
www.teslanano.com

Intermediate Tech Sheet
Product Information (page 2 of 2)

Mixing

Use an air-driven power mixer and keep material under constant agitation while mixing. Slowly add 1-part (Part A) into 1-part (Part B). Adjust mixer speed to break up lumps and mix until the two components are thoroughly blended. Strain through a 35 to 60 mesh (310 to 681 microns) screen before using. Do not use mixed material beyond pot life limits.

Thinning

For airless spray, air spray, brush or roller thin up to 10% or 3/4 pint (380 mL) per gallon with Teslan Type II Epoxy Polyamide Thinner if temperatures are below 80°F (27°C).

Surface Temperature

Minimum 40°F (10°C) Maximum 100°F (38°C) Maximum. The surface should be dry and at least 5°F (3°C) above the dew point.

Ambient Humidity

Minimum 40% Maximum 90%

Application Equipment

Air spray

<table>
<thead>
<tr>
<th>Gun</th>
<th>Fluid Tip</th>
<th>Air Cap</th>
<th>Hose ID</th>
<th>Atomizing Pressure</th>
<th>Pot Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devilbiss</td>
<td>E</td>
<td>765 or 704</td>
<td>3/8 inch (9.5 mm)</td>
<td>75-100 psi (5.2-6.9 bar)</td>
<td>25-35 psi (1.7-2.4 bar)</td>
</tr>
<tr>
<td>JGA or Equal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Airless spray

<table>
<thead>
<tr>
<th>Tip Orifice</th>
<th>Atomizing Pressure</th>
<th>Hose ID</th>
<th>Manifold Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.015"-0.019" (380-485 microns)</td>
<td>4000-4800 psi (276-331 bar)</td>
<td>1/4" or 3/8" (6.4 or 9.5 mm)</td>
<td>60 mesh (250 microns)</td>
</tr>
</tbody>
</table>

Clean up: Flush and clean all equipment immediately after use with Teslan Type II Epoxy Polyamide Thinner.

WARRANTY & LIMITATION OF SELLER'S LIABILITY: Tesla NanoCoatings Limited warrants only that its coatings represented herein meet the formulation standards of Tesla NanoCoatings Limited. Technical and application information herein is provided for the purpose of establishing a general profile of the coating and proper coating application procedures. As application, environmental and design factors can vary significantly, due care should be exercised in the selection and use of the coating.
Tesla NanoCoatings Limited

Material Safety Data Sheet

MSDS Name: TESLAN™ Epoxy Polyamide Intermediate Coat Part A

MSDS Number: SEP-09-2008

SECTION I - PRODUCT AND COMPANY INFORMATION

Product Name: Epoxy Polyamide Intermediate Coat Part A
CAS Number: Mixture
Hazard Rating: Health: 1 Fire: 2 Reactivity: 1 PPI:

Company Identification: Tesla NanoCoatings Limited
1311 20th Street SW
Massillon, OH 44647

Contact: Todd Hawkins
Telephone: (330) 417-3550
Emergency Phone (24 Hour): (330)-417-3550

Product Class: Paint
Trade Name: TESLAN™ Epoxy Polyamide Intermediate Coat Part A
Product Code:
DOT Hazard Class:
UN Number:
Shipping Name: Epoxy Intermediate Coat
Technical Name:

Additional Information

SECTION II - INGREDIENT AND HAZARD INFORMATION

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>CAS Number</th>
<th>Percent</th>
<th>TSCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AROMATIC PETROL. DISTILL.</td>
<td>64742-95-6</td>
<td>10-30</td>
<td>Y</td>
</tr>
<tr>
<td>HMIS Health: 0</td>
<td>Fire: 2</td>
<td>Reactivity: 0</td>
<td>PPI:</td>
</tr>
<tr>
<td>$1,2,4 TRIMETHYLBENZENE</td>
<td>95-63-6</td>
<td>5-10</td>
<td>Y</td>
</tr>
<tr>
<td>HMIS Health: 0</td>
<td>Fire: 2</td>
<td>Reactivity: 0</td>
<td>PPI:</td>
</tr>
</tbody>
</table>

ALL ingredients in this product are listed in the T.S.C.A. Inventory

ADDITIONAL INFORMATION

SECTION 313 SUPPLIER NOTIFICATION: THIS PRODUCT MAY CONTAIN TOXIC CHEMICALS SUBJECT TO THE REPORTING REQUIREMENTS OF SECTION 313 OF THE EMERGENCY PLANNING AND COMMUNITY RIGHT TO KNOW ACT OF 1986 AND 40 CFR 372 (NOTED BY THE $ SYMBOL)

CAUTION: This product may become a dust nuisance when removed by sanding, abrading or sandblasting. Dust masks should be worn during these operations.

NE = not established NA = not available NR = not regulated

ALL COMPONENTS OF THIS MIXTURE ARE LISTED ON THE TSCA INVENTORY.
Tesla NanoCoatings Limited Material Safety Data Sheet

MSDS Name: TESLAN™ Epoxy Polyamide Intermediate Coat Part A

MSDS Number:
MSDS Date: SEP-09-2008

SECTION III - PHYSICAL DATA

Form: Liquid
Appearance/Color: Amber
Odor: Mild
Solubility (in water): N
pH Value: 0
Boiling Range: 300°F (148.89°C)
Vapor Pressure (mmHg): 0 @ 0.8°F (-17.78°C)
Melting Point: 0°F (-17.78°C)
Evaporation Rate: 0.15 times slower than n-Butyl Acetate
Vapor Density:
Partition Coefficient:
% Volatile Weight: 18.5%
% Volatile Volume: 28.73%
Specific Gravity: 1.35693
VOC: 2.09
Molecular Weight:
Heavy Elements (ppm):

SECTION IV - FIRE AND EXPLOSION HAZARD DATA

Flammability Class: II
Flash Range: 130°F (54.44°C)
Explosive Range: 1%

EXTINGUISHING MEDIA:
Carbon Dioxide—Dry Chemical—Foam—Water Fog
Use water for cooling material stored in vicinity of fire.
SPECIAL FIREFIGHTING PROCEDURES:
Use self-contained breathing apparatus with a full facepiece operated in pressure-demand or other positive pressure mode. Wear protective clothing.
UNUSUAL FIRE & EXPLOSION HAZARDS:
Vapors are heavier than air and may travel along the ground to an ignition source some distance from material handling point. Ignition sources include pilot lights, smoking, heaters, electric motors, sparks from electrical switches and static discharges.
CAUTION: Never use cutting torch on empty containers! Residual solvent vapor in empty container may explode.

SECTION V - HEALTH HAZARD DATA

Route Species Exposure and Dose

PERMISSIBLE EXPOSURE LEVEL:
Refer to Section II
EFFECTS OF OVEREXPOSURE:
EYES: Can cause redness, irritation, swelling and blurred vision.
SKIN: Prolonged or repeated contact can cause moderate irritation, defatting, dermatitis.
BREATHING: Excessive inhalation of vapors and/or spray mist can cause respiratory irritation, dizziness, weakness, fatigue nausea, headache, unconsciousness and even asphyxiatiob.
SWALLOWING: Can cause gastrointestinal irritation, nausea, vomiting and diarrhea; aspiration of material into the lungs can cause chemical pneumonitis which can be fatal.
FIRST AID:
EYES: Flush with large amounts of water for 15 minutes. Lift eyelids occasionally, get prompt medical attention.
SKIN: Wash thoroughly with soap and water, remove contaminated clothing promptly; wash clothing before reuse. Consult a physician if irritation persists.
SWALLOWING: DO NOT induce vomiting! Keep person warm, quiet and get medical attention. Aspiration of material into the lungs due to vomiting can cause chemical pneumonitis which can be fatal. Drink 1-2 glasses of water to dilute.
INHALATION: Move affected person to fresh air. If breathing is difficult, administer oxygen. If breathing has stopped, give artificial respiration. Keep person warm, quiet, and get medical attention. Consult a physician.

SECTION VI - REACTIVITY DATA
Stability: This product is stable
Hazardous Polymerization: Hazardous polymerization will not occur
INCOMPATIBILITY:
Avoid contact with strong oxidizers (e.g. nitric acid)
CONDITIONS TO AVOID:
Keep away from heat and open flame.
HAZARDOUS DECOMPOSITION PRODUCTS:
May form carbon monoxide and dioxide, various hydrocarbons, etc.

SECTION VII - SPILL OR LEAK PROCEDURES
STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED SMALL SPILL:
Absorb liquid with rags, floor absorbent, vermiculite or other absorbent material and transfer to hood.
LARGE SPILL: Eliminate all ignition sources—dike area of spill to prevent spreading—ventilate area if indoors—pump liquid into salvage tank—remaining liquid may be taken up with sand, floor absorbent or other absorbent material and shoveled into containers—prevent run-off to sewers and bodies of water—notify proper authorities as required by local, state and federal regulations.
WASTE DISPOSAL METHOD:
Dispose of in accordance with federal, state and local regulations.

SECTION VIII - SPECIAL PROTECTION INFORMATION
Occupational Exposure Limits
ACGIH TLV ACGIH TLV-C ACGIH STEL OSHA STEL OSHA PEL
AROMATIC PETROL. DISTILL. N/est N/est N/est N/est N/est
$ 1,2,4 TRIMETHYLBENZENE
25.00ppm N/est N/est N/est N/est

RESPIRATORY PROTECTION:
If workplace exposure limits are exceeded for any component (see Section II for hazardous components and exposure limits) a NIOSH/OSHA approved respirator for components listed is recommended.

VENTILATION:
Sufficient ventilation in volume and pattern, should be provided to keep air contamination below current applicable OHSA permissible exposure limit or ACGIH TLV limit.

PROTECTIVE GLOVES:
Wear resistant gloves such as: nitrile rubber

EYE PROTECTION:
Chemical splash goggles in compliance with OSHA regulations are advised; however, OSHA regulations also permit other types of safety glasses. (Consult your safety equipment supplier)

OTHER PROTECTIVE EQUIPMENT:
Appropriate impervious clothing is recommended if prolonged or repeated contact is likely.

SECTION IX - SPECIAL PRECAUTIONS

PRECAUTIONS TO BE TAKEN IN HANDLING AND STORING:
Do not drop containers. Avoid heat, sparks, and open flame. Store large quantities only in buildings designed to comply with OSHA 1910.106. Never use pressure to empty. Avoid breathing sanding dust. Do not handle until the manufacturers safety precautions have been read and understood.

OTHER PRECAUTIONS:
The information accumulated herein is believed to be accurate but is not warranted to be whether originating with the company or not. Recipients are advised to confirm in advance of need that the information is current, applicable, and suitable to their circumstances.

DO NOT TAKE INTERNALLY. AVOID PROLONGED INHALATION AND BODY CONTACT.

SECTION X - ADDITIONAL REGULATORY INFORMATION

SARA TITLE III SECTION 313:
This product contains the following toxic chemicals subject to the reporting requirements of section 313 of the Emergency Planning and Community Right to Know Act of 1986 and of 40 CFR 372:

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>CAS Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ 1,2,4 TRIMETHYLBENZENE</td>
<td>95-63-6</td>
<td>8.04</td>
</tr>
</tbody>
</table>

PROP 65 (CARCINOGEN):
PROP 65 (TERATOGEN):
PROP 65 (BOTH CARCINOGEN AND TERATOGEN):
Tesla NanoCoatings Limited Material Safety Data Sheet

MSDS Name: TESLAN™ Epoxy Polyamide Intermediate Coat Part B
MSDS Number:
MSDS Date: SEP-09-2008

SECTION I - PRODUCT AND COMPANY INFORMATION

Product Name: TESLAN™ Epoxy Polyamide Intermediate Coat Part B
CAS Number: Mixture
Hazard Rating: Health: 2 Fire: 1 Reactivity: 1 PPI:

Company Identification: Tesla NanoCoatings Limited
1311 20th Street SW
Massillon, OH 44647

Contact: Todd Hawkins
Telephone: (330) 417-3550
Emergency Phone (24 Hour): (330)-417-3550

Product Class: Paint
Trade Name:
Product Code:
DOT Hazard Class:
UN Number:
Shipping Name: Epoxy Intermediate Coat
Technical Name:

Additional Information

SECTION II - INGREDIENT AND HAZARD INFORMATION

Ingredient Name CAS Number Percent TSCA
$ BUTANOL 71-36-3 20-40 Y
HMIS Health: 3 Fire: 3 Reactivity: 0 PPI:

***ALL ingredients in this product are listed in the T.S.C.A. Inventory

ADDITIONAL INFORMATION

SECTION 313 SUPPLIER NOTIFICATION: THIS PRODUCT MAY CONTAIN TOXIC CHEMICALS SUBJECT TO THE REPORTING REQUIREMENTS OF SECTION 313 OF THE EMERGENCY PLANNING AND COMMUNITY RIGHT TO KNOW ACT OF 1986 AND 40 CFR 372 (NOTED BY THE $ SYMBOL)

CAUTION: This product may become a dust nuisance when removed by sanding, abrading or sandblasting. Dust masks should be worn during these operations.

NE = not established NA = not available NR = not regulated

ALL COMPONENTS OF THIS MIXTURE ARE LISTED ON THE TSCA INVENTORY.
SECTION III - PHYSICAL DATA

Form: Liquid
Appearance/Color: White
Odor: Amine
Solubility (in water): N
\(pH \) Value: 0
Boiling Range: 244°F (117.78°C)
Vapor Pressure (mmHg): 0 @ 0.0°F (-17.78°C)
Melting Point: 0°F (-17.78°C)
Evaporation Rate: 0.4 times slower than n-Butyl Acetate
Vapor Density: Heavier than air
Partition Coefficient:
% Volatile Weight: 22.17%
% Volatile Volume: 38.36%
SpecificGravity: 1.40612
VOC: 2.59
Molecular Weight:
Heavy Elements (ppm): 0

SECTION IV - FIRE AND EXPLOSION HAZARD DATA

Flammability Class: II
Flash Range: 130°F (54.44°C)
Setaflash
Explosive Range: 1.4%
11.2%

EXTINGUISHING MEDIA:

Carbon Dioxide---Dry Chemical---Foam---Water Fog
Use water for cooling material stored in vicinity of fire.

SPECIAL FIREFIGHTING PROCEDURES:

Use self-contained breathing apparatus with a full facepiece operated in pressure-demand or other positive pressure mode. Wear protective clothing.

UNUSUAL FIRE & EXPLOSION HAZARDS:

Vapors are heavier than air and may travel along the ground to an ignition source some distance from material handling point. Ignition sources include pilot lights, smoking, heaters, electric motors, sparks from electrical switches and static discharges.

CAUTION: Never use cutting torch on empty containers! Residual solvent vapor in empty container may explode.
SECTION V - HEALTH HAZARD DATA

PERMISSIBLE EXPOSURE LEVEL:
Refer to Section II

EFFECTS OF OVEREXPOSURE:

EYES: Can cause redness, irritation, swelling and blurred vision.

SKIN: Prolonged or repeated contact can cause moderate irritation, defatting, dermatitis.

BREATHING: Excessive inhalation of vapors and/or spray mist can cause respiratory irritation, dizziness, weakness, fatigue, nausea, headache, unconsciousness and even asphyxiation.

SWALLOWING: Can cause gastrointestinal irritation, nausea, vomiting and diarrhea; aspiration of material into the lungs can cause chemical pneumonitis which can be fatal.

FIRST AID:

EYES: Flush with large amounts of water for 15 minutes. Lift eyelids occasionally, get prompt medical attention.

SKIN: Wash thoroughly with soap and water, remove contaminated clothing promptly; wash clothing before reuse. Consult a physician if irritation persists.

SWALLOWING: DO NOT induce vomiting! Keep person warm, quiet and get medical attention. Aspiration of material into the lungs due to vomiting can cause chemical pneumonitis which can be fatal. Drink 1-2 glasses of water to dilute.

INHALATION: Move affected person to fresh air. If breathing is difficult, administer oxygen. If breathing has stopped, give artificial respiration. Keep person warm, quiet, and get medical attention. Consult a physician.

SECTION VI - REACTIVITY DATA

Stability: This product is stable

Hazardous Polymerization: Hazardous polymerization will not occur

INCOMPATIBILITY:
Avoid contact with strong oxidizers (e.g. nitric acid)

CONDITIONS TO AVOID:
Keep away from heat and open flame.

HAZARDOUS DECOMPOSITION PRODUCTS:
May form: carbon monoxide and dioxide, various hydrocarbons, etc.

SECTION VII - SPILL OR LEAK PROCEDURES

STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED SMALL SPILL:
Absorb liquid with rags, floor absorbent, vermiculite or other absorbent material and transfer to hood.

LARGE SPILL: Eliminate all ignition sources—dike area of spill to prevent spreading—ventilate area if indoors—pump liquid into salvage tank—remaining liquid may be taken up with sand, floor absorbent or other absorbent material and shoveled into containers—prevent run-off to sewers and bodies of water—notify proper authorities as required by local, state and federal regulations.

WASTE DISPOSAL METHOD:
Dispose of in accordance with federal, state and local regulations.
SECTION VIII - SPECIAL PROTECTION INFORMATION

Occupational Exposure Limits

<table>
<thead>
<tr>
<th></th>
<th>ACGIH TLV</th>
<th>ACGIH TLV-C</th>
<th>ACGIH STEL</th>
<th>OSHA STEL</th>
<th>OSHA PEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ BUTANOL</td>
<td>N/est</td>
<td>N/est</td>
<td>N/est</td>
<td>N/est</td>
<td>N/est</td>
</tr>
</tbody>
</table>

RESPIRATORY PROTECTION:
If workplace exposure limits are exceeded for any component (see Section II for hazardous components and exposure limits) a NIOSH/OSHA approved respirator for components listed is recommended.

VENTILATION:
Sufficient ventilation in volume and pattern, should be provided to keep air contamination below current applicable OHSA permissible exposure limit or ACGIH TLV limit.

PROTECTIVE GLOVES:
Wear resistant gloves such as: nitrile rubber

EYE PROTECTION:
Chemical splash goggles in compliance with OSHA regulations are advised; however, OSHA regulations also permit other types of safety glasses. (Consult your safety equipment supplier)

OTHER PROTECTIVE EQUIPMENT:
Appropriate impervious clothing is recommended if prolonged or repeated contact is likely.

SECTION IX - SPECIAL PRECAUTIONS

PRECAUTIONS TO BE TAKEN IN HANDLING AND STORING:
Do not drop containers. Avoid heat, sparks, and open flame. Store large quantities only in buildings designed to comply with OSHA 1910.106. Never use pressure to empty. Avoid breathing sanding dust. Do not handle until the manufacturer's safety precautions have been read and understood.

OTHER PRECAUTIONS:
The information accumulated herein is believed to be accurate but is not warranted to be whether originating with the company or not. Recipients are advised to confirm in advance of need that the information is current, applicable, and suitable to their circumstances.

DO NOT TAKE INTERNALLY. AVOID PROLONGED INHALATION AND BODY CONTACT.

SECTION X - ADDITIONAL REGULATORY INFORMATION

SARA TITLE III SECTION 313:
This product contains the following toxic chemicals subject to the reporting requirements of section 313 of the Emergency Planning and Community Right to Know Act of 1986 and of 40 CFR 372:

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>CAS Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ BUTANOL</td>
<td>71-36-3</td>
<td>22.32</td>
</tr>
</tbody>
</table>

PROP 65 (CARCINOGEN):
PROP 65 (TERATOGEN):
PROP 65 (BOTH CARCINOGEN AND TERATOGEN):
TESLAN™ Urethane Topcoat

Product Information

Product Description

Teslan™ Urethane Topcoat is a solvent-based, two component, organic paint designated by MIL-PRF-85285, type II for interior or exterior use over Teslan Intermediate coatings. The Teslan™ system utilizes carbon in the form of single wall carbon nanotubes called “Buckytubes”. The special nature of carbon combines with the molecular perfection of buckytubes to endow them with exceptionally high material properties such as electrical conductivity, strength, stiffness, and toughness.

- Coating provides exceptional barrier
- Provides cathodic/sacrificial if damaged
- Forms an barrier to moisture and solvents

Recommended Uses

For use over prepared blasted steel previously coated with Teslan Primers

- Locks / Dams
- Refineries
- Ships • Drilling rigs • Docks • Chemical Plants
- Pipelines • Military Equipment
- Ideal for application at low temperatures or service at high temperatures and/or humidity conditions
- Fresh and Salt water immersion service

Characteristics

Color:	As Specified
Finish:	As Specified
Gloss, 60 Degree:	As Specified
Mix Ratio:	4-parts A : 1- part B
Pot Life (73°F):	4-Hr minimum
Set to Touch (73°F):	4-Hr maximum
Dry Hard (73°F):	8-Hr maximum
Flash Point, °F:	100 minimum
Sag, mils:	4 minimum
Opacity:	0.95
VOC, lb/gal:	2.8 maximum

Surface Preparation

Must be clean, dry, oil and grease free and free from other surface contamination applied within recoat times specified below:

- Reccoat 24 - 96 Hours
- Extended Reccoat 4 - 7 Days

Coverage Rates

- **TESLAN™ Urethane Topcoat**
 - Desired Spread Rate: 350
 - Theoretical Coverage: 1100/mil

Allow for overspray and surface irregularities. Application of coating below minimum or above maximum recommended dry film thicknesses may adversely affect coating performance.
Mixing

Use an air-driven power mixer and keep material under constant agitation while mixing. Slowly add 1-part (Part B) into 4-parts (Part A). Adjust mixer speed to break up lumps and mix until the two components are thoroughly blended. Strain through a 35 to 60 mesh (310 to 681 microns) screen before using. Do not use mixed material beyond pot life limits.

Thinning

For airless spray, air spray, brush or roller thin up to 10% or 3/4 pint (380 mL) per gallon with Teslan Type I Urethane Thinner if temperatures are below 80°F (27°C).

Surface Temperature

Minimum 40°F (10°C) Maximum 100°F (38°C) Maximum. The surface should be dry and at least 5°F (3°C) above the dew point.

Ambient Humidity

Minimum 40% Maximum 90%

Application Equipment

Air spray

<table>
<thead>
<tr>
<th>Gun</th>
<th>Fluid Tip</th>
<th>Air Cap</th>
<th>Hose ID</th>
<th>Atomizing Pressure</th>
<th>Pot Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devilbiss</td>
<td>E</td>
<td>765 or 704</td>
<td>3/8 inch</td>
<td>75-90 psi</td>
<td>10-20 psi</td>
</tr>
<tr>
<td>JGA or</td>
<td>E</td>
<td>765 or 704</td>
<td>3/8 inch</td>
<td>5.2-6.2 bar</td>
<td>0.7-1.4 bar</td>
</tr>
<tr>
<td>Equal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Airless spray

<table>
<thead>
<tr>
<th>Tip Orifice</th>
<th>Atomizing Pressure</th>
<th>Hose ID</th>
<th>Manifold Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.013"-0.017" (330-430 microns)</td>
<td>2700-3300 psi (186-228 bar)</td>
<td>1/4" or 3/8" (6.4 or 9.5 mm)</td>
<td>60 mesh (250 microns)</td>
</tr>
</tbody>
</table>

Clean up: Flush and clean all equipment immediately after use with Teslan Type I Urethane Thinner

WARRANTY & LIMITATION OF SELLER'S LIABILITY: Tesla NanoCoatings Limited warrants only that its coatings represented herein meet the formulation standards of Tesla NanoCoatings Limited. Technical and application information herein is provided for the purpose of establishing a general profile of the coating and proper coating application procedures. As application, environmental and design factors can vary significantly, due care should be exercised in the selection and use of the coating.

Tesla NanoCoatings Limited
PO Box 270
Massillon, Ohio 44646
(Tel) 330-880-6226
www.teslanano.com

Teslan Topcoat Tech Sheet
SECTION I - PRODUCT AND COMPANY INFORMATION

Product Name: TESLAN™ Urethane Topcoat Part A
CAS Number: Mixture
Hazard Rating:
Health: 1
Fire: 2
Reactivity: 1
Product Class: Paint
Trade Name:
Product Code: JLH-1-020
DOT Hazard Class:
UN Number:
Shipping Name: Urethane Coating
Technical Name:

Company Identification: Tesla NanoCoatings Limited
1311 20th Street SW
Massillon, OH 44647

Contact: Todd Hawkins
Telephone: (330) 417-3550
Emergency Phone (24 Hour): (330)-417-3550

SECTION II - INGREDIENT AND HAZARD INFORMATION

Ingredient Name CAS Number Percent TSCA
(No hazardous ingredients known at this time.)

ADDITIONAL INFORMATION

SECTION 313 SUPPLIER NOTIFICATION: THIS PRODUCT MAY CONTAIN TOXIC CHEMICALS SUBJECT TO THE REPORTING REQUIREMENTS OF SECTION 313 OF THE EMERGENCY PLANNING AND COMMUNITY RIGHT TO KNOW ACT OF 1986 AND 40 CFR 372 (NOTED BY THE $ SYMBOL)

CAUTION: This product may become a dust nuisance when removed by sanding, abrading or sandblasting. Dust masks should be worn during these operations.

NE = not established NA = not available NR = not regulated

THIS PRODUCT DOES NOT CONTAIN POLYCYCLIC ORGANIC MATERIAL SOLVENTS.
ALL COMPONENTS OF THIS MIXTURE ARE LISTED ON THE TSCA INVENTORY.

SECTION III - PHYSICAL DATA

Form: Liquid
Appearance/Color: White
Odor: Mild
Solubility (in water): N
Tesla NanoCoatings Limited Material Safety Data Sheet

Name: TESLAN™ Urethane Topcoat Part A
MSDS Number: JLH-01-020
MSDS Date: SEP-09-2008

pH Value: 0
Boiling Range: 0°F (-17.78°C)
Vapor Pressure (mmHg): 0 @ 0°F (-17.78°C)
Melting Point: 0°F (-17.78°C)
Evaporation Rate:
Density:
Partition Coefficient:
% Volatile Weight: 27.12%
% Volatile Volume: 40.4%
Specific Gravity: 1.34133
VOC: .12%
Molecular Weight:
Heavy Elements (ppm): 0

SECTION IV - FIRE AND EXPLOSION HAZARD DATA

Flammability Class: IC
Flash Range: 99°F (37.22°C)
Set aflash
Explosive Range: 0%
0%

EXTINGUISHING MEDIA:

Carbon Dioxide---Dry Chemical---Foam---Water Fog
Use water for cooling material stored in vicinity of fire.
SPECIAL FIREFIGHTING PROCEDURES:

Use self-contained breathing apparatus with a full facepiece operated in pressure-demand or other positive pressure mode. Wear protective clothing.
UNUSUAL FIRE & EXPLOSION HAZARDS:

Vapors are heavier than air and may travel along the ground to an ignition source some distance from material handling point. Ignition sources include pilot lights, smoking, heaters, electric motors, sparks from electrical switches and static discharges.
CAUTION: Never use cutting torch on empty containers! Residual solvent vapor in empty container may explode. Application to hot surfaces requires special precautions. During emergency conditions, overexposure to decomposition products may cause a health hazard. Symptoms may not be immediately apparent. Obtain Medical Attention.

SECTION V - HEALTH HAZARD DATA

<table>
<thead>
<tr>
<th>Route</th>
<th>Species</th>
<th>Exposure and Dose</th>
</tr>
</thead>
</table>

PERMISSIBLE EXPOSURE LEVEL:
Refer to Section II
EFFECTS OF OVEREXPOSURE:

EYES: Can cause redness, irritation, swelling and blurred vision.
SKIN: Prolonged or repeated contact can cause moderate irritation, defatting, dermatitis.
BREATHING: Excessive inhalation of vapors and/or spray mist can cause respiratory irritation, dizziness, weakness, fatigue, nausea, headache, unconsciousness and even asphyxiation.
SWALLOWING: Can cause gastrointestinal irritation, nausea, vomiting and diarrhea; aspiration of material into the lungs can cause chemical pneumonitis which can be fatal.

FIRST AID:

EYES: Flush with large amounts of water for 15 minutes. Lift eyelids occasionally, get prompt medical attention.

SKIN: Wash thoroughly with soap and water, remove contaminated clothing promptly, wash clothing before reuse. Consult a physician if irritation persists.

SWALLOWING: Since this product may contain materials which can cause lung damage if aspirated into the lungs, the decision whether to induce vomiting must be made by a physician after careful consideration of all materials ingested.

INHALATION: Move affected person to fresh air. If breathing is difficult, administer oxygen. If breathing has stopped, give artificial respiration. Keep person warm, quiet, and get medical attention. Consult a physician.

SECTION VI - REACTIVITY DATA

Stability: This product is stable

Hazardous Polymerization: Hazardous polymerization will not occur

INCOMPATIBILITY:

Avoid contact with strong oxidizers (e.g. nitric acid)

CONDITIONS TO AVOID:

Keep away from heat and open flame.

HAZARDOUS DECOMPOSITION PRODUCTS:

May form carbon monoxide and dioxide, various hydrocarbons, etc.

SECTION VII - SPILL OR LEAK PROCEDURES

STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED SMALL SPILL:

Absorb liquid with rags, floor absorbent, vermiculite or other absorbent material and transfer to hood.

LARGE SPILL: Eliminate all ignition sources—dike area of spill to prevent spreading—ventilate area if indoors—pump liquid into salvage tank—remaining liquid may be taken up with sand, floor absorbent or other absorbent material and shoveled into containers—prevent run-off to sewers and bodies of water—notify proper authorities as required by local, state and federal regulations.

WASTE DISPOSAL METHOD:

Dispose of in accordance with federal, state and local regulations.

SECTION VIII - SPECIAL PROTECTION INFORMATION

Occupational Exposure Limits

ACGIH TLV ACGIH TLV-C ACGIH STEL OSHA STEL OSHA PEL

RESPIRATORY PROTECTION:

In outdoor or open areas with unrestricted ventilation approved chemical/mechanical filters designed to remove a combination of particulates and vapor.

VENTILATION:

Provide sufficient ventilation in volume and pattern to keep air contaminant concentration below current applicable OSHA permissible exposure limit or ACGIH TLV limit, and volatiles below lower explosive limit. Heavy solvent vapors should be removed from the lower levels of area, and all ignition sources (non-explosion proof equipment) should be eliminated if flammable.
mixtures will be encountered. Remove decomposition products formed during welding or flame cutting of surfaces coated with this product. For baking finishes - vent vapors emitted on heating.

PROTECTIVE GLOVES:
Wear resistant gloves such as: nitrile rubber

EYE PROTECTION:
Chemical splash goggles in compliance with OSHA regulations are advised; however, OSHA regulations also permit other types of safety glasses. (Consult your safety equipment supplier)

OTHER PROTECTIVE EQUIPMENT:
Normal protective clothing. Wash contaminated clothing before reuse.

SECTION IX - SPECIAL PRECAUTIONS

PRECAUTIONS TO BE TAKEN IN HANDLING AND STORING:
Do not drop containers. Avoid heat, sparks, and open flame. Store large quantities only in buildings designed to comply with OSHA 1910.106. Never use pressure to empty. Avoid breathing sanding dust. Do not handle until the manufacturers safety precautions have been read and understood.

OTHER PRECAUTIONS:
The information accumulated herein is believed to be accurate but is not warranted to be whether originating with the company or not. Recipients are advised to confirm in advance of need that the information is current, applicable, and suitable to their circumstances.

SECTION X - ADDITIONAL REGULATORY INFORMATION

SARA TITLE III SECTION 313:
PROP 65 (CARCINOGEN):
PROP 65 (TERATOGEN)
PROP 65 (BOTH CARCINOGEN AND TERATOGEN):
Tesla NanoCoatings Limited Material Safety Data Sheet

SECTION I - PRODUCT AND COMPANY INFORMATION

Product Name: TESLAN™ Urethane Hardener Part B
CAS Number: Mixture
Hazard Rating: Health: 2 Fire: 1 Reactivity: 1
Company Identification: Tesla NanoCoatings Limited
1311 20th Street SW
Massillon, OH 44647
Contact: Todd Hawkins
Telephone: (330) 417-3550
Emergency Phone (24 Hour): (330)-417-3550
Product Class: Catalyst
Trade Name: Catalyst
Product Code: TB-1-047
DOT Hazard Class: Urethane Isocyanate Hardener
UN Number:
Shipping Name: Technical Name:
Additional Information

SECTION II - INGREDIENT AND HAZARD INFORMATION

Ingredient Name CAS Number Percent TSCA
(No hazardous ingredients known at this time.)

ADDITIONAL INFORMATION

SECTION 313 SUPPLIER NOTIFICATION: THIS PRODUCT MAY CONTAIN TOXIC CHEMICALS SUBJECT TO THE REPORTING REQUIREMENTS OF SECTION 313 OF THE EMERGENCY PLANNING AND COMMUNITY RIGHT TO KNOW ACT OF 1986 AND 40 CFR 372 (NOTED BY THE $ SYMBOL)

CAUTION: This product may become a dust nuisance when removed by sanding, abrading or sandblasting. Dust masks should be worn during these operations.

NE = not established NA = not available NR = not regulated

THIS PRODUCT DOES NOT CONTAIN POLYCYCLIC ORGANIC MATERIAL SOLVENTS.

ALL COMPONENTS OF THIS MIXTURE ARE LISTED ON THE TSCA INVENTORY.

SECTION III - PHYSICAL DATA

Form: Liquid
Appearance/Color: Clear
Odor: Solvent
Solubility (in water): N
Tesla NanoCoatings Limited
Material Safety Data Sheet

MSDS Name: TESLAN™ Urethane Hardener Part B
MSDS Number: TB-1-047
MSDS Date: SEP-09-2008

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH Value</td>
<td>N/A</td>
</tr>
<tr>
<td>Boiling Range</td>
<td>220°F (104.44°C)</td>
</tr>
<tr>
<td>Vapor Pressure (mmHg)</td>
<td>15 @ 68.9°F (20°C)</td>
</tr>
<tr>
<td>Melting Point</td>
<td>N/A</td>
</tr>
<tr>
<td>Evaporation Rate</td>
<td>Unavailable</td>
</tr>
<tr>
<td>Vapor Density</td>
<td>Heavier than air</td>
</tr>
<tr>
<td>Partition Coefficient</td>
<td></td>
</tr>
<tr>
<td>% Volatile Weight</td>
<td>11%</td>
</tr>
<tr>
<td>% Volatile Volume</td>
<td>11%</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.12777</td>
</tr>
<tr>
<td>VOC</td>
<td>1</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>500</td>
</tr>
<tr>
<td>Heavy Elements (ppm)</td>
<td>0</td>
</tr>
</tbody>
</table>

SECTION IV - FIRE AND EXPLOSION HAZARD DATA

Flammability Class: II
Flash Range: 135°F (57.22°C)
Explosive Range: 1%
Setaflash
7%

EXTINGUISHING MEDIA:

Carbon Dioxide—Dry Chemical—Foam—Water Fog
Use water for cooling material stored in vicinity of fire.

SPECIAL FIREFIGHTING PROCEDURES:
Use self-contained breathing apparatus with a full facepiece operated in pressure-demand or other positive pressure mode. Wear protective clothing.

UNUSUAL FIRE & EXPLOSION HAZARDS:
Vapors are heavier than air and may travel along the ground to an ignition source some distance from material handling point. Ignition sources include pilot lights, smoking, heaters, electric motors, sparks from electrical switches and static discharges.

CAUTION: Never use cutting torch on empty containers! Residual solvent vapor in empty container may explode. Application to hot surfaces requires special precautions. During emergency conditions, overexposure to decomposition products may cause a health hazard. Symptoms may not be immediately apparent. Obtain Medical Attention.

SECTION V - HEALTH HAZARD DATA

<table>
<thead>
<tr>
<th>Route</th>
<th>Species</th>
<th>Exposure and Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERMISSIBLE EXPOSURE LEVEL:</td>
<td></td>
<td>Refer to Section II</td>
</tr>
<tr>
<td>EFFECTS OF OVEREXPOSURE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EYES: Can cause redness, irritation, swelling and blurred vision.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKIN: Prolonged or repeated contact can cause moderate irritation, defatting, dermatitis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BREATHING: Excessive inhalation of vapors and/or spray mist can cause respiratory irritation, dizziness, weakness, fatigue, nausea, headache, unconsciousness and even asphyxiation.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SWALLOWING: Can cause gastrointestinal irritation, nausea, vomiting and diarrhea; aspiration of material into the lungs can cause chemical pneumonitis which can be fatal.
FIRST AID:
EYES: Flush with large amounts of water for 15 minutes. Lift eyelids occasionally, get prompt medical attention.
SKIN: Wash thoroughly with soap and water, remove contaminated clothing promptly; wash clothing before reuse. Consult a physician if irritation persists.
SWALLOWING: DO NOT induce vomiting! Keep person warm, quiet and get medical attention. Aspiration of material into the lungs due to vomiting can cause chemical pneumonitis which can be fatal. Drink 1-2 glasses of water to dilute.
INHALATION: Move affected person to fresh air. If breathing is difficult, administer oxygen. If breathing has stopped, give artificial respiration. Keep person warm, quiet, and get medical attention. Consult a physician.

SECTION VI - REACTIVITY DATA

Stability: This product is stable
Hazardous Polymerization: Hazardous polymerization will not occur
INCOMPATIBILITY:
Avoid contact with strong oxidizers (e.g. nitric acid)
CONDITIONS TO AVOID:
Keep away from heat and open flame.
HAZARDOUS DECOMPOSITION PRODUCTS:
May form carbon monoxide and dioxide, various hydrocarbons, etc.

SECTION VII - SPILL OR LEAK PROCEDURES

STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED SMALL SPILL:
Absorb liquid with rags, floor absorbent, vermiculite or other absorbent material and transfer to hood.
LARGE SPILL: Eliminate all ignition sources—dike area of spill to prevent spreading—ventilate area if indoors—pump liquid into salvage tank—remaining liquid may be taken up with sand, floor absorbent or other absorbent material and shoveled into containers—prevent run-off to sewers and bodies of water—notify proper authorities as required by local, state and federal regulations.
WASTE DISPOSAL METHOD:
Dispose of in accordance with federal, state and local regulations.

SECTION VIII - SPECIAL PROTECTION INFORMATION

Occupational Exposure Limits
ACGIH TLV ACGIH TLV-C ACGIH STEL OSHA STEL OSHA PEL

RESPIRATORY PROTECTION:
If workplace exposure limits are exceeded for any component (see Section II for hazardous components and exposure limits) a NIOSH/OSHA approved respirator for components listed is recommended.
VENTILATION:
Sufficient ventilation in volume and pattern, should be provided to keep air contamination below current applicable OHSA permissible exposure limit or ACGIH TLV limit.
Tesla NanoCoatings Limited

Material Safety Data Sheet

MSDS Name: TESLAN™ Urethane Hardener Part B
MSDS Number: TB-1-047
MSDS Date: SEP-09-2008

PROTECTIVE GLOVES:
Wear resistant gloves such as: nitrile rubber

EYE PROTECTION:
Chemical splash goggles in compliance with OSHA regulations are advised; however, OSHA regulations also permit other types of safety glasses. (Consult your safety equipment supplier)

OTHER PROTECTIVE EQUIPMENT:
Appropriate impervious clothing is recommended if prolonged or repeated contact is likely.

SECTION IX - SPECIAL PRECAUTIONS

PRECAUTIONS TO BE TAKEN IN HANDLING AND STORING:
Do not drop containers. Avoid heat, sparks, and open flame. Store large quantities only in buildings designed to comply with OSHA 1910.106. Never use pressure to empty. Avoid breathing sanding dust. Do not handle until the manufacturers safety precautions have been read and understood.

OTHER PRECAUTIONS:
The information accumulated herein is believed to be accurate but is not warranted to be whether originating with the company or not. Recipients are advised to confirm in advance of need that the information is current, applicable, and suitable to their circumstances.

SECTION X - ADDITIONAL REGULATORY INFORMATION

SARA TITLE III SECTION 313:
PROP 65 (CARCINOGEN):
PROP 65 (TERATOGEN) :
PROP 65 (BOTH CARCINOGEN AND TERATOGEN) :
Appendix F: Sealant Specifications, Manufacturer’s Instructions, and MSDS
Sikaflex®-1a
One part polyurethane, elastomeric sealant/adhesive

Description

Where to Use
- Designed for all types of joints where maximum depth of sealant will not exceed ½ in.
- Excellent for small joints and fillets, windows, door frames, reglets, flashing, and many construction adhesive applications.
- Suitable for vertical and horizontal joints, readily placeable at 40°F.
- Has many applications as an elastic adhesive between materials with dissimilar coefficients of expansion.
- Submerged conditions, such as canal and reservoir joints.

Advantages
- Eliminates time, effort, and equipment for mixing, filling cartridges, pre-heating or thawing, and cleaning of equipment.
- Fast tack-free and final cure times.
- High elasticity -cures to a tough, durable, flexible consistency with exceptional cut and tear-resistance.
- Stress relaxation.
- Excellent adhesion - bonds to most construction materials without a primer.
- Excellent resistance to aging, weathering.
- Proven in tough climates around the world.
- USDA-approved.
- Odorless, non-staining.
- Jet fuel resistant.
- NSF-approved for potable water contact.
- Urethane-based; suggested by EPA for radon reduction.
- Paintable with water-, oil- and rubber-based paints.
- Capable of ±25% joint movement.

Typical Data (Material and curing conditions @ 73°F (23°C) and 50% R.H.)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelf Life</td>
<td>10.3 fl. oz. cartridges 15 months in original unopened packaging</td>
</tr>
<tr>
<td></td>
<td>20 fl. oz. uni-pac sausages 15 months in original unopened packaging</td>
</tr>
<tr>
<td></td>
<td>5 gal. pail 9 months in original unopened packaging</td>
</tr>
<tr>
<td></td>
<td>55 gal. pail 9 months in original unopened packaging</td>
</tr>
<tr>
<td>Storage Conditions</td>
<td>Store at 40°F-55°F (4°C-35°C). Condition material to 65°F-75°F before using.</td>
</tr>
<tr>
<td>Colors</td>
<td>White, colonial white, aluminum gray, limestone, black, dark bronze, capitol tan. Special architectural colors on request.</td>
</tr>
<tr>
<td>Application Temperature</td>
<td>40°F to 100°F. Sealant should be installed when joint is at mid-range of its anticipated movement.</td>
</tr>
<tr>
<td>Service Range</td>
<td>-40°F to 170°F</td>
</tr>
<tr>
<td>Curing Rate</td>
<td>Tack-free time: 4 hours (TT-S-00230C)</td>
</tr>
<tr>
<td></td>
<td>Tack-free to touch: 3 hours</td>
</tr>
<tr>
<td></td>
<td>Final cure: 4 to 7 days</td>
</tr>
<tr>
<td>Tear Strength (ASTM D-624)</td>
<td>50 lbs/ln.</td>
</tr>
<tr>
<td>Shore A Hardness (ASTM D-2240)</td>
<td>21 day 40±5</td>
</tr>
<tr>
<td>Tensile Properties (ASTM D-412)</td>
<td>21 day Tensile Stress: 200 psi (1.37 MPa)</td>
</tr>
<tr>
<td></td>
<td>Elongation at Break: 500%</td>
</tr>
<tr>
<td></td>
<td>Modulus of Elasticity: 25%</td>
</tr>
<tr>
<td></td>
<td>35 psi (0.24 MPa)</td>
</tr>
<tr>
<td></td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>60 psi (0.41 MPa)</td>
</tr>
<tr>
<td></td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>85 psi (0.59 MPa)</td>
</tr>
<tr>
<td>Adhesion in Peel (TT-S-00230C, ASTM C 794)</td>
<td></td>
</tr>
<tr>
<td>Substrate</td>
<td>Peel Strength Adhesion Loss</td>
</tr>
<tr>
<td>Concrete</td>
<td>20 lb. 0%</td>
</tr>
<tr>
<td>Aluminum</td>
<td>20 lb. 0%</td>
</tr>
<tr>
<td>Glass</td>
<td>20 lb. 0%</td>
</tr>
<tr>
<td>Weathering Resistance</td>
<td>Excellent</td>
</tr>
<tr>
<td>Chemical Resistance</td>
<td>Good resistance to water, diluted acids, and diluted alkalines. Consult Technical Service for specific data.</td>
</tr>
</tbody>
</table>
Construction

<table>
<thead>
<tr>
<th>Coverage</th>
<th>Linear Feet of Sealant per Gallon Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3 fl. oz. cartridge seals</td>
<td>Inches</td>
</tr>
<tr>
<td>1/4</td>
<td>308.6</td>
</tr>
<tr>
<td>1/2</td>
<td>154.0</td>
</tr>
<tr>
<td>3/4</td>
<td>102.7</td>
</tr>
<tr>
<td>1</td>
<td>77.0</td>
</tr>
<tr>
<td>1½</td>
<td>51.3</td>
</tr>
</tbody>
</table>

How to Use

Surface Preparation
- Clean all surfaces. Joint walls must be sound, clean, dry, frost-free, and free of oil and grease. Curing compound residues and any other foreign matter must be thoroughly removed. Install bond breaker tape or backer rod to prevent bond at base of joint.

Primers
- Priming is not usually necessary. Most substrates only require priming if testing indicates a need or where sealant will be subjected to water immersion after cure.
- Consult Sikaflex Primer Technical Data Sheet or Technical Service for additional information on priming.

Application
- Recommended application temperatures: 40°-100°F. For cold weather application, condition units at approximately 70°F; remove prior to using.
- For best performance, Sikaflex-1a should be gunned into joint when joint slot is at midpoint of its designed expansion and contraction.
- Place nozzle of gun into bottom of the joint and fill entire joint. Keep the nozzle on the sealant, continue on with a steady flow of sealant preceding the nozzle to avoid air entrapment.
- Avoid overlapping of sealant to eliminate entrapment of air. Tool as required. Joint dimension should allow for 1/4 inch minimum and 1/2 inch maximum thickness for sealant. Proper design is 2:1 width to depth ratio.
- For use in horizontal joints in traffic areas, the absolute minimum depth of the sealant is 1/2 in. and closed cell backer rod is recommended. Tool as necessary, dry or with clean water.

Limitations
- Allow 1-week cure at standard conditions when using Sikaflex-1a in total water immersion situations and prior to painting.
- When overcoating with water, oil and rubber-based paints, compatibility and adhesion testing is essential.
- Avoid exposure to high levels of chlorine. (Maximum continuous level is 5 ppm of chlorine.)
- Maximum depth of sealant must not exceed 1/2 in.; minimum depth is 1/4 in.
- Maximum expansion and contraction shall not exceed 25% of average joint width.
- Do not cure in the presence of curing silicone sealants.
- Avoid contact with alcohol and other solvent cleaners during cure.
- Do not apply when moisture-vapor-transmission condition exists from the substrate as this can cause bubbling within the sealant.
- Some minimal surface skimming of product may be present in bulk packaging (pails, drums) with its shelf life. Cut and discard cured material to expose the uncured product that still may be used.
- Use opened cartridges and uni-pac sausages the same day.
- When applying sealant, avoid air entrapment.
- Since system is moisture-cured, permit sufficient exposure to air.
- White color tends to yellow slightly when exposed to ultraviolet rays.
- Light colors can yellow slightly if exposed to direct gas fired heating elements prior to formation of initial skin.
- The ultimate performance of Sikaflex-1a depends on good joint design and proper application with joint surfaces properly prepared.
- The depth of sealant in horizontal joints subject to traffic is 1/2 in.
- Do not tool with detergent or soap solutions.

Caution

Irritant
- Keep away from open flames and high heat. Contains xylene; avoid breathing vapors. Use with adequate ventilation.

Combustible
- Avoid skin and eye contact. Use of NIOSH approved organic vapor respirator, safe and chemical-resistant gloves recommended. Remove contaminated clothing and shoes.

First Aid
- In case of skin contact, wash thoroughly with soap and water. For eye contact, flush immediately with plenty of water for at least 15 minutes; contact physician. Wash clothing before re-use. Discard contaminated shoes.

Clean Up
- Uncured material can be removed with approved solvent. Cured material can only be removed mechanically. For spillage, collect, absorb, and dispose of in accordance with current, applicable local, state, and federal regulations.

Sika
- Visit our website at www.sikausa.com 1-800-933-SIKA NATIONAL®
- Sika Corporation 201 Polito Avenue Lyndhurst, NJ 07071 Phone: 800-933-7452 Fax: 201-933-6225
- Sika Canada Inc. 501 Deimar Avenue Pointe Claire Quebec H9R 4A9 Phone: 514-697-2610 Fax: 514-944-2792
- Sika Mexican S.A. de C.V. Carretera Libre Celaya Km. 8.5 Cornelia, Queretaro C.P. 76920 A.P. 136 Phone: 52 42 25 0122 Fax: 52 42 25 0537

Sika and Sikaflex are registered trademarks. Made in USA. Printed in USA.
MATERIAL SAFETY DATA SHEET

Sikafl e x® 1A (All Colors)

1. Product And Company Identification

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sika Corporation</td>
<td>Sika Corporation</td>
</tr>
<tr>
<td>201 Polito Ave,</td>
<td>201 Polito Ave</td>
</tr>
<tr>
<td>Lyndhurst, NJ 07071</td>
<td>Lyndhurst, NJ 07071</td>
</tr>
</tbody>
</table>

Company Contact: EHS Department
Telephone Number: 201-933-8800
FAX Number: 201-933-9379
Web Site: www.sikausa.com

Supplier Emergency Contacts & Phone Number
CHEMTREC: 800-424-9300
INTERNATIONAL: 703-527-3887

Issue Date: 08/09/2007
Product Name: Sikafl ex® 1A (All Colors)
CAS Number: Not Established
Chemical Family: Polyurethane
MSDS Number: 4016
Product Code: 0431543

2. Composition/Information On Ingredients

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>CAS Number</th>
<th>Percent Of Total Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLYISOCYANATE PREPOLYMER</td>
<td>Trade Secret</td>
<td></td>
</tr>
<tr>
<td>XYLENE (MIXED ISOMERS)</td>
<td>1330-20-7</td>
<td><4</td>
</tr>
</tbody>
</table>

3. Hazards Identification

Eye Hazards
Causes eye irritation.

Skin Hazards
May cause skin irritation. Prolonged and/or repeated skin contact may cause an allergic reaction/sensitization.

Ingestion Hazards
May be harmful if swallowed.

Inhalation Hazards
May cause nose, throat, and lung irritation. May cause an allergic respiratory reaction/sensitization after prolonged or repeated contact. Reports have associated repeated and prolonged exposure to some of the
MATERIAL SAFETY DATA SHEET

Sikafl ex® 1A (All Colors)

3. Hazards Identification - Continued

Inhalation Hazards - Continued
- Chemicals in this product with permanent brain, liver, kidney, and Central Nervous System damage. Headaches and dizziness may result.

4. First Aid Measures

Eye
- In case of contact, hold eyelids apart and immediately flush eyes with plenty of tepid water for at least 15 minutes. Get medical attention immediately if irritation develops and persists.

Skin
- In case of contact, immediately flush skin with soap and plenty of tepid water for at least 15 minutes. Get medical attention immediately if irritation (redness, rash, blistering) develops and persists.

Ingestion
- If victim is fully conscious do not induce vomiting, give one or two cups of water or milk to drink. Call a physician or a poison control center immediately.

Inhalation
- Remove to fresh air. If not breathing, give artificial respiration, seek medical attention.

5. Fire Fighting Measures

- **Flash Point:** N/A °F
- **Flash Point Method:** Solid per ASTM D4359
- **Autoignition Point:** N/A °F
- **Lower Explosive Limit:** N/AV
- **Upper Explosive Limit:** N/AV

Fire And Explosion Hazards
- During a fire, irritating and/or toxic gases and aerosols from the decomposition/combustion products may be present.

Extinguishing Media
- In case of fire, use water spray (fog) foam, dry chemical, or CO2.

Fire Fighting Instructions
- In the event of a fire, firefighters should wear full protective clothing and NIOSH-approved self-contained breathing apparatus with a full facepiece operated in the pressure demand or other positive pressure mode.

6. Accidental Release Measures

- Avoid release to the environment. Use appropriate Personal Protective Equipment (PPE). Contain spill and collect with absorbent material and transfer into suitable containers. Do not flush to sewer or allow to enter waterways. Ventilate enclosed area.

7. Handling And Storage

Handling And Storage Precautions
- Keep out of reach of children. Store in a cool, dry, well ventilated area. Keep containers tightly closed.

Handling Precautions
- Do not smoke. Use only in well ventilated areas. Condition to 65-65F before using. Use only with ventilation sufficient to reduce potential exposures (air borne levels of dust, fumes, vapors, etc.) to below recommended exposure limits.

Storage Precautions
- Do not store near excessive heat. Store in tightly closed containers and protect from moisture and foreign...
MATERIAL SAFETY DATA SHEET

Sikaflex® 1A (All Colors)

7. Handling And Storage - Continued

Storage Precautions - Continued
- Material: Ideal storage temperature is less than 75°F. If maximum storage temperature is exceeded, material may prematurely polymerize without hazard.

Work/Hygienic Practices
- Wash thoroughly with soap and water after handling.

8. Exposure Controls/Personal Protection

Engineering Controls
- Use of a system of local and/or general exhaust is recommended to keep employee below applicable exposure limits. Refer to the current edition of "Industrial Ventilation: A Manual of Recommended Practice" published by the American Conference of Governmental Industrial Hygienists for information on the design, installation, use, and maintenance of exhaust systems.

Eye/Face Protection
- Safety glasses with side shields or goggles.

Skin Protection
- Chemical-resistant gloves. Lab coat or other work clothing to prevent skin exposure (Long sleeve shirt and long pants). Launder before reuse.

Respiratory Protection
- A respirator protection program that meets 29 CFR 1910.134 requirement must be followed whenever workplace conditions warrant a respirator’s use. In areas where the Permissible Exposure Limits are exceeded, use a properly fitted NIOSH-approved respirator.

Other/General Protection
- Wash thoroughly after handling.

Ingredient(s) - Exposure Limits

<table>
<thead>
<tr>
<th>XYLENE (MIXED ISOMERS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACGIH TLV-STEL 150 ppm</td>
</tr>
<tr>
<td>ACGIH TLV-TWA 100 ppm</td>
</tr>
<tr>
<td>OSHA PEL-TWA 100 ppm</td>
</tr>
</tbody>
</table>

9. Physical And Chemical Properties

Appearance
- Paste (solid) in various colors

Odor
- Aromatic odor

Chemical Type: Mixture

Physical State: Solid

Melting Point: N/AV °F

Boiling Point: N/AV °F

Specific Gravity: 1.4 grams/cm³

Percent VOCs: < 4%

Packing Density: 11.5 - 12.0 pounds/gallon

Vapor Pressure: N/AV

Vapor Density: > Air

Solubility: N/AV

Evaporation Rate: Slower than ether

VOC Content: < 40 grams/liter (EPA Method 24)
Material Safety Data Sheet

Sikafl ex® 1A (All Colors)

10. Stability And Reactivity

Stability: Stable
Hazardous Polymerization: Will not occur

Conditions To Avoid (Stability)
- Open flame

Incompatible Materials
- Water, Alcohol, Amines

Hazardous Decomposition Products
- Carbon Dioxide, Carbon Monoxide, and Oxides of Nitrogen, Smoke, Fumes

Conditions To Avoid (Polymerization)
- None known

11. Toxicological Information

Conditions Aggravated By Exposure
- Eye disease, skin disorders and allergies, chronic respiratory conditions.

12. Ecological Information

No Data Available...

13. Disposal Considerations

Dispose in accordance with applicable federal, state and local government regulations. Waste generators must determine whether a discarded material is classified as a hazardous waste. USEPA guidelines for the classification determination are listed in 40 CFR Parts 261.3. Additionally, waste generators must consult state and local hazardous waste regulations to ensure complete and accurate classification.

14. Transport Information

Proper Shipping Name
Not regulated by the USDOT.

15. Regulatory Information

U.S. Regulatory Information

All ingredients of this product are listed or are excluded from listing under the U.S. Toxic Substances Control Act (TSCA) Chemical Substance Inventory.

SARA Hazard Classes
- Acute Health Hazard
- Chronic Health Hazard

SARA Title III - Section 313 Supplier Notification

This product contains the following toxic chemicals that are subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) of 1980 and of 40 CFR 372:

- **XYLENE (MIXED ISOMERS)** (1330-20-7)
 \(<4\%\)

This information must be included on all MSDSs that are copied and distributed for this material.

Ingredient(s) - U.S. Regulatory Information

- **XYLENE (MIXED ISOMERS)**
 - SARA Title III - Section 313 Form "R" TRI Reportable Chemical
 - SARA - Acute Health Hazard
 - SARA - Chronic Health Hazard
MATERIAL SAFETY DATA SHEET
Sikaflex® 1A (All Colors)

15. Regulatory Information - Continued

Ingredient(s) - U.S. Regulatory Information - Continued
SARA - Fire Hazard

Ingredient(s) - State Regulations
XYLENE (MIXED ISOMERS)
- New Jersey - Workplace Hazard
- New Jersey - Environmental Hazard
- New Jersey - Special Hazard
- Pennsylvania - Workplace Hazard
- Pennsylvania - Environmental Hazard
- Massachusetts - Hazardous Substance
- New York City - Hazardous Substance

16. Other Information

HMI Rating
Health: *2
Fire: 1
Reactivity: 0
PPE: C

Revision/Preparer Information
MSDS Preparer: EHS Department
MSDS Preparer Phone Number: 201 933 8800
This MSDS Supercedes A Previous MSDS Dated: 12/11/2006

Disclaimer

The information contained in this Material Safety Data Sheet applies only to the actual Sika Corporation ("Sika") product identified and described herein. This information is not intended to address, nor does it address the use or application of the identified Sika product in combination with any other material, product or process. All of the information set forth herein is based on technical data regarding the identified product that Sika believes to be reliable as of the date hereof. Prior to each use of any Sika product, the user must always read and follow the warnings and instructions on the product's current Technical Data Sheet, product label and Material Safety Data Sheet for each Sika product, which are available at website and/or telephone number listed in Section 1 of this MSDS.

SIKA MAKES NO WARRANTIES EXPRESS OR IMPLIED AND ASSUMES NO LIABILITY ARISING FROM THIS INFORMATION OR ITS USE. SIKA SHALL NOT BE LIABLE UNDER ANY LEGAL THEORY FOR SPECIAL OR CONSEQUENTIAL DAMAGES AND SHALL NOT BE RESPONSIBLE FOR THE USE OF THIS PRODUCT IN A MANNER TO INFRINGE ON ANY PATENT OR ANY OTHER INTELLECTUAL PROPERTY RIGHTS HELD BY OTHERS.

All sales of Sika products are subject to its current terms and conditions of sale available at www.sikacorp.com or 201-933-8800.

Sika Corporation
Appendix G: Blast Media Certification and MSDS
Mobile Abrasives
Attn: Mr. E. Serda
Pinto Island
400 Dunlop Drive
P.O. Box 1156
Mobile, AL 36633-1156

Dear Sir:

We are in receipt of your letter of 10 September 1996 advising use that your company Clark Sand Company, Inc. has sold all of its assets relating to its operations in Mobile, Alabama to Mobile Abrasives formerly known as "Fairmont Abrasives".

Therefore, effective the date of this letter, qualification approval for your MIL-A-22262A(SH)/Amendment-2 "Black Blast" abrasive blasting media is hereby transferred to the product now owned and manufactured by Mobile Abrasives, Pinto Island, 400 Dunlap Drive, Mobile, Alabama. By your letter, your firm certifies that the product to be manufactured by Mobile Abrasives will be manufactured under the same conditions as originally qualified, i.e. same processes, materials, manufacturers designation and at the same manufacturing plant. The product transferred under this letter is still subject to the conditions printed on the reverse side of this page.

QPL-22262 is be modified to reflect this change.

Any questions regarding this matter should be directed to Joann Starks at (703) 602-9137, Ext. 123.

Sincerely,

CHERYL A. TURNER
ENGINEERING STANDARDS DIVISION

Copy to:
NMQAO
GSA
DCMC, Birmingham
Clark Sand Company, Inc.
Attn: Edward Serda
P.O. Box 4267
Pensacola, FL 32507

Dear Mr. Serda:

We are in receipt of the qualification test results conducted on your "Black Blast" abrasive. The results were forwarded to this Command by the Defense Contract Management Area Operations, DCMAO, Birmingham. Report Number M5-05489, which shows results of qualification testing conducted at Savannah Laboratories & Environmental Services, Inc., indicates that your product conforms to the test requirements of MIL-A-22262B(SH) and Amendment-1.

We are also in receipt of a toxicity assessment of your "Black Blast" abrasive from the Navy Environmental Health Center, (NEHC), enclosure (1). Based on NEHC’s letter report 6270, Ser IHDrej/03553, 23 January 1996, your abrasive can be safely used for its intended purpose, provided precautions outlined in enclosure (1) are strictly followed. Clark Sand must notify users about this product and all of the precautions that are noted in NEHC’s report. Navy and other users of this product must adhere to the latest revisions of OPNAVINSTs 4110.2, 5100.23 and 5100.19.

Effective the date of this letter, qualification approval is granted to your "Black Blast" abrasive to be manufactured at your plant located at 400 Dunlap Drive, Pinto Island, Mobile, AL 36652. This approval is subject to the conditions printed on the reverse side of the page. Your product will appear on the next issue of QPL-22262 as shown below:

<table>
<thead>
<tr>
<th>GOVERNMENT DESIGNATION</th>
<th>MANUFACTURER'S DESIGNATION</th>
<th>TEST OR QUALIFICATION REFERENCE</th>
<th>MANUFACTURER'S NAME & ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Blast</td>
<td>Savannah Lab. Rpt. M5-05489, NEHC Ltr Rpt. 6270, Ser IHDrej/03553</td>
<td>Clark Sand Co., Inc. P.O. Box 4267 Pensacola, FL 32507 Plant: 400 Dunlap Drive Pinto Island Mobile, AL 36652</td>
<td></td>
</tr>
</tbody>
</table>
Material Safety Data Sheet

SECTION 1 – PRODUCT IDENTIFICATION & USE:
Black Blast

CHEMICAL NAME AND SYNONYMS: Crushed Coal Slag

MSDS NO: 358-3

MANUFACTURER AND SUPPLIER:
Opta Minerals
407 Parkside Drive
Waterdown, Ontario
LOR2H0
Tel: 905-689-6661
Emergency: 905-689-6661, Ext: 222

MATERIAL IDENTIFICATION AND USE
This material is a shiny, black, granular aggregate for use as a blasting media. This product contains no free crystalline silica. Note: This MSDS covers many products and individual physical and chemical properties will vary. Consult individual Technical Data Sheet’s for specifics.

SECTION 2 – HAZARDOUS INGREDIENTS
The approximate element composition of this material is as follows:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Chemical formula</th>
<th>Typical %</th>
<th>CAS #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon Dioxide (total)</td>
<td>SiO₂ (total)</td>
<td>-46.5</td>
<td>60676-86-0</td>
</tr>
<tr>
<td>Aluminum Oxide</td>
<td>Al₂O₃</td>
<td>-22.5</td>
<td>1344-28-1</td>
</tr>
<tr>
<td>Iron Oxide</td>
<td>Fe₂O₃</td>
<td>-19.0</td>
<td>1309-37-1</td>
</tr>
<tr>
<td>Calcium Oxide</td>
<td>CaO</td>
<td>-5.5</td>
<td>1305-78-8</td>
</tr>
<tr>
<td>Magnesium Oxide</td>
<td>MgO</td>
<td>-1.0</td>
<td>1309-48-4</td>
</tr>
<tr>
<td>Titanium Dioxide</td>
<td>TiO₂</td>
<td>-1.0</td>
<td>13463-67-7</td>
</tr>
<tr>
<td>Crystalline Silica</td>
<td>SiO₂ (crystalline)</td>
<td><0.1</td>
<td>14808-60-7</td>
</tr>
</tbody>
</table>

SECTION 3 – PHYSICAL DATA
APPEARANCE: Solid, angular granules. Shiny black colour.
ODOUR: No appreciable odour.
SOLUBILITY IN WATER (%): Insoluble.
MELTING POINT: Not available.
pH: Not available.
SECTION 4 – FIRE AND EXPLOSION DATA
FLAMMABILITY: No.
EXTINGUISHING MEDIA: Not applicable.
SPECIAL FIRE FIGHTING PROCEDURES: Not applicable.
UNUSUAL FIRE/EXPLOSION HAZARDS: Not applicable.
The product will not burn or explode.

SECTION 5 - REACTIVITY DATA
PRODUCT STABILITY: Stable.
HAZARDOUS POLYMERIZATION: Will not occur.
CONDITIONS TO AVOID: Not applicable.
INCOMPATIBILITY: Not applicable.
HAZARDOUS COMBUSTION OR DECOMPOSITION PRODUCTS: Not applicable.

SECTION 6 - TOXICOLOGICAL PROPERTIES
EYE CONTACT: May cause irritation due to presence of “foreign object”.
SKIN CONTACT: Possible skin irritation.
INHALATION: Exposure may cause irritation to nose, throat and lungs.
EFFECTS OF ACUTE EXPOSURE: Exposure may cause irritation to nose, throat and lungs.
EFFECTS OF CHRONIC EXPOSURE: May cause irritation.
INGESTION: May cause irritation.
OCCUPATIONAL EXPOSURE LIMITS: The following Threshold Limit Values (TLV’s) refer to airborne concentrations of substances. The potential hazard of solid particles depends on particle size, which is expressed in three forms:

- Inhalable (< 100 m) – when deposited anywhere in the respiratory tract
- Thoracic (< 25 m) – when deposited anywhere within the lung airways and the gas-exchange region
- Respirable (< 10 m) – when deposited in the gas-exchange region

<table>
<thead>
<tr>
<th>Substance</th>
<th>CAS. No.</th>
<th>PEL</th>
<th>TWA</th>
<th>STEL/C</th>
<th>Critical Effect(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNOC</td>
<td>1309-37-1</td>
<td>15</td>
<td>10</td>
<td>-</td>
<td>Lung</td>
</tr>
<tr>
<td>Fe₂O₃ (Iron Oxide)</td>
<td>1344-28-1</td>
<td>5</td>
<td>3</td>
<td>-</td>
<td>Pneumoconiosis</td>
</tr>
<tr>
<td>Al₂O₃ (Aluminum Oxide)</td>
<td>1305-78-8</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td>Irritation</td>
</tr>
<tr>
<td>CaO (Calcium Oxide)</td>
<td>1309-48-4</td>
<td>15</td>
<td>10</td>
<td>-</td>
<td>Irritation; metal fume fever</td>
</tr>
<tr>
<td>MgO (Magnesium Oxide)</td>
<td>13463-67-7</td>
<td>15</td>
<td>10</td>
<td>-</td>
<td>Lung</td>
</tr>
</tbody>
</table>

¹ Particulates (Insoluble) Not Otherwise Classified

OSHA PEL – Permissible Exposure Limit (mg/m³)
ACGIH TWA – Time Weighted Average (mg/m³)
STEL/C – Short-term Exposure Limit / Ceiling (mg/m³)
In other jurisdiction, please consult appropriate occupational exposure regulations.
Reference: 1999 TLV's and BEI's Threshold Limit Values for Chemical Substances and Physical Agents Biological Exposure Indices

SECTION 7 - PREVENTATIVE MEASURES
EYE PROTECTION: Safety goggles or glasses, as required by nature of task(s) being performed.
SKIN PROTECTION: Impervious gloves recommended and other clothing as required by nature of work being done.
VENTILATION: Use adequate ventilation and dust collection.
RESPIRATORY PROTECTION: The following chart specifies the types of respirators to be used based on airborne concentrations of respirable crystalline silica. This chart has been provided as a guide for protection of personnel that may be exposed to airborne concentrations of any particulate matter.
SECTION 7 - PREVENTATIVE MEASURES (continues)

<table>
<thead>
<tr>
<th>Airborne Concentration (Respirable Free Silica)</th>
<th>Type of Respirator Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>< or equal to 10 X TWAEV</td>
<td>Half-mask particulate respirator with N-, R-, or P-series filter and 95, 99, or 100% efficiency.</td>
</tr>
<tr>
<td>< or equal to 25 X TWAEV</td>
<td>Powered air purifying respirator equipped with a hood or helmet, and any type of particulate filter; or supplied air respirator equipped with a hood or helmet and operated in a continuous flow mode.</td>
</tr>
</tbody>
</table>

TWAEV – time-weighted average exposure value

Where applicable, respirators should be fitted, maintained, and cleaned in accordance with the regulations made under the Occupational Health and Safety Act.

OTHER PROTECTIVE EQUIPMENT:

As required by nature of work being done.

LEAKS AND SPILLS:

Avoid breakage of bagged material or spills of bulk material. Do not dry sweep, use a dustless system (vacuum) for clean up so that airborne dust does not exceed the permissible exposure limit.

WASTE DISPOSAL INFORMATION:

Dispose in accordance with federal, state or local regulations. Material contaminated in use may have special disposal requirements. Dispose in accordance with federal, state or local regulations.

HANDLING PROCEDURES AND EQUIPMENT:

Use adequate ventilation and dust collection. Do not permit dust to collect on walls, floors, ledges, machinery, or equipment. Use dustless system (vacuum) for handling, storage and clean up so that airborne dust does not exceed the permissible exposure limit.

STORAGE REQUIREMENTS:

No special storage procedures required. Avoid dust generation when handling.

SECTION 8 - FIRST AID MEASURES

SKIN CONTACT: Wash with soap and water.

EYE EXPOSURE: Flush with water and seek medical advice if irritation persists.

INGESTION: Seek immediate medical aid.

INHALATION: Remove to fresh air. If breathing difficulty is encountered, seek medical aid.

SECTION 9 - PREPARATION DATE OF MSDS

The MSDS was prepared from information provided by raw material suppliers to Opta Minerals.

DATE ISSUED: October 13, 2005

CONTACT: Operations Supervisor

Quality Control Coordinator

For non-emergency questions, please contact your sales person.

General inquiries may be directed to 905-689-6661.
Appendix H: Elcometer 456 Type II Coating Thickness Gauge
The new version of the **Elcometer 456 Coating thickness Gauge** now benefits from a larger display for easy data viewing and a simple calibration feature to make testing even quicker.

The Elcometer 456 also features **Bluetooth®** wireless technology for fast data transfer to the new **ElcoMaster Software™**. Ideal for easy report generation and archiving of readings. The Bluetooth® feature also allows the Elcometer 456 to connect to PDAs and mobile phones for instant reporting and e-mailing from the field.

This No 1 Seller in the market is available in any combination of Basic, Standard, and Top functionality, together with integral (built in) or an extensive range of separate plug in probes. With such an extensive range of gauge options, there is an Elcometer 456 to meet your specific application needs.

Features

- Fast, accurate & easy to use Paint & Coating Thickness Gauge
- New Model Features a larger display screen
- Greater than 60 readings per minute for fast results.
- Unrivalled accuracy and repeatability for the ultimate hand-held performance.
- Available as an integral or plug-in separate probe version for total versatility.
- Full, menu driven, graphics display for ease of use with calibration & on screen instructions in 25 languages.
- 3 versions available: basic, standard & top - to meet your specific requirements.
- Ergonomic in styling for the ultimate in hand-held comfort.
- Calibration Foils included, ISO, NBS (with traceable calibration report) and working foils available. Provides traceable accuracy for calibration adjustment carried out on the User's own substrate.
- Full statistical data display allows the user to view all or any statistics from Number of readings, Mean, Standard Deviation, Highest & Lowest Reading and Coefficient of Variation
- One Year Guarantee on Unit and three month guarantee on probes
- Portable: Hand held battery powered instrument. (comparable to the size of a computer mouse)
- Memory: Standard and Top gauges offer secure data storage.
- Bluetooth®: Wireless connectivity from the gauge to a PC or a mobile phone and new **ElcoMaster Software™**
- **PSPC Ready**: 90/10 rule with auto-check feature – to meet IMO MSC.215 (82) & MSC.216(82) performance standard for protective coatings in ballast tanks

Can be used in accordance with:

<table>
<thead>
<tr>
<th>Ferrous (F)</th>
<th>Non-Ferrous (NF)</th>
<th>Dual Ferrous (F) & Non-Ferrous (NF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 2178</td>
<td>BS 5411-11</td>
<td>ISM MSC 215 (82) & MSC.216(82)</td>
</tr>
<tr>
<td>ISO 2808-6Aa</td>
<td>BS 3900-C5-6Aa</td>
<td>All of the Ferrous and Non-</td>
</tr>
<tr>
<td>ISO 19940</td>
<td>BS EN ISO 1461</td>
<td>Ferrous List plus; ASTM E 376</td>
</tr>
<tr>
<td>ASTM B 499</td>
<td>DIN 50584</td>
<td>All Elcometer 456® Models</td>
</tr>
<tr>
<td>ASTM D 1186</td>
<td>SSPC-PA2</td>
<td>IMO MSC 215 (82)</td>
</tr>
<tr>
<td>ASTM D 7091</td>
<td></td>
<td>IMO MSC.216 (82)</td>
</tr>
</tbody>
</table>
Coating Thickness Gauges - Digital

Simple to interpret, small and portable gauges for the measurement of coatings on all metal surfaces. Digital coating thickness gauges are more accurate, more repeatable and more reproducible than any other type of coating thickness gauge on the market today.

Ecometer offers the world's most comprehensive range of portable digital coating thickness gauges - for measurements on either Ferrous substrates (F), Non-Ferrous substrates (NF), or on both Ferrous and Non-Ferrous (FNF). Ecometer can provide you with a gauge to meet your need.

With a wide choice of gauges to choose from, the User needs to understand the terminology of Coating Thickness Gauges or, 'The Language of Coatings'.

The Language of Coatings

In selecting the most appropriate gauge for your application, you need to answer specific questions.

1. **What is the substrate (the surface metal) you are coating/inspecting?**
 - Is the metal a Ferrous Substrate (F) or a Non-Ferrous (NF)?
 - Sometimes this is difficult to answer – the substrate may have already been coated. The easiest way to identify this is to see if a magnet will stick to the surface. If it does, then the substrate will be Ferrous. If it does not, then the substrate is Non-Ferrous.

2. **Do you measure only on this substrate?**
 - If you only inspect one type of product, then the answer is yes. If you have a range of products that you inspect, then you need to consider whether they are all of the same type of substrate. You should also consider if you have a future possibility of inspecting other substrates. If so, you should consider a Dual FNF gauge.

3. **Typically what sort of coating thickness do you need to measure?**
 - This helps you select the correct scale range - Scale 1 measures coatings to 1500µm, Scale 2: 5mm, Scale 3: 13mm

4. **What type of probe do you need?**
 - Depending on your application you can select from:
 - Integral Probe (the probe is built into the gauge for accurate single handed measurements on large surface areas, pipes, etc.)
 - Separate Probe (the probe is connected to the gauge by a cable for all applications).
 - PINIP™ (separate probe is directly attached to the base of the instrument - providing, in your separate gauge, all the benefits of an integral unit).
 - Separate Probes can be selected from our wide range to meet your application requirements. These include:
 - **Regular Probes**: Including Straight, Right Angle (90°) and Telescopic options
 - **Miniature Probes**: Including Straight, Right Angle (90°), 45° Angle all in either long or short versions.

5. **Do you need to save your readings for your ISO records, or as proof of inspection to your customer?**
 - Ecometer gauges are available in three options:
 - **Basic Gauge** - with simple statistics, links via infrared to a Printer but no memory or data output
 - **Standard Gauge** - with statistics, links via infrared to a Printer, limited memory (250 readings) and data output
 - **Top Gauge** - with statistics, links via infrared to a Printer, enhanced memory (40,000 readings), batching capability and data output.

Measurement Options

Ferrous (F) operation using electromagnetic induction probes for all non-magnetic coatings on a ferrous (magnetic) substrate, e.g. paint, plastic, enamel, powder, rubber, ceramic, galvanising, zinc, sprayed metal (aluminium or zinc), etc. on steel, cast iron, ferric and duplex stainless steel, substrates etc.

Non-Ferrous (N) operation using eddy current probes for non-conductive coatings on non-ferrous metal substrates, e.g. anodising, paint, powder, lacquer, plastic, etc. on aluminium, brass, zinc, stainless steel, copper, titanium substrates etc.

Dual (FNF) operation combines the Ferrous and Non-Ferrous operation in a single probe. The gauge has user selection for auto or manual substrate determination.

Shipping List

- **Basic**: Unit, Pouch, Calibration Certificate, Calibration Foils - 4 x 2% NBS Foils, Batteries, Wrist Cord, Instructions
- **Standard**: Same as Basic Unit plus: Software CD (EcoMaster and EDTS+)
- **Top**: Same as Basic Unit plus: Software CD (EcoMaster and EDTS+)
Elcometer 456 Gauge Features - Technical superiority in the palm of your hand

The 456, whilst easy to use, is packed with features, making it possibly the best coating thickness gauge in the world.

Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>456 Basic</th>
<th>456 Std</th>
<th>456 Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast, accurate reading rate >60 readings per minute</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Auto substrate recognition on FNF models</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Integral and separate probe models available</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Backlight – user selectable ideal for dark environments</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Beeper</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Intuitive menu driven display with adjustable text size</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Large easy to read Maximised gauge reading display</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Languages – menus in 26 languages</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>User definable limits – Green / Red LEDs for Pass / Fail Inspection</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>User definable on-screen statistics (from single readings or within batches)</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Fully Interchangeable Separate Probe Options – Inc / Miniature</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>On-screen Calibration Instructions / Help function</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>User switchable Normal / Extended menu options</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Calibration options (stated):</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>- smooth, 2 point, rough surfaces & special substrate</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>- zero offset² (subtracts a fixed value from reading)</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>- ISO, SSPC, Swedish and Australian predefined</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>90/10 rule with autocheck feature – to meet IMO MSC 215 (82) & MSC 216(82) performance standard for protective coatings in ballast tanks</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Memory

Readings Memory: 250 in one batch, 40000 in up to 999 batches

- Individual reading mode
- Average and Counted Average
- Individual Reading Review
- Date and time stamp with clock and alarm functions – readings can be stamped including the last calibration date and time
- Batch calibrations – each batch can be programmed with a different calibration
- Batch calibration cloning – copy calibrations between batches

Data Output

- RS232
- Available with Bluetooth® wireless technology
- Immediate output mode – each reading is transmitted as it is taken
- Batch output mode – send data by batches on command
- Free PC software – ElcoMaster™ & ElcoMaster™ Mobile

² Zero Offset, USA patent Number 6243661

Elcometer 456 Gauge Technical Specifications

- **Measurement Speed**: Greater than 60 readings per minute
- **Accuracy**: +/- 1 to 2% using two point Calibration (3% Full Scale)
- **Display**: STN Graphics (LCD), 128 x 64 pixels, 19.8 x 39.6mm
- **Battery Type**: 2 x AAA (LR03) Rechargeable batteries can be used
- **Battery Life**: 30 - 40 hours continuous use with alkaline dry batteries (15,000 - 20,000 readings at an average of 8 readings per minute).
- **Minimum Substrate Thickness**: Ferrous: 0.3mm, Non-Ferrous: 0.1mm unless special calibration adjustment is made
- **Measurement Options**: Ferrous (F), Non Ferrous (NF) and Dual (FNF)
- **Operating Temperature**: 0 - 50°C
- **Dimensions**: 128 x 68 x 29mm
- **Weight (incl. Dry Batteries)**: 130g
The Elcometer 456 Integral (built in) Probes offer an ideal gauge for flat or uneven surfaces alike. The large "Bigfoot™" probe allows for consistent and repeatable results as there is no cable, the gauge can take readings using one hand.

The Elcometer 456 Integral Gauges are ideal for measurement on both organic and inorganic coatings and are available in either:
- Ferrous (F),
- Non-Ferrous (NF), or
- Both Ferrous and Non-Ferrous (FNF)

Features of the Elcometer 456 Integral Gauges
- Single handed operation.
- Wide footprint to give greater stability, accuracy & repeatability of readings.
- Ideal for flat & curved surfaces.
- Can be used on smooth & blast profiled substrates.
- Wide range of thickness scales available.

Elcometer 456 Integral Gauge - Specifications and Part Numbers

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Model</th>
<th>Probe</th>
<th>Scale</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrous</td>
<td>Basic Model</td>
<td>Integral Ferrous Basic Integral Scale 1</td>
<td>0 - 1500 mic</td>
<td>A456FB11</td>
</tr>
<tr>
<td>Ferrous</td>
<td>Basic Model</td>
<td>Integral Ferrous Basic Integral Scale 12 - High Resolution</td>
<td>0 - 5 mm</td>
<td>A456FB12</td>
</tr>
<tr>
<td>Ferrous</td>
<td>Basic Model</td>
<td>Integral Ferrous Basic Integral Scale 3</td>
<td>0 - 13 mm</td>
<td>A456FB13</td>
</tr>
<tr>
<td>Non Ferrous</td>
<td>Basic Model</td>
<td>Integral Non Ferrous Basic Integral Scale 1</td>
<td>0 - 1500 mic</td>
<td>A456NB11</td>
</tr>
<tr>
<td>Both F & NF</td>
<td>Basic Model</td>
<td>Integral Dual Basic Integral Scale 1</td>
<td>0 - 1500 mic</td>
<td>A456FNB11</td>
</tr>
<tr>
<td>Ferrous</td>
<td>Standard Model</td>
<td>Integral Ferrous Standard Integral Scale 1</td>
<td>0 - 1500 mic</td>
<td>A456FS11</td>
</tr>
<tr>
<td>Ferrous</td>
<td>Standard Model</td>
<td>Integral Ferrous Standard Integral Scale 12 - High Resolution</td>
<td>0 - 5 mm</td>
<td>A456FS12</td>
</tr>
<tr>
<td>Ferrous</td>
<td>Standard Model</td>
<td>Integral Ferrous Standard Integral Scale 3</td>
<td>0 - 13 mm</td>
<td>A456FS13</td>
</tr>
<tr>
<td>Non Ferrous</td>
<td>Standard Model</td>
<td>Integral Non Ferrous Standard Integral Scale 1</td>
<td>0 - 1500 mic</td>
<td>A456NS11</td>
</tr>
<tr>
<td>Both F & NF</td>
<td>Standard Model</td>
<td>Integral Dual Standard Integral Scale 1</td>
<td>0 - 1500 mic</td>
<td>A456FNS11</td>
</tr>
<tr>
<td>Ferrous</td>
<td>Top Model</td>
<td>Integral Ferrous Top Integral Scale 1</td>
<td>0 - 1500 mic</td>
<td>A456FT11</td>
</tr>
<tr>
<td>Ferrous</td>
<td>Top Model</td>
<td>Integral Ferrous Top Integral Scale 12 - High Resolution</td>
<td>0 - 5 mm</td>
<td>A456FT12</td>
</tr>
<tr>
<td>Ferrous</td>
<td>Top Model</td>
<td>Integral Ferrous Top Integral Scale 3</td>
<td>0 - 13 mm</td>
<td>A456FT13</td>
</tr>
<tr>
<td>Non Ferrous</td>
<td>Top Model</td>
<td>Integral Non Ferrous Top Integral Scale 1</td>
<td>0 - 1500 mic</td>
<td>A456NT11</td>
</tr>
<tr>
<td>Both F & NF</td>
<td>Top Model</td>
<td>Integral Dual Top Integral Scale 1</td>
<td>0 - 1500 mic</td>
<td>A456FNT11</td>
</tr>
</tbody>
</table>

The F1 2 Scale combines the F1 Scale and F2 Scale in a single probe (Patent applied for) with the user selecting the appropriate range (and hence resolution) for the work in hand. Resolution similar to Scale 1 for 0 - 1500 mic range and similar to Scale 2 for 1500 mic to 5 mm range.

Elcometer 456 Separate Gauge

The Elcometer 456 Separate (Plug in) Probe Option is the most versatile gauge for the measurement of a wide range of coatings on metal substrates.

- Available in Basic, Standard and Top Models.
- Available in Ferrous (F), Non-Ferrous (NF) & Dual FNF versions.

Features of the Elcometer 456 Separate (Plug in) Probe Option
- A wide range of probes available for measurements in almost any environment.
- Fully interchangeable probes.
- All Ferrous models will accept ANY Ferrous 456 probe.
- All Non-Ferrous models will accept ANY Non-Ferrous 456 probe.
- All Dual FNF models will accept ALL 456 probes.
- Ideal for measuring coating thickness in small & large, smooth & curved, open air or confined environments.

Elcometer 456 Separate Gauge - Specifications and Part Numbers
The above Part Numbers include the Standard Probes. For further options of separate probes see the Elcometer 456 Probe Option leaflet.

Separate Probe Types

A wide range of probe types and scale ranges are available for the Elcometer 456 separate gauge.

Standard Probes (F, NF & FNF)

Available in Standard, Right Angle or Telescopic options and are suitable for most coating thickness requirements.

Miniature Probes (F & NF)

Ideal for taking measurements in hard to reach places, on small surface areas and on concrete reinforcement bars. Miniature probes are available in Straight, Right Angle and 45° options. All miniature probes are available in either 45mm or 150mm probe lengths.

PINIP™ Probes (F, NF & FNF)

The Plug-In Integral Probe (PINIP™), has been designed to be screwed into the base of any separate Elcometer 456 gauge to transform their separate gauge into an integral unit for single handed operations. Its "Bigfoot™" Probe gives greater stability on large surface areas. Also available is a High Temperature version for measuring coatings on hot ferrous substrates up to 250°C.

Waterproof Probes (F)

Ideal for taking measurements in wet conditions or underwater up to depths of 10m. Waterproof probes are available with standard, 5m and 15m probe lead lengths.

Major Users of the 456 and the superceded 345:

- CSIR & SABS
- SA Navy
- Defence Force & Armscor
- SA Navy
- Denel
- Naschem
- Sonchem
- ALL MAJOR Motor Assemblers incl. Daimler Benz, Nissan, Ford / Mazda, BMW, Toyota, VW etc.
- MAJOR Industrial Painters eg, RJ Southey, Gordon Bennett etc.
- Paint Manufacturers: Plascon, Dulux, Dekro etc.
- Corrosion Consultants / Inspectors
- Anodisers incl Hulets
- Hancoat
- Spoornet & SATS
- Transwerk & Transnet
- ESKOM
- ISCOR
- Public Works
- SASOL & Mossgas
- Shell, BP & Caltex Refineries
- Anglo American & Vaal Mines & Others
- Telkom
- SA Airways & Atlas
- Atomic Energy Board
- Water Boards
- Dept Water Affairs
- Dorbyl & Heavy Engin
- Universities
- Govt & Municipal Authorities
- Powder Coaters
- Pipeline Co’s
- Sand / Shot Blasters
- Metal Fabricators
- Galvanisers
- Shipbuilders
Appendix I: Daily Log for Work on Fuel Tank Piping

<table>
<thead>
<tr>
<th>WORK IN PROGRESS OBSERVATION - DAILY FORM</th>
<th>DATE 01/02 JOB # 3920</th>
<th>OBSERVATION NO. 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSTOMER: Mandible</td>
<td>INSPECTOR: Adam Reno</td>
<td>TIME ARRIVED 9am, TIME LEFT 5pm</td>
</tr>
<tr>
<td>LOCATION: Fort Bragg, NC</td>
<td>OWNER: Fort Bragg</td>
<td>5 OF CREW MEMBERS ON JOB 5</td>
</tr>
<tr>
<td>FOREMAN: Ben Edwards</td>
<td>CONTRACTOR: F500 of NC</td>
<td></td>
</tr>
</tbody>
</table>

WEATHER CONDITIONS:
- SUNNY/ CLOUDY (RAIN) / SNOW
- WINDS: 5-10 MPH FROM SE
- LAST NIGHT: LOW TEMPERATURE, THIS MORNING HUMIDITY 50%

TIME PAINTING:
- START: 08/01
- FINISH: 08/01
- INT/EXT: EXT/INT
- JOB 3A

INTERIOR:
- Crew worked on cleaning up the back of spent abrasive slurry

EXTERIOR:
- Final DPT on large fuel tank is as follows: 22 mils
- Additional 13 mils

<table>
<thead>
<tr>
<th>DRYMIL</th>
<th>STEEL-12</th>
<th>STEEL-10</th>
<th>SWEAT</th>
<th>WET BLUES</th>
<th>DRY BLUES</th>
<th>HUM BLUES</th>
<th>BODY POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>30</td>
<td>50</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POSITION</th>
<th>PAINT MANUFACTURER</th>
<th>BATCH NUMBER</th>
<th>THINNER TYPE</th>
<th>THINNER BATCH</th>
<th>PAINT COLOR</th>
<th>QUANTITY</th>
<th>DPT BEFORE FIELD COAT</th>
<th>MAX</th>
<th>MIN</th>
<th>AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

APPLICATION METHODS:
- Roll

REMARKS:
- Paint Survey: 4.5 mils F

MIL GAUGE SERIAL NUMBER:
- CALIBRATED - BEFORE: 26, AFTER: 26
- 160 V56
- FG 0059
WORK IN PROGRESS OBSERVATION - DAILY FORM

DATE: [Blank], **JOB #:** [Blank], **OBSERVATION NO.:** 27

CUSTOMER: [Blank] **INSPECTOR:** [Blank] **TIME ARRIVED:** [Blank] **TIME LEFT:** [Blank]

LOCATION: Fort Bragg, NC **OWNER:** [Blank] **OF CREW MEMBERS ON JOB:** 5 **FOREMAN:** [Blank] **CONTRACTOR:** [Blank]

WEATHER CONDITIONS:
- **SUNNY** **CLOUDY** **RAIN** **SNOW** **WIND:** [Blank] **MPH FROM:** [Blank]
- **LAST NIGHT:** [Blank] **TODAY:** [Blank] **MORNING HUMIDITY:** [Blank] **%**

TIME PAINTING: **START:** [Blank] **FINISH:** [Blank] **INT/EXT:** [Blank] **% THINNER:** [Blank]

<table>
<thead>
<tr>
<th>TIME</th>
<th>DATE</th>
<th>DETERMINE</th>
<th>STEEL</th>
<th>DRY</th>
<th>NOT</th>
<th>MIL</th>
<th>OIL</th>
<th>WET</th>
<th>HUM</th>
<th>MPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>7pm</td>
<td>n/a</td>
<td>60°F</td>
<td>65%</td>
<td>n/a</td>
<td>65%</td>
<td>n/a</td>
<td>65%</td>
<td>65%</td>
<td>n/a</td>
<td>65%</td>
</tr>
<tr>
<td>8am</td>
<td>n/a</td>
<td>70°F</td>
<td>70%</td>
<td>n/a</td>
<td>70%</td>
<td>n/a</td>
<td>70%</td>
<td>70%</td>
<td>n/a</td>
<td>70%</td>
</tr>
<tr>
<td>8am</td>
<td>n/a</td>
<td>80°F</td>
<td>80%</td>
<td>n/a</td>
<td>80%</td>
<td>n/a</td>
<td>80%</td>
<td>80%</td>
<td>n/a</td>
<td>80%</td>
</tr>
<tr>
<td>9am</td>
<td>n/a</td>
<td>90°F</td>
<td>90%</td>
<td>n/a</td>
<td>90%</td>
<td>n/a</td>
<td>90%</td>
<td>90%</td>
<td>n/a</td>
<td>90%</td>
</tr>
<tr>
<td>10am</td>
<td>n/a</td>
<td>100°F</td>
<td>100%</td>
<td>n/a</td>
<td>100%</td>
<td>n/a</td>
<td>100%</td>
<td>100%</td>
<td>n/a</td>
<td>100%</td>
</tr>
<tr>
<td>12pm</td>
<td>n/a</td>
<td>65°F</td>
<td>65%</td>
<td>n/a</td>
<td>65%</td>
<td>n/a</td>
<td>65%</td>
<td>65%</td>
<td>n/a</td>
<td>65%</td>
</tr>
<tr>
<td>8pm</td>
<td>n/a</td>
<td>80°F</td>
<td>80%</td>
<td>n/a</td>
<td>80%</td>
<td>n/a</td>
<td>80%</td>
<td>80%</td>
<td>n/a</td>
<td>80%</td>
</tr>
<tr>
<td>9pm</td>
<td>n/a</td>
<td>90°F</td>
<td>90%</td>
<td>n/a</td>
<td>90%</td>
<td>n/a</td>
<td>90%</td>
<td>90%</td>
<td>n/a</td>
<td>90%</td>
</tr>
<tr>
<td>10pm</td>
<td>n/a</td>
<td>100°F</td>
<td>100%</td>
<td>n/a</td>
<td>100%</td>
<td>n/a</td>
<td>100%</td>
<td>100%</td>
<td>n/a</td>
<td>100%</td>
</tr>
</tbody>
</table>

APPLICATION METHODS: 2 coats completely mixed, first coat applied [Blank] 2nd coat applied [Blank]

REMARKS: [Blank]

LOCATION PAINT MANUFACTURER & SERIES NUMBER
- Exterior: [Blank]
- Interior: [Blank]

<table>
<thead>
<tr>
<th>LOCATION PAINT MANUFACTURER & SERIES NUMBER</th>
<th>BATCH NUMBER</th>
<th>THINNER TYPE</th>
<th>% THINNER</th>
<th>TRISHER BATH #</th>
<th>PAINT COLOR</th>
<th>QUANTITY</th>
<th>DPT BEFORE THIS COAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Midlands</td>
<td>[Blank]</td>
<td>[Blank]</td>
<td>[Blank]</td>
<td>[Blank]</td>
<td>[Blank]</td>
<td>[Blank]</td>
<td>[Blank]</td>
</tr>
<tr>
<td>South Carolina</td>
<td>[Blank]</td>
<td>[Blank]</td>
<td>[Blank]</td>
<td>[Blank]</td>
<td>[Blank]</td>
<td>[Blank]</td>
<td>[Blank]</td>
</tr>
<tr>
<td>Midwest</td>
<td>[Blank]</td>
<td>[Blank]</td>
<td>[Blank]</td>
<td>[Blank]</td>
<td>[Blank]</td>
<td>[Blank]</td>
<td>[Blank]</td>
</tr>
</tbody>
</table>

APPLICATION METHODS: 2 coats applied within 8 hours of each other, mixed separately then combined and mixed applied by brush.

REMARKS: [Blank]

MIL GAUGE SERIAL NUMBER [Blank] **CALIBRATED:** [Blank] **AFTER:** [Blank]

WORK IN PROGRESS OBSERVATION - DAILY FORM

DATE: [Blank], **JOB #:** [Blank], **OBSERVATION NO.:** 28

CUSTOMER: [Blank] **INSPECTOR:** [Blank] **TIME ARRIVED:** [Blank] **TIME LEFT:** [Blank]

LOCATION: Fort Bragg, NC **OWNER:** [Blank] **OF CREW MEMBERS ON JOB:** 5 **FOREMAN:** [Blank] **CONTRACTOR:** [Blank]

WEATHER CONDITIONS:
- **SUNNY** **CLOUDY** **RAIN** **SNOW** **WIND:** [Blank] **MPH FROM:** [Blank]
- **LAST NIGHT:** [Blank] **TODAY:** [Blank] **MORNING HUMIDITY:** [Blank] **%**

TIME PAINTING: **START:** [Blank] **FINISH:** [Blank] **INT/EXT:** [Blank] **% THINNER:** [Blank]

<table>
<thead>
<tr>
<th>TIME</th>
<th>DATE</th>
<th>DETERMINE</th>
<th>STEEL</th>
<th>DRY</th>
<th>NOT</th>
<th>MIL</th>
<th>OIL</th>
<th>WET</th>
<th>HUM</th>
<th>MPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:30pm</td>
<td>n/a</td>
<td>65°F</td>
<td>65%</td>
<td>n/a</td>
<td>65%</td>
<td>n/a</td>
<td>65%</td>
<td>65%</td>
<td>n/a</td>
<td>65%</td>
</tr>
<tr>
<td>1:30pm</td>
<td>n/a</td>
<td>70°F</td>
<td>70%</td>
<td>n/a</td>
<td>70%</td>
<td>n/a</td>
<td>70%</td>
<td>70%</td>
<td>n/a</td>
<td>70%</td>
</tr>
<tr>
<td>1:30pm</td>
<td>n/a</td>
<td>80°F</td>
<td>80%</td>
<td>n/a</td>
<td>80%</td>
<td>n/a</td>
<td>80%</td>
<td>80%</td>
<td>n/a</td>
<td>80%</td>
</tr>
<tr>
<td>1:30pm</td>
<td>n/a</td>
<td>90°F</td>
<td>90%</td>
<td>n/a</td>
<td>90%</td>
<td>n/a</td>
<td>90%</td>
<td>90%</td>
<td>n/a</td>
<td>90%</td>
</tr>
<tr>
<td>1:30pm</td>
<td>n/a</td>
<td>100°F</td>
<td>100%</td>
<td>n/a</td>
<td>100%</td>
<td>n/a</td>
<td>100%</td>
<td>100%</td>
<td>n/a</td>
<td>100%</td>
</tr>
<tr>
<td>1:30pm</td>
<td>n/a</td>
<td>65°F</td>
<td>65%</td>
<td>n/a</td>
<td>65%</td>
<td>n/a</td>
<td>65%</td>
<td>65%</td>
<td>n/a</td>
<td>65%</td>
</tr>
<tr>
<td>1:30pm</td>
<td>n/a</td>
<td>70°F</td>
<td>70%</td>
<td>n/a</td>
<td>70%</td>
<td>n/a</td>
<td>70%</td>
<td>70%</td>
<td>n/a</td>
<td>70%</td>
</tr>
<tr>
<td>1:30pm</td>
<td>n/a</td>
<td>80°F</td>
<td>80%</td>
<td>n/a</td>
<td>80%</td>
<td>n/a</td>
<td>80%</td>
<td>80%</td>
<td>n/a</td>
<td>80%</td>
</tr>
<tr>
<td>1:30pm</td>
<td>n/a</td>
<td>90°F</td>
<td>90%</td>
<td>n/a</td>
<td>90%</td>
<td>n/a</td>
<td>90%</td>
<td>90%</td>
<td>n/a</td>
<td>90%</td>
</tr>
<tr>
<td>1:30pm</td>
<td>n/a</td>
<td>100°F</td>
<td>100%</td>
<td>n/a</td>
<td>100%</td>
<td>n/a</td>
<td>100%</td>
<td>100%</td>
<td>n/a</td>
<td>100%</td>
</tr>
</tbody>
</table>

APPLICATION METHODS: 2 coats mixed and mixed [Blank] 8 hours of each other, mixed separately then combined and mixed applied by brush.

REMARKS: [Blank]

MIL GAUGE SERIAL NUMBER [Blank] **CALIBRATED:** [Blank] **AFTER:** [Blank]
WORK IN PROGRESS OBSERVATION – DAILY FORM

DATE OF JOB # 32390 **OBSERVATION NO.** 29

CUSTOMER: MANDATE
INSPECTOR: Allen Brown
TIME ARRIVED: 8:00 a.m.
TIME LEFT: 5:30 p.m.

LOCATION: Fort Benning, GA
OWNER: Fort Benning
OF CREW MEMBERS ON JOB: 5

FOREMAN: Ben Brubaker
CONTRACTOR: J. W. & C.

WEATHER CONDITIONS:

SUNNY, CLOUDY, RAIN, SNOW
WIND: 10-15 MPH FROM SW

LAST NIGHT: LOW TEMP: 50°F
MORNING HUMIDITY: 60%

TIME PAINTING: START: 8:30 a.m.
FINISH: 5:00 p.m.
INTERIOR: Crew worked on cleaning up and painting off areas around the building. The crew then began painting the interior of the building.

APPLICATION METHODS:
- Paint was applied with a hand-held paint sprayer.

REMARKS:

- All areas were cleaned thoroughly before painting.
- The interior was painted with a white paint.

LOCATION: Paint manufacturer & series number
PAINT MANUFACTURER: East Coast Paints
BATCH NUMBER: 212
THINNER TYPE: 1% thinner
THINNER BATCH #: 123
PAINT COLOR: White
QUANTITY: 200 gallons

DPT BEFORE TOUCH-UP:
MIN: 1 inch
MAX: 2 inches
AVG: 1.5 inches

WORK IN PROGRESS OBSERVATION – DAILY FORM

DATE OF JOB # 32390 **OBSERVATION NO.** 30

CUSTOMER: MANDATE
INSPECTOR: Allen Brown
TIME ARRIVED: 8:00 a.m.
TIME LEFT: 5:30 p.m.

LOCATION: Fort Benning, GA
OWNER: Fort Benning
OF CREW MEMBERS ON JOB: 4

FOREMAN: Ben Brubaker
CONTRACTOR: J. W. & C.

WEATHER CONDITIONS:

SUNNY, CLOUDY, RAIN, SNOW
WIND: 10-15 MPH FROM SW

LAST NIGHT: LOW TEMP: 50°F
MORNING HUMIDITY: 60%

TIME PAINTING: START: 8:30 a.m.
FINISH: 5:00 p.m.
INTERIOR: Interior work was completed on the building. The crew then began working on the exterior.

APPLICATION METHODS:

- Paint was applied with a hand-held paint sprayer.

REMARKS:

- All areas were cleaned thoroughly before painting.
- The exterior was painted with a white paint.

LOCATION: Paint manufacturer & series number
PAINT MANUFACTURER: East Coast Paints
BATCH NUMBER: 212
THINNER TYPE: 1% thinner
THINNER BATCH #: 123
PAINT COLOR: White
QUANTITY: 200 gallons

DPT BEFORE TOUCH-UP:
MIN: 1 inch
MAX: 2 inches
AVG: 1.5 inches

MIL GAUGE SERIAL NUMBER: E-09-456
CALIBRATED: BEFORE / AFTER

MIL GAUGE SERIAL NUMBER: E-09-456
CALIBRATED: BEFORE / AFTER

WORK IN PROGRESS OBSERVATION - DAILY FORM

DATE: 01/09/20

JOB #: 2833

OBSERVATION NO.: 31

CUSTOMER: **Hendrick**

INSPECTOR: **Adam Baker**

LOCATION: **Fort Benning, NC**

TIME ARRIVED: 8:30 AM

TIME LEFT: 2:30 PM

OWNER: **Fort Benning**

OF CREW MEMBERS ON JOB: 3

FOREMAN: **Ben Edwards**

CONTRACTOR: **Jew of NC**

WEATHER CONDITIONS:

- **Sunny**
- **Cloudy**
- **Rain**
- **Snow**
- **Wind:** N 10-15 MPH

LAST NIGHT: Low Temp 55°F

THIS MORNING HUMIDITY: 72%

TIME PAINTING:

- **Start:**
- **Finish:**

INTERIOR:

- No work yesterday due to rain. One man worked Finishing coat and all areas in front of a wall and used a 12 oz. hand pump. All surfaces painted are clean and free of any dirt or debris. Close times indicated are based on实干 conditions. A final coat of-15 minute primer with a 12 oz. hand pump will be applied. A primer will be added at 1:00 PM and use of office.

APPLICATION METHODS:

- Primer and thinner mixed.
- Paint changes at 60°F

REMARKS:

- Paint changes at 60°F

MIL GAUGE SERIAL NUMBER: N/A

WORK IN PROGRESS OBSERVATION - DAILY FORM

DATE: 01/09/20

JOB #: 2833

OBSERVATION NO.: 32

CUSTOMER: **Hendrick**

INSPECTOR: **Adam Baker**

LOCATION: **Fort Benning, NC**

TIME ARRIVED: 8:30 AM

TIME LEFT: 2:30 PM

OWNER: **Fort Benning**

OF CREW MEMBERS ON JOB: 3

FOREMAN: **Ben Edwards**

CONTRACTOR: **Jew of NC**

WEATHER CONDITIONS:

- **Sunny**
- **Cloudy**
- **Rain**
- **Snow**
- **Wind:** N 10-15 MPH

LAST NIGHT: Low Temp 55°F

THIS MORNING HUMIDITY: 72%

TIME PAINTING:

- **Start:**
- **Finish:**

INTERIOR:

- Exterior and interior primer used. Primer used in conjunction with power mixer. A final coat of-15 minute primer will be applied. A final coat of primer will be applied.

APPLICATION METHODS:

- Primer and thinner mixed.
- Paint changes at 60°F

REMARKS:

- Paint changes at 60°F

MIL GAUGE SERIAL NUMBER: N/A

CALIBRATED - BEFORE :

CALIBRATED - AFTER :
WORK IN PROGRESS OBSERVATION - DAILY FORM

DATE: 01/14/14 **JOB #: 3280** **OBSERVATION NO.: 29**

CUSTOMER:
INSPECTOR: Adam Benn

LOCATION: East Bern NC

OWNER: East Bern
FOREMAN: Ben Elsh

WEATHER CONDITIONS:
- **SUNNY**
- **CLOUDY**
- **RAIN**
- **SNOW**
- **WINDS:** 50 MPH FROM SW

LAST NIGHT: LOW TEMP: 50°F THIS MORNING HUMIDITY: 40%

TIME PAINTING: START: 8:00 AM FINISH: 4:30 PM INTERIOR: 8:00 AM EXT: 4:30 PM

INTERIOR:
- 90% cured after 7 days.
- 3 coats of paint applied.
- No other work done.

EXTERIOR:
- Additional panels due in new 300.
- No other work done.

APPLICATION METHODS:

REMARKS:

MIL GAUGE SERIAL NUMBER:
- CALIBRATED - BEFORE:
- AFTER:

LOCATION:

<table>
<thead>
<tr>
<th>PAINT MANUFACTURER</th>
<th>BATCH NUMBER</th>
<th>THINNER TYPE</th>
<th>% THINNER</th>
<th>BATCH #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tech-Wood Company</td>
<td>1234</td>
<td>Type A</td>
<td>5%</td>
<td>567</td>
</tr>
</tbody>
</table>

PAINT:

<table>
<thead>
<tr>
<th>COLOR</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>10 gal</td>
</tr>
</tbody>
</table>

DPT BEFORE THIS COAT:

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>

MIL GAUGE SERIAL NUMBER:
- CALIBRATED - BEFORE:
- AFTER:

LOCATION:

<table>
<thead>
<tr>
<th>PAINT MANUFACTURER</th>
<th>BATCH NUMBER</th>
<th>THINNER TYPE</th>
<th>% THINNER</th>
<th>BATCH #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tech-Wood Company</td>
<td>1234</td>
<td>Type A</td>
<td>5%</td>
<td>567</td>
</tr>
</tbody>
</table>

PAINT:

<table>
<thead>
<tr>
<th>COLOR</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>10 gal</td>
</tr>
</tbody>
</table>

DPT BEFORE THIS COAT:

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>

MIL GAUGE SERIAL NUMBER:
- CALIBRATED - BEFORE:
- AFTER:

LOCATION:

<table>
<thead>
<tr>
<th>PAINT MANUFACTURER</th>
<th>BATCH NUMBER</th>
<th>THINNER TYPE</th>
<th>% THINNER</th>
<th>BATCH #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tech-Wood Company</td>
<td>1234</td>
<td>Type A</td>
<td>5%</td>
<td>567</td>
</tr>
</tbody>
</table>

PAINT:

<table>
<thead>
<tr>
<th>COLOR</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>10 gal</td>
</tr>
</tbody>
</table>

DPT BEFORE THIS COAT:

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>

MIL GAUGE SERIAL NUMBER:
- CALIBRATED - BEFORE:
- AFTER:

WORK IN PROGRESS OBSERVATION - DAILY FORM

CUSTOMER: Fort Detrick INC
LOCATION: Fort Detrick dk

WEATHER CONDITIONS:
SUNNY / CLOUDY / RAIN / SNOW
WIND: 10 MPH
LAST NIGHT: LOW TEMP 32°F / THIS MORNING HUMIDITY 65%
TIME PAINTING: START 10AM / FINISH 2PM / INTERMEDIATE CURE

LOCATION (ALT) PAINT MANUFACTURER & SERIES NUMBER BATCH NUMBER THINNER TYPE % THINNER THINNER BATCH # PAINT COLOR QUANTITY DPT BEFORE THIS COAT

APPLICATION METHODS: NA

REMARKS: NA

MIL GAUGE SERIAL NUMBER: NA

WORK IN PROGRESS OBSERVATION - DAILY FORM

CUSTOMER: Fort Detrick
LOCATION: Fort Detrick dk

WEATHER CONDITIONS:
SUNNY / CLOUDY / RAIN / SNOW
WIND: 10 MPH
LAST NIGHT: LOW TEMP 32°F / THIS MORNING HUMIDITY 65%
TIME PAINTING: START 10AM / FINISH 2PM / INTERMEDIATE CURE

LOCATION (ALT) PAINT MANUFACTURER & SERIES NUMBER BATCH NUMBER THINNER TYPE % THINNER THINNER BATCH # PAINT COLOR QUANTITY DPT BEFORE THIS COAT

APPLICATION METHODS: NA

REMARKS: NA

MIL GAUGE SERIAL NUMBER: NA

WORK IN PROGRESS OBSERVATION - DAILY FORM

CUSTOMER: Fort Detrick
LOCATION: Fort Detrick dk

WEATHER CONDITIONS:
SUNNY / CLOUDY / RAIN / SNOW
WIND: 10 MPH
LAST NIGHT: LOW TEMP 32°F / THIS MORNING HUMIDITY 65%
TIME PAINTING: START 10AM / FINISH 2PM / INTERMEDIATE CURE

LOCATION (ALT) PAINT MANUFACTURER & SERIES NUMBER BATCH NUMBER THINNER TYPE % THINNER THINNER BATCH # PAINT COLOR QUANTITY DPT BEFORE THIS COAT

APPLICATION METHODS: NA

REMARKS: NA

MIL GAUGE SERIAL NUMBER: NA

WORK IN PROGRESS OBSERVATION - DAILY FORM

CUSTOMER: Fort Detrick
LOCATION: Fort Detrick dk

WEATHER CONDITIONS:
SUNNY / CLOUDY / RAIN / SNOW
WIND: 10 MPH
LAST NIGHT: LOW TEMP 32°F / THIS MORNING HUMIDITY 65%
TIME PAINTING: START 10AM / FINISH 2PM / INTERMEDIATE CURE

LOCATION (ALT) PAINT MANUFACTURER & SERIES NUMBER BATCH NUMBER THINNER TYPE % THINNER THINNER BATCH # PAINT COLOR QUANTITY DPT BEFORE THIS COAT

APPLICATION METHODS: NA

REMARKS: NA

MIL GAUGE SERIAL NUMBER: NA

WORK IN PROGRESS OBSERVATION - DAILY FORM

CUSTOMER: Fort Detrick
LOCATION: Fort Detrick dk

WEATHER CONDITIONS:
SUNNY / CLOUDY / RAIN / SNOW
WIND: 10 MPH
LAST NIGHT: LOW TEMP 32°F / THIS MORNING HUMIDITY 65%
TIME PAINTING: START 10AM / FINISH 2PM / INTERMEDIATE CURE

LOCATION (ALT) PAINT MANUFACTURER & SERIES NUMBER BATCH NUMBER THINNER TYPE % THINNER THINNER BATCH # PAINT COLOR QUANTITY DPT BEFORE THIS COAT

APPLICATION METHODS: NA

REMARKS: NA

MIL GAUGE SERIAL NUMBER: NA

WORK IN PROGRESS OBSERVATION - DAILY FORM

CUSTOMER: Fort Detrick
LOCATION: Fort Detrick dk

WEATHER CONDITIONS:
SUNNY / CLOUDY / RAIN / SNOW
WIND: 10 MPH
LAST NIGHT: LOW TEMP 32°F / THIS MORNING HUMIDITY 65%
TIME PAINTING: START 10AM / FINISH 2PM / INTERMEDIATE CURE

LOCATION (ALT) PAINT MANUFACTURER & SERIES NUMBER BATCH NUMBER THINNER TYPE % THINNER THINNER BATCH # PAINT COLOR QUANTITY DPT BEFORE THIS COAT

APPLICATION METHODS: NA

REMARKS: NA

MIL GAUGE SERIAL NUMBER: NA

WORK IN PROGRESS OBSERVATION - DAILY FORM

CUSTOMER: Fort Detrick
LOCATION: Fort Detrick dk

WEATHER CONDITIONS:
SUNNY / CLOUDY / RAIN / SNOW
WIND: 10 MPH
LAST NIGHT: LOW TEMP 32°F / THIS MORNING HUMIDITY 65%
TIME PAINTING: START 10AM / FINISH 2PM / INTERMEDIATE CURE

LOCATION (ALT) PAINT MANUFACTURER & SERIES NUMBER BATCH NUMBER THINNER TYPE % THINNER THINNER BATCH # PAINT COLOR QUANTITY DPT BEFORE THIS COAT

APPLICATION METHODS: NA

REMARKS: NA

MIL GAUGE SERIAL NUMBER: NA

WORK IN PROGRESS OBSERVATION - DAILY FORM

CUSTOMER: Fort Detrick
LOCATION: Fort Detrick dk

WEATHER CONDITIONS:
SUNNY / CLOUDY / RAIN / SNOW
WIND: 10 MPH
LAST NIGHT: LOW TEMP 32°F / THIS MORNING HUMIDITY 65%
TIME PAINTING: START 10AM / FINISH 2PM / INTERMEDIATE CURE

LOCATION (ALT) PAINT MANUFACTURER & SERIES NUMBER BATCH NUMBER THINNER TYPE % THINNER THINNER BATCH # PAINT COLOR QUANTITY DPT BEFORE THIS COAT

APPLICATION METHODS: NA

REMARKS: NA

MIL GAUGE SERIAL NUMBER: NA

WORK IN PROGRESS OBSERVATION - DAILY FORM

CUSTOMER: Fort Detrick
LOCATION: Fort Detrick dk

WEATHER CONDITIONS:
SUNNY / CLOUDY / RAIN / SNOW
WIND: 10 MPH
LAST NIGHT: LOW TEMP 32°F / THIS MORNING HUMIDITY 65%
TIME PAINTING: START 10AM / FINISH 2PM / INTERMEDIATE CURE

LOCATION (ALT) PAINT MANUFACTURER & SERIES NUMBER BATCH NUMBER THINNER TYPE % THINNER THINNER BATCH # PAINT COLOR QUANTITY DPT BEFORE THIS COAT

APPLICATION METHODS: NA

REMARKS: NA

MIL GAUGE SERIAL NUMBER: NA

WORK IN PROGRESS OBSERVATION - DAILY FORM

CUSTOMER: Fort Detrick
LOCATION: Fort Detrick dk

WEATHER CONDITIONS:
SUNNY / CLOUDY / RAIN / SNOW
WIND: 10 MPH
LAST NIGHT: LOW TEMP 32°F / THIS MORNING HUMIDITY 65%
TIME PAINTING: START 10AM / FINISH 2PM / INTERMEDIATE CURE

LOCATION (ALT) PAINT MANUFACTURER & SERIES NUMBER BATCH NUMBER THINNER TYPE % THINNER THINNER BATCH # PAINT COLOR QUANTITY DPT BEFORE THIS COAT

APPLICATION METHODS: NA

REMARKS: NA

MIL GAUGE SERIAL NUMBER: NA
WORK IN PROGRESS OBSERVATION - DAILY FORM

| DATE: 01/01/20 Job #: 380 | OBSERVATION NO.: 39 |

CUSTOMER: Madison
LOCATION: Fuel Building, NC

INSPECTOR: Adam Benner
OWNER: Fuel Building
FOREMAN: Ray Eberly
OF CREW MEMBERS ON JOB: 4

WEATHER CONDITIONS:
- Sunny
- Cloudy
- Rain
- Snow
- Wind from:
 - 15-25 MPH from N

LAST NIGHT: Low Temp: 72°F
THIS MORNING: Humidity: 30%

TIME ARRIVED: 7:30 AM
TIME LEFT: 11:00 AM

LOCATION:
OWNER:
CONTRACTOR:

WEATHER NOTES:
- Middle-aged, rainy, and gloomy. Rain fell heavily throughout the night.

INTERIOR:
- Crew finish painting and demolished. Five percent includes:
 - Ceiling, wall, and floor finishing.

EXTERIOR:
- Rains in secondary containment and install all solid panels next to entry. Contractor said they will come back at a later date to finish work but when environmental conditions are more suitable.

Weather Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Start</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloudy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interior

- Crew finish painting and demolished. Five percent includes:
- Ceiling, wall, and floor finishing.

Exterior

- Rains in secondary containment and install all solid panels next to entry. Contractor said they will come back at a later date to finish work but when environmental conditions are more suitable.

Weather Notes

- Middle-aged, rainy, and gloomy. Rain fell heavily throughout the night.

Application Methods

- N/A

Remarks

- N/A

MIL Gauge Serial Number

- Calibrated before and after calibration.
Appendix J: Quarterly Coating Assessments

All assessments occurred at 3, 6, 9, and 12 months. Test panels were evaluated according to ASTM D 1654 Procedure A, Method 2 and Procedure B. The coating on the tank itself was evaluated using ASTM D 1654 Procedures B and D. A total of six coupons were tested, four were coated with the zinc-rich primer, intermediate primer and a topcoat and two were coated with the zinc-rich primer, intermediate primer but without a topcoat. When the coupons were dry, each was scribed using a steel thread cutting lathe tool bit with a cutting tip having a 60 degree angle. The tool bit was mounted to a metal handle to facilitate the scribing of a 7 inch vertical line into each coupon. They were then mounted to a rack and were exposed to the elements for the past 12 months with monitoring and photography occurring every quarter.

A damp cloth was used to wipe the coupons before any examinations were conducted. Each of the six coupons was visually inspected for rust and blisters in accordance with ASTM D 174 and ASTM D 610. The surface area percentage of rust per coupon in the scribe was determined using visual examples in Figure 1 of ASTM D 610. Visual examples from Figures 1-4 of ASTM D 714 were also used to establish a qualitative term that was given to represent the frequency, if any were present.

In order to determine the corrosive performance of the coupons, the coupons were subjected to scraping through the use of a rigid spatula placed perpendicular to the coupon surface. The coupon was placed under a gentle stream of water that was no more than 45 °C or (110 °F). The amount of time for each scrape did not exceed 3 minutes. The coupons were then dried using paper towels followed by examining them for creep.

All of the data has been summarized and represented in the table below. The evaluations of the coupons were assessed using a rating number with 10 representing no presence of corrosion and zero meaning a high amount of a specific corrosive property.
Table N1. Material evaluation results per ASTM D 1654 and ASTM D 610.

<table>
<thead>
<tr>
<th>Coupon ID</th>
<th>Blister</th>
<th>Rust-Unscribed Area</th>
<th>Creep</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Quarter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>22</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>26</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>35</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Second Quarter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>22</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>26</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>35</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Third Quarter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>22</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>26</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>35</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Fourth Quarter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>22</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>26</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>35</td>
<td>10-None</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
Coupon documentation

Initial

First quarter

Second quarter
Tank documentation

Third Quarter

Fourth quarter

First Quarter

Second Quarter
Pipe documentation

The numerical ratings, photographic documentation and on-site evaluation can provide technical insight to the overall performance of the coat-
There were no signs of any blistering, topcoat lifting, or creep extending from the scribe mark, for the entire course of the exposure period, on any part of the coating system. There were signs of paint cracking during the scribing process due to the brittle coating system on the intermediate primer coupons (16 and 22) as well as coupon 11. Mildew has formed on the intermediate primer coupons because there was no topcoat present to protect the coupons. During the evaluations of the coupons it was noted that the scribe marks formed rust rapidly and had completely rusted after the first quarter. The amount of surface oxidation continued to increase with each quarter as seen by the increasing length of the rust tail that was eventually washed out of the scribe causing it to stain the topcoat. This surface oxidation was easily removed by rinsing the coupon. Fuel Tank #2 also showed no signs of detrimental corrosion during the exposure period. The coating is still adhering to the metal surface without any blistering or fading. The coating on the piping is consistent with the performance on the fuel tank. The use of zinc-rich primer as an effective coating system is certainly supported by these assessments, results and pictures.
Above-ground steel fuel tanks, some as large as 1 million gallons, are the main fuel supply for central energy plants and aviation support throughout the Department of Defense (DoD). These tanks and their associated pipelines are aging and many need remediation before leaks or catastrophic failures occur. This project evaluated an emerging coating technology for steel tanks and implemented the technology at Fort Bragg, NC, on a fuel oil storage tank.

For conventional zinc-rich primer to be effective, the metallic zinc dust pigment particles must be heavily loaded in the coating binder (65–95%) so that zinc particles are in contact with each other for electrical conductivity. This high loading can be problematic during coating application/removal due to zinc metal’s heavy weight and the traces of lead it normally contains. The coating used in this project is a technically advanced primer additive that uses galvanically inactive, electrically conductive, single-wall carbon nanotubes in conjunction with a much lower percentage of the metallic zinc powder (~30%) to produce the enhanced galvanic reactivity with the steel substrate. The reduced content of the zinc pigment to resin/binder volume ratio also improves the coating integrity and application.

Corrosion prevention, nanomaterials, zinc coatings, fuel tanks, pipelines, steel structures, Fort Bragg, NC