Net Zero Plus JCTD Results: Evaluation of Energy Saving Technologies for Expeditionary Shelters

Laura Biszko
Special Projects Team
NSRDEC
508-233-4499

10/03/2011 UNCLASSIFIED
Net Zero Plus JCTD Results: Evaluation of Energy Saving Technologies for Expeditionary Shelters

1. REPORT DATE
03 OCT 2011

2. REPORT TYPE

3. DATES COVERED
00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Net Zero Plus JCTD Results: Evaluation of Energy Saving Technologies for Expeditionary Shelters

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army Research, Development and Engineering Command (RDECOM), US Army Natick Soldier RD&E Center, Natick, MA, 01760

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
7th Bi-Annual DOD JOCOTAS Meeting with Rigid & Soft Wall Shelter Industry & Indoor & Outdoor Exhibition, 1-3 Nov 2011, Panama City Beach, FL

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
11

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std Z39-18
Net Zero Plus JCTD

• Objective
 – Determine the best combination of advanced shading, insulation and lighting systems for the most energy efficient shelter.

• Optimized technologies
 – Solar Barrier systems
 – High Efficiency Lighting Systems
 – Advanced Insulation

• The joint demonstration includes shelters and technologies from the Army, Air Force and Marine Corps. All of the branches are collecting and sharing data from the demonstration.
Evaluation Overview

- **Goals**
 - Compare baseline energy usage to energy efficient technologies
 - Evaluate various configurations for optimization
 - Relevant environmental conditions
 - Creative a comparative and comprehensive report
 - Power usage will be primary metric
 - Measure KW used by ECU and Internal shelter load
 - Draw conclusions on recommended shelter system configurations

- **Compare results to current baseline tents**
 - TEMPER Baseline onsite and TEMPER Airbeam Baseline on site

- **Actual Fuel Usage NOT Measured**
 - As practiced in the field, measuring amount of fuel delivered would not work because we had multiple fuel sources (on site soldiers did refueling which wasn’t tracked)
 - Measuring fuel into generator would only be marginally effective because COTS generators were used and have no direct correlation to the mil-std TQGs used in the field
 - In addition, multiple generators were added as site expanded which were not originally planned for
 - EPCC system also used power and therefore would not accurately reflect fuel used for tents

10/03/2011 UNCLASSIFIED
LSA Warrior Site

Objective

- Demonstrate the best combination of advanced, sustainable, efficient, secure, and effective sheltering systems for joint operations.
- The joint demonstration includes shelters and technologies from the Army, Air Force, and Marine Corps. All branches are collecting and sharing data from the demonstration.

Optimized technologies

- Solar Barrier systems
- High Efficiency Lighting Systems
- Advanced Insulation

Demonstration through April 2009 – March 2011
• **Technologies**

 – Solar Barrier Systems:

 • Ultra Lightweight Camouflage Net System (*ULCANS*)
 • Advanced Solar Shades
 • Power Shade (including Photovoltaic Panels (2kW))

 – Lighting Systems:

 • Fluorescent Lights
 • Light Emitting Diodes (Three Sets)
 • Electroluminescent Panels

 – Advanced Insulation:

 • Aerogel Liner
 • Gas Filled Panel Insulation
 • Radiant Barrier
 • Honeycomb Insulation
 • *TEMPER* Insulated Liner
 • Laminated Liner
 • Quilted Liner
 • Airbeam Insulated Liner
Other Net Zero + Technologies

- Pyrolysis Solid Waste Disposal
- Solar-Powered Advanced Refrigerated TriCons (SPARTs)
- EPCC
 - Electronic Power Control Conditioning Module
- Micro-grid Systems
 - 1 MW with AC/DC capability
 - Energy efficient generators
 - Accommodates multiple inputs
 - Power quality (conditioning)
- Exterior Spray Foam
 - Tents, buildings
- DREAM
 - LTT-MCC Trailer
 - 250 x BB-2590 U Li-Ion Batteries
Baseline vs 2 KW PV Power Shade
09 April 2010-30 April 2010

On Average saved 1.5 KW
Baseline vs ULCANS SolarShade
11 June 2010-25 June 2010

On Average saved 4 KW
Results

Baseline vs ULCANS w/ Insulated Liner
1 April 2010 - 29 April 2010

**On Average saved 2KW

Baseline
Outside Avg. Deg F

Baseline Avg. KW

ULCANS w/ Insulated Liner Avg. KW

Date

Temperature
60 70 80 90 100

KW
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

10/03/2011 UNCLASSIFIED
Key Findings

- Shading systems are critical in the summer months for reducing power consumption up to 30%.

- Insulation is critical in the winter months for reducing power consumption up to 30%.

- Received Soldier feedback on the technologies.

- Soldier Preference
 - LED Lights

- LED prototype systems did not significantly save power.
 - Technology is improving rapidly
 - Continually watching the technology for improvements

- Transition new configuration of ULCANS to PM-FSS—Reduced foot print

- Evaluated multiple Liners For PM-FSS
Questions?

Net Zero Plus JCTD: Evaluation of Energy Saving Technologies for Expeditionary Shelters

Laura Biszko
Special Projects Team
NSRDEC